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Abstract: In this paper, we propose a stochastic phytoplankton–zooplankton model driven by
correlated colored noises, which contains both anthropogenic and natural toxins. Using Khasminskii
transformation and the stochastic averaging method, we first transform the original system into
an Itô diffusion system. Afterwards, we derive the stationary probability density of the averaging
amplitude equation by utilizing the corresponding Fokker–Planck–Kolmogorov equation. Then,
the stability of the averaging amplitude is studied and the joint probability density of the original
two-dimensional system is given. Finally, the theoretical results are verified by numerical simulations,
and the effects of noise characteristics and toxins on system dynamics are further illustrated.

Keywords: stochastic phytoplankton–zooplankton model; stationary probability density; stochastic
averaging method
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1. Introduction

Phytoplankton are tiny floating plants, usually single-celled algae, which sit at the
bottom of the food chain and thus support secondary and tertiary productivity in the
ocean [1–3]. As the major primary producers in the marine ecosystem, phytoplankton are
not only a basic food source for zooplankton, but also provide large amounts of oxygen
for humans and other animals after absorbing nearly half of the universal carbon dioxide
through photosynthesis [4–6]. However, unfortunately, the rapid and sustained growth
of phytoplankton biomass can alter energy flows and disrupt the normal functioning of
marine ecosystem [7]. Especially in the stage of algal bloom demise, the decomposition
process after the death of high concentration algae can absorb a large amount of dissolved
oxygen in the water, resulting in the death of marine organisms asphyxiation, which in
turn affects the water quality, tourism, and fishery resources [8,9].

There are many factors that contribute to algal blooms, such as nutrient level [10],
temperature [11] and light availability [12], but the key cause for the formation of algal
blooms is still not fully understood. Perhaps the main reason behind population succession
and algal blooms is the toxins produced by toxin-producing phytoplankton (TPP). For this
reason, Chattopadhayay et al. [13] proposed a general form of phytoplankton–zooplankton
interaction model with TPP, and concluded that TPP may act as a biological control for
planktonic blooms through the field-collected samples and theoretical analysis. Since then,
a large number of plankton models with TPP have been developed, with similar results—
including, but not limited to, Refs. [14–19]. Notably, most studies only consider the impact
of toxic substances released by TPP on the grazing pressure of zooplankton, while ignoring
the impact of anthropogenic toxins in the environment. In fact, chemical toxins widely exist
in earth’s ecosystem as a result of multitudes of human activities, seriously affecting the
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survival of plankton and human health [20]. Assuming that prey and predator have differ-
ent rates of exposure to anthropogenic toxins, Das et al. [21] investigated the bioeconomic
harvesting of a prey–predator model in the presence of toxicity. Later, Chakraborty and
Das [22] extended this model to three-dimensional case, which includes two-zooplankton
and one-phytoplankton. To study the direct and indirect effects of anthropogenic toxins
on competitive species, Shan and Huang [23] established a toxin-dependent competition
model and found that the level of toxins and the distinct vulnerabilities of two species to
toxins can influence competition outcomes in many counterintuitive ways.

Note that the aforementioned models are based on a deterministic approach. Species
concentrations, however, are susceptible to fluctuations in the real environment that can
not be neglected when seeking a better understanding of the dynamics of complex living
systems [24–32]. This is especially true for marine organisms due to the unpredictability of
water temperature, nutrient availability, photosynthetically active radiation and other phys-
ical factors embedded in aquatic ecosystems [33–36]. Consequently, nonlinear stochastic
ecosystem with noise term has recently attracted the attention of scholars [37–41]. For exam-
ple, authors of [42,43] established different Itô type stochastic plankton models and studied
their asymptotic behavior and stability by Lyapunov function method. Significantly, Gauss
white noise in the sense of Itô is regarded as ideal white noise with infinite power, which
does not exist in reality. As a result, researchers [44] used Stratonovich type stochastic
differential equation instead of Itô type to characterize the interaction between plankton
and marine environment. In particular, Spagnolo and his co-workers [45–47] developed
different types of stochastic population models with multiplicative white Gaussian noise
to simulate the complex dynamic behavior of ecosystems and observed that theoretical
results can effectively reproduce experimental data. Huang et al. [48] explored bifurcation
dynamics of two competing algal species by constructing a stochastic nonlinear model with
multiplicative and additive noises. Except for biomathematics, multiplicative and additive
noises are also widely used in other many fields, such as medicine [49], physics [50], neurol-
ogy [51], and signal processing [52]. It is important to note that the above stochastic models
were established based on the assumption that noises have different sources, i.e., they are
independent of each other. Meanwhile, the researchers [53] uncovered that in some cases
noises may have a common source and therefore can be correlated. Although the correlation
time of actual noises may be small physically, it can never be strictly zero [54]. Especially, it
is important to consider the non-zero correlation time when the fluctuation is large and the
driving process relaxation time scale is long [55]. Noise is generally considered harmful and
can cause disturbance of the dynamical system. However, in recent years, the constructive
and counterintuitive role of noise in nonlinear system, such as noise-enhanced stability [56],
noise-induced resonance [57], noise-induced transport [58], etc., has been widely studied
theoretically and experimentally. For more information, please refer to Refs. [59–62].

Inspired by the above discussion, it is more reasonable to incorporate natural and
anthropogenic toxins and environmental noises into the plankton model. To this end, a
randomly forced phytoplankton–zooplankton model driven by correlated colored noises,
which contains both anthropogenic and natural toxins, is constructed in Section 2. In
Section 3, to explore the stochastic dynamic properties of the model, we first transform
the original model into an averaging Itô diffusion system by using the Khasminskii trans-
formation [63] and stochastic averaging method [64,65]. Then, the stationary probability
density of the averaging amplitude equation by utilizing the corresponding Fokker–Planck–
Kolmogorov equation is derived. Afterwards, the stability of the averaging amplitude
is studied and the joint probability density of the proposed two-dimensional system is
given. In Section 4, some numerical simulations are carried out to illustrate the obtained
theoretical results and the effects of noise characteristics and toxins on system dynamics
are further illustrated. Finally, we conclude the paper by a brief discussion in Section 5.
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2. Model Formulation

Let P ≡ P(t) and Z ≡ Z(t), respectively, denote the TPP and zooplankton populations
at time t. Now some assumptions for establishing the model are presented.

(i) In the absence of zooplankton, the growth of TPP population follows the logistic law
with intrinsic growth rate r and environmental carrying capacity K.

(ii) In the absence of limiting factors, the chance of an individual zooplankton encounter-
ing prey is proportional to its abundance, so the predation rate is assumed to obey the
simple law of mass action. On the other hand, no matter how large the TPP population
is, each zooplankton individual has a maximum consumption rate. Therefore, in the
presence of toxic algae, the more common choice is the Holling type II functional
response to describe this grazing phenomena [13].

(iii) TPP population is directly affected by anthropogenic toxins, while zooplankton popu-
lation feeding on contaminated TPP is indirectly affected by toxins [21].

(iv) Some external factors such as temperature and climate affect the biological individual,
which result in a multiplicative noise ξ(t) [52], while internal factors such as competi-
tion between individuals for food and living environment may alter the population
directly, leading to an additive noise η(t) [53].

Based on the above assumptions, the stochastic phytoplankton–zooplankton model
with TPP is given as follows:{

dP
dt = rP

(
1− P

K
)
− α1PZ− γ1P3 + Pξ(t) + η(t),

dZ
dt = α2PZ− µZ− bPZ

a+P − γ2Z2 + Zξ(t) + η(t).
(1)

Worth noting that phytoplankton and zooplankton have different exposure rates
to anthropogenic toxins released by external environment due to their density and size.
Hence, the effect of anthropogenic toxins on zooplankton population is less than that on TPP
population by assumption (iii), namely, the coefficients of toxicity satisfy 0 < γ2 < γ1 [22].
In addition, both phytoplankton and zooplankton are assumed to be affected by the same
multiplicative noise source ξ(t) and the same additive noise source η(t), where ξ(t) and
η(t) are correlated Gaussian colored noises with zero mean and satisfy

〈ξ(t)ξ(s)〉 = D1

τ1
exp(−|t− s|

τ1
),

〈η(t)η(s)〉 = D2

τ2
exp(−|t− s|

τ2
),

〈ξ(t)η(s)〉 = D3

τ3
exp(−|t− s|

τ3
).

(2)

Here, τi (i = 1, 2, 3) denote the correlation time, D1 and D2 are the intensity of the two
colored noises, and D3 = λ

√
D1D2, where λ represents the correlation degree between the

two noises with |λ| < 1. Biological explanations of other parameters are shown in Table 1.
In the following, the stationary probability density of model (1) will be presented.

Table 1. Biological explanation of parameters in model (1).

Parameter Description

r Intrinsic growth rate of TPP population
K Environmental carrying capacity of TPP population
α1 Rate of predation of zooplankton on TPP population
α2 Ratio of biomass consumed by zooplankton for its growth
µ Mortality rate of zooplankton
a Half saturation constant
b Rate of toxin liberation by TPP population
γ1 Coefficient of toxicity to phytoplankton
γ2 Coefficient of toxicity to zooplankton
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3. Stochastic Analysis of The Model

Without considering the impact of noise, model (1) degenerates into a deterministic
one. Then the equilibria for the deterministic model is E0(0, 0), E1(P1, 0), E∗(P∗, Z∗), where

P1 =
1

2γ1
(− r

K
+

√
(

r
K
)2 + 4rγ1), Z∗ =

1
α1

(r− r
K

P∗ − γ1P2
∗ ),

and P∗ satisfies
d0P3
∗ + d1P2

∗ + d2P∗ + d3 = 0, (3)

here

d0 = γ1γ2,

d1 = α1α2 + γ2(aγ1 + rK−1),

d2 = arγ2K−1 − rγ2 + aα1α2 − µα1 − bα1,

d3 = −aµα1 − arγ2.

It is obvious from (3) that the necessary and sufficient condition for the existence of
positive equilibrium E∗ is

r− rP∗K−1 − γ1P2
∗ > 0. (4)

Next, the stationary probability density and stability of model (1) are discussed
in detail. We first introduce a transformation of variables, X = P − P∗, Y = Z − Z∗,
and substitute this into model (1), which will lead to the following form by ignoring the
higher powers: {

dX
dt = a11X + a12Y + (X + P∗)ξ(t) + η(t),
dY
dt = a21X + a22Y + (Y + Z∗)ξ(t) + η(t),

(5)

where
a11 =− rK−1P∗ − 2γ1P2

∗ , a12 = −α1P∗,

a21 =α2Z∗ −
abZ∗

(a + P∗)2 , a22 = −γ2Z∗.
(6)

It follows from the Khasminskii transformation X = ρ cos θ and Y = ρ sin θ [63] that{
dρ
dt = f1(ρ, θ) + g11(ρ, θ)ξ(t) + g12(ρ, θ)η(t),
dθ
dt = f2(ρ, θ) + g21(ρ, θ)ξ(t) + g22(ρ, θ)η(t),

(7)

where
f1(ρ, θ) = ρ(a11 cos2 θ + (a12 + a21) sin θ cos θ + a22 sin2 θ),

f2(ρ, θ) = a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ,

g11(ρ, θ) = ρ + P∗ cos θ + Z∗ sin θ, g12(ρ, θ) = cos θ + sin θ,

g21(ρ, θ) = ρ−1(Z∗ cos θ − P∗ sin θ), g22(ρ, θ) = ρ−1(cos θ − sin θ).

(8)

After applying the stochastic averaging method [64,65] for system (7), we obtain{
dρ = mρ(ρ)dt + σ11(ρ)dwρ + σ12(ρ)dwθ ,
dθ = mθ(ρ)dt + σ21(ρ)dwρ + σ22(ρ)dwθ .

(9)
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Here, wρ and wθ stand for independent standard Wiener processes, and the drift and
diffusion coefficients are

mρ(ρ) =
1
2

ρ(a11 + a22) +
D1(2ρ2τ2

1 + 2ρ2 + P2
∗ + Z2

∗)

2ρ(τ2
1 + 1)

+
D2

ρ(τ2
2 + 1)

+
D3(P∗ + Z∗)

ρ(τ2
3 + 1)

,

mθ(ρ) =
1
2
(a21 − a12), σ2

12(ρ) = 0, σ2
21(ρ) = 0,

σ2
11(ρ) =

D1(2ρ2τ2
1 + 2ρ2 + P2

∗ + Z2
∗)

τ2
1 + 1

+
2D2

τ2
2 + 1

+
2D3(P∗ + Z∗)

τ2
3 + 1

,

σ22(ρ) =
D1(P2

∗ + Z2
∗)

ρ2(τ2
1 + 1)

+
2D2

ρ2(τ2
2 + 1)

+
2D3(P∗ + Z∗)

ρ2(τ2
3 + 1)

.

For simplicity, we introduce some notations:

ϕ1 =
1
2
(a11 + a22) + D1, ϕ2 = 2D1, ϕ3 =

1
2
(a21 − a12),

ϕ4 =
D1(P2

∗ + Z2
∗)

2(τ2
1 + 1)

+
D2

τ2
2 + 1

+
D3(P∗ + Z∗)

τ2
3 + 1

.
(10)

Then the probability density function p(ρ) for the diffusion process (ρ, θ) satisfies the
Fokker–Planck–Kolmogorov equation

∂p
∂t

+
∂

∂ρ
(mρ p) +

∂

∂θ
(mθ p) =

1
2
[ ∂2

∂ρ2 (σ
2
11 p) +

∂2

∂θ2 (σ
2
22 p)

]
. (11)

Note that the amplitude ρ in (9) does not depend on the phase θ, so Equation (11)
degenerates into

∂p
∂t

= − ∂

∂ρ
(mρ p) +

1
2

∂2

∂ρ2 (σ
2
11 p), (12)

i.e.,
∂p
∂t

= − ∂

∂ρ
[(ϕ1ρ + ϕ4ρ−1)p] +

1
2

∂2

∂ρ2 [(2ϕ4 + ϕ2ρ2)p]. (13)

It then follows from ∂p
∂t = 0 that the stationary probability density function p(ρ) satisfies

− ∂

∂ρ
[(ϕ1ρ + ϕ4ρ−1)p] +

1
2

∂2

∂ρ2 [(2ϕ4 + ϕ2ρ2)p] = 0. (14)

From Equations (6) and (10), we know that ϕ2 > 0 and ϕ4 > 0. Therefore, when
ϕ2 > 2ϕ1, the following expression of stationary probability density function can obtained
from (14)

p(ρ) =
ϕ2

ϕ4
ρ
(
1 +

ϕ2

2ϕ4
ρ2) ϕ1

ϕ2
− 3

2 Γ
(3

2
− ϕ1

ϕ2

)
Γ−1(1

2
− ϕ1

ϕ2

)
, (15)

where Γ(x) =
∫ ∞

0 tx−1e−tdt is the Gamma function with t > 0.

One can see from dp(ρ)
dρ = 0 that the extreme point of p(ρ) is

√
ϕ4

ϕ2−ϕ1
(ϕ2 > 2ϕ1).

Further calculations show that d2 p(ρ)
dρ2

∣∣
ρ=
√

ϕ4
ϕ2−ϕ1

< 0, which implies that ρ̄ =
√

ϕ4
ϕ2−ϕ1

(ϕ2 > 2ϕ1) is a maximum point of p(ρ). According to Namachchivaya’s theory [66], the
extreme value of an invariant measure contains the most important essence of nonlinear
stochastic system, namely, the sample trajectory will stay near ρ̄ with bigger probability,
which means that ρ̄ is stable in the sense of probability.
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According to ρ = (X2 + Y2)
1
2 , we can further obtain the following joint probability

density of variables X and Y:

Ψ(X, Y) =
ϕ2

ϕ4
(X2 + Y2)

1
2
[
1 +

ϕ2

2ϕ4
(X2 + Y2)

] ϕ1
ϕ2
− 3

2 Γ
(3

2
− ϕ1

ϕ2

)
Γ−1(1

2
− ϕ1

ϕ2

)
. (16)

Hence, Ψ(X, Y) exists a maximum value at the points of the stable limit cycle

X2 + Y2 =
ϕ4

ϕ2 − ϕ1
.

For system (1), we can obtain similar results, namely, the probability density of vari-
ables P and Z is

Ψ(P, Z) =
ϕ2

ϕ4

√
Θ(P, Z)

[
1 +

ϕ2

2ϕ4
Θ(P, Z)

] ϕ1
ϕ2
− 3

2 Γ
(3

2
− ϕ1

ϕ2

)
Γ−1(1

2
− ϕ1

ϕ2

)
, (17)

where Θ(P, Z) = (P− P∗)2 + (Z− Z∗)2.

4. Numerical Simulation

In this section, we will perform some numerical simulations to verify the theoretical
results and further illustrate the effects of noise characteristics and anthropogenic and
natural toxins on system dynamics. Unless otherwise specified, all numerical simulations
in this paper are carried out by fixing parameters r = 0.2, K = 108, α1 = 1, α2 = 0.15,
µ = 0.075, a = 5.7 and changing Di, τi, γj and b, i = 1, 2, 3, j = 1, 2.

(i) Assuming that one noise intensity is fixed while the other two change continuously,
and selecting τ1 = 0.5, τ2 = 0.8, τ3 = 0.1, γ1 = 0.057, γ2 = 0.02 and b = 0.5, we plot
Figure 1, which shows the effect of noise intensity on the maximum amplitude ρ̄. We find
from Figure 1 that the maximum amplitude ρ̄ decreases with the increase in multiplicative
noise intensity D1, but the effect of D2 and D3 is just the opposite.

Figure 1. Maximum amplitude ρ̄ for different noise intensities, where (a) D3 = 0.15, (b) D2 = 0.05,
(c) D1 = 0.1.

(ii) Let D1 = 0.1, D2 = 0.05, D3 = 0.15, γ1 = 0.057, γ2 = 0.02, b = 0.5. Then, the effect
of correlation time on the maximum amplitude ρ̄ is shown in Figure 2. Clearly, ρ̄ tends to
decrease due to the increase in τi (i = 1, 2, 3), which means that the correlation time is not
conducive to the stability of the system.
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Figure 2. Maximum amplitude ρ̄ for different correlation times, where (a) τ3 = 0.1, (b) τ2 = 0.8,
(c) τ1 = 0.5.

(iii) Figure 3 is plotted by choosing D1 = 0.1, D2 = 0.05, D3 = 0.15, τ1 = 0.5, τ2 = 0.8,
τ3 = 0.1 and b = 0.5, which illustrates the effect of anthropogenic toxins. We see from
Figure 3 that ρ̄ decreases with increasing γ1, while the effect of γ2 is more complex. To be
specific, ρ̄ increases only when γ2 is smaller and decreases when γ2 is larger, so γ2 exists a
maximum point. This implies that the coefficient of anthropogenic toxicity to zooplankton
γ2 may be used as a biological control measure for algal blooms.

Figure 3. Effect of anthropogenic toxins on maximum amplitude ρ̄, where (a) γ2 = 0.02, (b) γ1 = 0.057.

(iv) Let D1 = 0.1, D2 = 0.05, D3 = 0.15, τ1 = 0.5, τ2 = 0.8, τ3 = 0.1, γ1 = 0.057,
γ2 = 0.02. Then, the effect of TPP population on the maximum amplitude ρ̄, i.e., the effect
of natural toxins, is shown in Figure 4. Interestingly, Figure 4 exhibits two extreme values,
a maximum and a minimum, and ρ̄→ ∞ when b→ ∞. That is to say, toxin release rate by
TPP population b may affect the intensity of the algal blooms, so it plays an important role
in the formation of algal blooms.

(v) Let D1 = D2 = D3 = 0.01, τ1 = τ2 = τ3 = 0.02, γ1 = 0.057, γ2 = 0.02, b = 0.5.
Then, we plot the joint probability density of system (5), as shown in Figure 5. Therefore,
Ψ(X, Y) exists a maximum value at the points of the stable limit cycle: X2 + Y2 = ϕ4

ϕ2−ϕ1
= 0.63.
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Figure 4. Effect of toxin release rate by TPP population on maximum amplitude ρ̄.

Figure 5. (a) Joint probability density Ψ(X, 0) of system (5); (b) Joint probability density Ψ(X, Y) of
system (5).

5. Discussion

Considering internal and external random factors, in this paper we proposed a stochas-
tic phytoplankton–zooplankton model with correlated colored noises. In order to explore
the stochastic dynamics of the model, we first employed the Khasminskii transformation
and stochastic averaging method to transform the original model into an averaging Itô
diffusion system. Then, the stationary probability density of the diffusion process was
obtained by utilizing the corresponding Fokker–Planck–Kolmogorov equation. Finally, we
discussed the stability of the averaging amplitude with the help of maximum value and pre-
sented the joint probability density of the original two-dimensional system. Summarizing
the theoretical and numerical results, we can draw the following interesting conclusions.

• The noise intensity D1, the correlation time τi (i = 1, 2, 3) and the coefficient of
anthropogenic toxicity γ1 may reduce the level of ρ̄, namely, the distribution range of
population density will be more concentrated with the increase in D1, τi (i = 1, 2, 3),
and γ1. Ecologically, these parameters are favorable for maintaining a balanced
plankton population, which may seem counterintuitive.

• The noise intensities D2 and D3 can enhance the level of ρ̄, which implies that the
distribution range of population density will be enlarged with the increase in D2 and
D3. As a result, they weaken the stability of the system.

• The influence of anthropogenic toxicity coefficient γ1 and the toxin release rate by
TPP population b is more complicated, depending on the content of the two toxins. In
other words, these two parameters can be used as a means of controlling algal blooms.
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This paper is concerned with stationary probability density analysis for the randomly
forced phytoplankton–zooplankton model with correlated colored noises. The obtained
results may enrich the research of aquatic ecosystem dynamics. Note here that the model
proposed in this paper is a two-dimensional model, which is based on top-down mechanism.
How to construct a high-dimensional stochastic food chain model based on both bottom-up
and top-down mechanisms to describe the interaction between nutrients and plankton, and
to carry out its stationary probability density analysis is a problem worth discussing. We
leave this for future investigations.
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