Mathematical Analysis of a Low Cost Mechanical Ventilator Respiratory Dynamics Enhanced by a Sensor Transducer (ST) Based in Nanostructures of Anodic Aluminium Oxide (AAO)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Description
2.2. Device Design
2.3. Mathematical Modelling
2.4. Computational Fluid Dynamics (CFD) Analysis
Sensor Case Setup
- ▪ Air assumed as incompressible fluid [17];
- ▪ Density = 1.18 kg/m3;
- ▪ Atmospheric pressure at the outlet (101,325 Pa);
- ▪ Dynamic Viscosity = 1.7984 × 10−5 kg/(m-s);
- ▪ No slip condition at the walls.
2.5. Transduction Stage Design
3. Experimental Section
3.1. Orifice Plate Diameter Study
3.1.1. Steady State and Dynamic Response
3.1.2. Measurement in a Mechanical Ventilator
3.2. Experimental Validation of the Sensor/Transducer Device
4. Results
4.1. CFD Simulation Results
4.1.1. Steady State Results
4.1.2. Profile of Mechanical Ventilator Curves
4.2. Experimental Results
4.2.1. Steady State
4.2.2. Open and Close Loop
4.2.3. Dynamic Response
5. Discussion
5.1. Data Interpretation Analysis
5.2. Rotor Speed Control of the Mechanical Ventilator Motor
Rotor Control Position of the Mechanical Ventilator Motor as a Function of Electrical Current
5.3. Model Predictive Control Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Steady State Air Flow Test Bench
Appendix A.2. Mechanical Ventilation System Oxygen IP.PE
Appendix B
References
- Calderón Ch, J.A.; Rincón, C.; Agreda, M.; Jiménez de Cisneros, J.J. Design and Analysis of a Mechanical Ventilation System Based on Cams. Heliyon 2021, 7, e08195. [Google Scholar] [CrossRef] [PubMed]
- Freescale Semiconductor Literature Distribution Center, Inc. Ventilator/Respirator Hardware and Software Design Specification; Freescale Semiconductor Literature Distribution Center, Inc.: Denver, CO, USA, 2011; pp. 11–20. [Google Scholar]
- Brzeski, P.; Lazarek, M.; Perlikowski, P. Experimental study of the novel tuned mass damper with inerter which enables changes of inertance. J. Sound Vib. 2017, 404, 47–57. [Google Scholar] [CrossRef]
- Fowles, G.; Boyes, W. Measurement of Flow, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 978075068308. [Google Scholar]
- Biselli, P.J.C.; Nóbrega, R.S.; Soriano, F.G. Nonlinear flow sensor calibration with an accurate syringe. Sensors 2018, 18, 2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OxyGEN Project. Available online: https://www.oxygen.protofy.xyz/download (accessed on 23 November 2020).
- Chang, J.; Acosta, A.; Aspiazu, J.B.; Reategui, J.; Rojas, C.; Cook, J.; Nole, R.; Giampietri, L.; Pérez-Buitrago, S.; Casado, F.L.; et al. Masi: A mechanical ventilator based on a manual resuscitator with telemedicine capabilities for patients with ARDS during the COVID-19 crisis. HardwareX 2021, 9, e00187. [Google Scholar] [CrossRef] [PubMed]
- Jamróz, P. Interaction between the Standard and the Measurement Instrument during the Flow Velocity Sensor Calibration Process. Processes 2021, 9, 1792. [Google Scholar] [CrossRef]
- Włodarczak, S.; Ochowiak, M.; Doligalski, M.; Kwapisz, B.; Krupińska, A.; Mrugalski, M.; Matuszak, M. Flow Rate Control by Means of Flow Meter and PLC Controller. Sensors 2021, 21, 6153. [Google Scholar] [CrossRef] [PubMed]
- Koirala, N.; McLennan, G. Mathematical Models for Blood Flow Quantification in Dialysis Access Using Angiography: A Comparative Study. Diagnostics 2021, 11, 1771. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, J.; Tajsoleiman, T.; Muldbak, M.; Rydal, T.; Rasmussen, T.; Huusom, J.K.; Gernaey, K.V. Automated Compartment Model Development Based on Data from Flow-Following Sensor Devices. Processes 2021, 9, 1651. [Google Scholar] [CrossRef]
- Hammer, A.; Roland, W.; Zacher, M.; Praher, B.; Hannesschläger, G.; Löw-Baselli, B.; Steinbichler, G. In Situ Detection of Interfacial Flow Instabilities in Polymer Co-Extrusion Using Optical Coherence Tomography and Ultrasonic Techniques. Polymers 2021, 13, 2880. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Leiftshitz, E.M. Fluid Mechanics, Institute of Physical Problems; U.S.S.R. Academy of Sciences: Moscow, Russia, 1987. [Google Scholar]
- Aldoghaither, A.; Liu, D.-Y.; Laleg-Kirati, T.M. Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2015. [Google Scholar]
- Bridgeman, D.; Tsow, F.; Xian, X.; Forzani, E. A new differential pressure flow meter for measurement of human breath flow: Simulation and experimental investigation. AIChE J. 2016, 62, 956–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Launder, B.E. MAN—ANSYS Fluent User’ s Guide Releasde 15.0. Knowl. Creat. Diffus. Util. 2013, 15317, 724–746. [Google Scholar]
- Paz, C.; Suárez, E.; Concheiro, M.; Porteiro, J. CFD transient simulation of a breathing cycle in an oral-nasal extrathoracic model. J. Appl. Fluid Mech. 2017, 10, 777–784. [Google Scholar] [CrossRef]
- CLÍNIC BARCELONA. Available online: https://www.clinicbarcelona.org/noticias/el-dispositivo-de-ventilacion-de-emergencia-desarrollado-por-clinic-germans-trias-i-pujol-y-ub-con-protofy-xyz-recibe-la-aprobacion-de-la-aemps-para-hacer-un-estudio-clinico (accessed on 15 May 2020).
- Karthik, G.S.Y.; Kumar, K.J.; Seshadri, V. Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD. Int. J. Eng. Tech. Res. 2015, 3, 2321–2869. [Google Scholar]
- Funk, J.E.; Wood, D.J.; Chao, S.P. The transient response of orifices and very short lines. J. Fluids Eng. Trans. ASME 1972, 94, 483–489. [Google Scholar] [CrossRef]
- Calderón, J.A.; Barriga, E.B.; Mas, R.; Chirinos, L.; Barrantes, E.; Alencastre, J.; Tafur, J.C.; Melgarejo, O.; Lozano, J.H.; Heinrich, B.; et al. Magnetic Bearing Proposal Design for a General Unbalanced Rotor System enhanced because of using sensors/actuators based in nanostructures. E3S Web Conf. 2019, 95, 01002. [Google Scholar] [CrossRef]
- Халилoв, И.А.; Керимoв, С.Х.; Багирoва, С.А.; Гаджиева, Ф., III. Синтез кулачкoвoгo механизма с учетoм услoвий передачи сил и кoнтактнoй прoчнoсти. (Khalilov, I.A.; Kerimov, S.K.; Bagirova, S.A.; Gadzhieva, F.S. Synthesis of a Cam Mechanism Taking into Account the Conditions for the Transfer of Forces and Contact Strength). 2017. Available online: http://web.iyte.edu.tr/~gokhankiper/ISMMS/Khalilov.pdf (accessed on 6 April 2022).
- Liang, L.; Qin, K.; El-Baz, A.S.; Roussel, T.J.; Sethu, P.; Giridharan, G.A.; Wang, Y. A Flow Sensor-Based Suction-Index Control Strategy for Rotary Left Ventricular Assist Devices. Sensors 2021, 21, 6890. [Google Scholar] [CrossRef] [PubMed]
- Algarni, M. Optimization of Nano-Additive Characteristics to Improve the Efficiency of a Shell and Tube Thermal Energy Storage System Using a Hybrid Procedure: DOE, ANN, MCDM, MOO, and CFD Modeling. Mathematics 2021, 9, 3235. [Google Scholar] [CrossRef]
- Melaibari, A. Free Vibration of FG-CNTRCs Nano-Plates/Shells with Temperature-Dependent Properties. Mathematics 2022, 10, 583. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavarri, J.A.C.; Ruiz, C.G.R.; Gómez Amador, A.M.; Cardenas, B.J.M.A.; Anaya, S.C.; Lozano Jauregui, J.H.; Hinostroza, A.T.; Jiménez de Cisneros y Fonfría, J.J. Mathematical Analysis of a Low Cost Mechanical Ventilator Respiratory Dynamics Enhanced by a Sensor Transducer (ST) Based in Nanostructures of Anodic Aluminium Oxide (AAO). Mathematics 2022, 10, 2403. https://doi.org/10.3390/math10142403
Chavarri JAC, Ruiz CGR, Gómez Amador AM, Cardenas BJMA, Anaya SC, Lozano Jauregui JH, Hinostroza AT, Jiménez de Cisneros y Fonfría JJ. Mathematical Analysis of a Low Cost Mechanical Ventilator Respiratory Dynamics Enhanced by a Sensor Transducer (ST) Based in Nanostructures of Anodic Aluminium Oxide (AAO). Mathematics. 2022; 10(14):2403. https://doi.org/10.3390/math10142403
Chicago/Turabian StyleChavarri, Jesús Alan Calderón, Carlos Gianpaul Rincón Ruiz, Ana María Gómez Amador, Bray Jesús Martin Agreda Cardenas, Sebastián Calero Anaya, John Hugo Lozano Jauregui, Alexandr Toribio Hinostroza, and Juan José Jiménez de Cisneros y Fonfría. 2022. "Mathematical Analysis of a Low Cost Mechanical Ventilator Respiratory Dynamics Enhanced by a Sensor Transducer (ST) Based in Nanostructures of Anodic Aluminium Oxide (AAO)" Mathematics 10, no. 14: 2403. https://doi.org/10.3390/math10142403
APA StyleChavarri, J. A. C., Ruiz, C. G. R., Gómez Amador, A. M., Cardenas, B. J. M. A., Anaya, S. C., Lozano Jauregui, J. H., Hinostroza, A. T., & Jiménez de Cisneros y Fonfría, J. J. (2022). Mathematical Analysis of a Low Cost Mechanical Ventilator Respiratory Dynamics Enhanced by a Sensor Transducer (ST) Based in Nanostructures of Anodic Aluminium Oxide (AAO). Mathematics, 10(14), 2403. https://doi.org/10.3390/math10142403