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Abstract: The vertex (respectively edge) metric dimension of a graph G is the size of a smallest vertex
set in G, which distinguishes all pairs of vertices (respectively edges) in G, and it is denoted by
dim(G) (respectively edim(G)). The upper bounds dim(G) ≤ 2c(G)− 1 and edim(G) ≤ 2c(G)− 1,
where c(G) denotes the cyclomatic number of G, were established to hold for cacti without leaves
distinct from cycles, and moreover, all leafless cacti that attain the bounds were characterized. It
was further conjectured that the same bounds hold for general connected graphs without leaves,
and this conjecture was supported by showing that the problem reduces to 2-connected graphs. In
this paper, we focus on Θ-graphs, as the most simple 2-connected graphs distinct from the cycle,
and show that the the upper bound 2c(G)− 1 holds for both metric dimensions of Θ-graphs; we
characterize all Θ-graphs for which the bound is attained. We conclude by conjecturing that there
are no other extremal graphs for the bound 2c(G)− 1 in the class of leafless graphs besides already
known extremal cacti and extremal Θ-graphs mentioned here.

Keywords: vertex metric dimension; edge metric dimension; Theta-graph

MSC: 05C12

1. Introduction

In this paper, we assume that all graphs are simple and connected, unless we explicitly
say otherwise, and we consider distances in such graphs. Let G be a graph with the
set of vertices V(G) and the set of edges E(G). The distance dG(u, v) between vertices
u, v ∈ V(G) is the length of a shortest path in G connecting vertices u and v. The distance
dG(u, e) between a vertex u ∈ V(G) and an edge e = vw ∈ E(G) is defined by dG(u, e) =
min{dG(u, v), dG(u, w)}. When no confusion arises from that, we use abbreviated notation
d(u, v) and d(u, e). We say that a pair x and x′ of vertices from V(G) (respectively of
edges from E(G)) is distinguished by a vertex s ∈ V(G) if d(s, x) 6= d(s, x′). A set S is a
vertex (respectively an edge) metric generator if every pair x and x′ of vertices from V(G)
(respectively of edges from E(G)) is distinguished by a vertex s ∈ S. The size of a smallest
vertex (respectively edge) metric generator in G is called the vertex (respectively the edge)
metric dimension of G, and it is denoted by dim(G) (respectively edim(G)). The cyclomatic
number c(G) of a graph G is defined by c(G) = |E(G)| − |V(G)| + 1. A Θ-graph is any
graph G with precisely two vertices of degree 3 and all other vertices of degree 2.

The concept of the vertex metric dimension was introduced related to the study
of navigation systems [1] and the landmarks in networks [2]. Various aspects of this
metric dimension have been studied since it was first introduced [3–10]. As was noticed
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recently in [11], there are graphs in which none of the smallest vertex metric generators
distinguish all pairs of edges. This motivated the introduction of a new variant of the
metric dimension, namely the edge metric dimension. Even though it is newer than the
vertex metric dimension, the edge metric dimension also attracted interest [12–20]. A nice
survey of the topic of the metric dimension is given in [21].

Particularly relevant for this paper is the line of investigation from papers [17,22–26].
In [22], the value of the vertex and edge metric dimensions for unicyclic graphs was
bounded so it can take only two consecutive integer values, and then, in [17], the condition
under which the dimensions take each of the values was established. This result was
further extended to graphs with edge disjoint cycles [25], also called cactus graphs or cacti.
A similar line of research for another variant of the metric dimension, the so-called mixed
metric dimension, was conducted in [23,24,27]. The results for cacti from [25] imply that
the simple upper bounds dim(G) ≤ L(G) + 2c(G) and edim(G) ≤ L(G) + 2c(G) hold for
all cacti G distinct from paths, where

L(G) = ∑
v∈V(G),`(v)>1

(`(v)− 1),

with `(v) being the number of paths pending at a vertex v of degree ≥ 3. Moreover, the
following conjectures were proposed for general graphs.

Moreover, the following conjectures were proposed for general graphs.

Conjecture 1. Let G be a connected graph. Then, dim(G) ≤ L(G) + 2c(G).

Conjecture 2. Let G be a connected graph. Then, edim(G) ≤ L(G) + 2c(G).

Since the attainment of the bound in the class of cactus graphs depends on the presence
of leaves, leafless cacti and general graphs without leaves were further investigated in [26].
It was established that, for leafless cacti, the upper bound decreases to 2c(G)− 1, and all
cacti attaining this bound were characterized. It was further conjectured that the same
decreased upper bound holds for all leafless graphs, i.e., the following two conjectures
were posed.

Conjecture 3. Let G 6= Cn be a graph with minimum degree δ(G) ≥ 2. Then, dim(G) ≤
2c(G)− 1.

Conjecture 4. Let G 6= Cn be a graph with minimum degree δ(G) ≥ 2. Then, edim(G) ≤
2c(G)− 1.

To support these conjectures, it was established in [26] that they hold for all graphs
with δ(G) ≥ 3 with the strict inequality. Moreover, additional results for graphs with
δ(G) = 2 were also established, but let us first define all involved notions.

A set S ⊆ V(G) is called a vertex cut if G− S is not connected or it is trivial. A vertex
v is called a cut vertex if S = {v} is a vertex cut. The (vertex) connectivity of a graph G is
the size of the smallest vertex cut in G, and we denote it by κ(G). A graph G is said to be
k-connected if κ(G) ≥ k. Any maximal 2-connected subgraph of G is called a block of G. If a
block Gi contains at least three vertices, then Gi is said to be non-trivial.

In [26], it was established that, for δ(G) = 2, the problem can be reduced to 2-connected
graphs, i.e., it was shown that if Conjecture 3 (respectively Conjecture 4) holds for 2-
connected graphs, then it holds in general. Moreover, considering when the upper bound
is attained, the following claim was established.

Lemma 1. Let G 6= Cn be a graph with δ(G) ≥ 2. If dim(Gi) < 2c(Gi) − 1 (respectively
edim(Gi) < 2c(Gi) − 1) for a block Gi of G distinct from a cycle or there exist two vertex-
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disjoint non-trivial blocks Gj and Gk in G, then dim(G) < 2c(G)− 1 (respectively edim(G) <
2c(G)− 1).

In this paper, we consider 2-connected graphs that attain the bound of Conjectures 3
and 4. In particular, we study Θ-graphs, as they are the simplest 2-connected graphs distinct
from cycles. We show that the upper bound 2c(G)− 1 holds for both metric dimensions of
Θ-graphs. Since, for all Θ-graphs, the value of the cyclomatic number equals 2, to prove the
conjectures, it is sufficient to prove that for all such graphs, metric dimensions are bounded
above by 3. We also characterize all Θ-graphs for which the bounds are attained. The paper
is concluded with the conjectures that the already known extremal leafless cacti from [26]
and the extremal Θ-graphs established in this paper are the only leafless graphs for which
the bound 2c(G)− 1 is attained. For these conjectures, we also established that they reduce
to the same problem on the class of 2-connected graphs.

2. Θ-Graphs with Metric Dimensions Equal to 3

Therefore, let us first introduce a necessary notation for Θ-graphs. Let G be a Θ-graph;
by u and v, we denote the two vertices of degree 3 in G. Notice that there are three distinct
paths in G connecting u and v, and we denote them by P1 = u0u1 · · · up, P2 = v0v1 · · · vq,
and P3 = w0w1 · · ·wr, so that u0 = v0 = w0 = u, up = vq = wr = v, and p ≤ q ≤ r. The
cycle in G induced by paths Pi and Pj will be denoted by Cij. A Θ-graph in which paths P1,
P2, and P3 are of lengths p, q, and r, respectively, is denoted by Θp,q,r.

Lemma 2. Let G = Θp,p,p or Θp,p,p+2 with p ≥ 2. Then, dim(G) ≥ 3.

Proof. Let S ⊆ V(G) be a set of vertices in G such that |S| = 2. It is sufficient to show that S
is not a vertex metric generator. First, if S = {u, v}, then u1 and v1 are not distinguished by
S, so we can assume v 6∈ S. Now, let us consider the case S ⊆ V(Pi) for some i ∈ {1, 2, 3}.
Assume first S ⊆ V(P3). Since P1 and P2 are of equal length, the distance of u1 and v1 to
all vertices of P3 is the same; hence, S does not distinguish u1 and v1. Let us now assume
S ⊆ V(P1), and let us consider vertices v1 and w1. Notice that a shortest path from both v1
and w1 to all vertices of P1 leads through u. This implies that the distance from v1 and w1 to
all the vertices of P1 is the same, so a set S ⊆ V(P1) would not distinguish v1 and w1. The
same reasoning goes for S ⊆ V(P2), so we may assume that S 6⊆ V(Pi) for every i = 1, 2, 3.

Now, denote by s1 and s2 the two elements of S. Then, s1 and s2 are internal vertices
of paths Pi and Pj, respectively, where i 6= j. We distinguish two cases.

Case 1: s1 ∈ V(P1) and s2 ∈ V(P2). Let us denote d1 = d(s1, u), d2 = d(s2, u), a = d1 + d2,
and b = 2p− a. If a = b, then s1 and s2 form an antipodal pair on C12, which implies that
two neighbors of s1 are not distinguished by S. Therefore, without loss of generality, we
may assume a < p and d1 ≤ d2. Since a + b = 2p, it follows that a and b are of the same
parity; hence, b− a is a positive even number. Therefore, we can define c = (b− a)/2, and
we know that c is a positive integer. Let d = 2d1 + c. Notice that

c < d = 2d1 + c ≤ a + c =
a
2
+

b
2
= p.

Therefore, there exist interior vertices ud ∈ P1 and wc ∈ P3; see Figure 1a.
Now, we prove that ud and wc are not distinguished by S. Notice that d(ud, s1) =

d− d1 = d1 + c. Since

c + d1 =
b
2
− a

2
+ d1 ≤

b
2
= p− a

2
< p,

we have d(wc, s1) = c + d1, and so, ud and wc are not distinguished by s1. As for s2, notice
that

c + d2 <
b− a

2
+ a = p,
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so we have d(wc, s2) = c + d2. Furthermore, we have

d2 + d = d2 + 2d1 + c = a + d1 +
b− a

2
= p + d1 > p,

which implies

d(ud, s2) = 2p− d− d2 = 2p− p− d1 = p− d1 = p− a + d2 = c + d2.

We conclude that ud and wc are not distinguished by s2 either, so S is not a vertex metric
generator.

(a) (b)

Figure 1. A set S = {s1, s2} in the proof of Lemma 2: (a) case when s1 ∈ V(P1) and s2 ∈ V(P2) with
p = 6, d1 = 1, d2 = 4, a = 5, b = 7, c = 1, and d = 3, in which ud and wc are not distinguished by S;
(b) case when s1 ∈ V(P1) and s2 ∈ V(P3) with p = 6, d1 = 3, d2 = 2, a = 5, b = 9, c = 2, and d = 8,
where ud and vc are not distinguished by S.

Case 2: s1 ∈ V(P1) and s2 ∈ V(P3). For G = Θp,p,p, this case is analogous to the previous
one, so let us assume G = Θp,p,p+2. Again, denote d1 = d(u, s1), d2 = d(u, s2), a = d1 + d2,
and b = 2p + 2− a. If a = b, then s1 and s2 are antipodal on C13, so the two neighbors of s1
are not distinguished by S. Hence, without loss of generality, we may assume a < b. Let us
denote c = (b− a)/2. Since a + b = 2p + 2 we know that a and b are of the same parity, so
b− a is a positive integer. Consequently, also, c is a positive integer.

First, since s1 and s2 are internal vertices of paths P1 and P3, respectively, we have
a = d1 + d2 ≥ 2. This yields

c =
b− a

2
=

a + b
2
− a = p + 1− a ≤ p− 1.

Hence, there exists an interior vertex vc ∈ V(P2), as it is shown in Figure 1b. Furthermore,
notice that

d1 + c < a +
b− a

2
=

a + b
2

= p + 1,

which implies d(vc, s1) = d1 + c.
Now, let d = 2d1 + c. If d ≤ p, we consider the vertex ud ∈ V(P1); otherwise, for

the sake of simplicity, we denote ud = w2p+2−d; see Figure 1b. We have already shown
d1 + c < p + 1, which yields

d− d1 = d1 + c < p + 1,
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and so, d(ud, s1) = d− d1 = d1 + c = d(vc, s1). Hence, ud and vc are not distinguished by
s1. It remains to prove that ud and vc are not distinguished by s2 either. For that purpose,
notice that

c + d2 < c + a =
b− a

2
+ a =

a + b
2

= p + 1,

which implies d(vc, s2) = c + d2. Furthermore, notice that

2p + 2− d− d2 = a + b− 2d1 − c− d2 = a + b− d1 −
b− a

2
− (d1 + d2)

=
a + b

2
− d1 = p + 1− d1 < p + 1,

which implies

d(s2, ud) = 2p + 2− d− d2 =
a + b

2
− d1 =

a + b
2
− a + a− d1 =

=
b− a

2
+ d2 = c + d2 = d(vc, s2).

Therefore, vertices vc and ud are not distinguished by s2 either; hence, we conclude that S
is not a vertex metric generator.

Now, a subgraph H of a graph G is an isometric subgraph if dH(u, v) = dG(u, v) for
every pair of vertices u, v ∈ V(H). Consequently, if a pair of vertices is distinguished by
S ∩V(H) in H, then it is distinguished by S in G as well.

Lemma 3. Let G = Θp,p,p or Θp,p,p+2 with p ≥ 2. Then. for any a ∈ V(G), there are
b, c ∈ V(G) such that S = {a, b, c} is a vertex metric generator in G.

Proof. First, notice that every cycle Cij of G is an isometric subgraph in G. We say that a set
S ⊆ V(G) is nice, if for every cycle Cij of G, it holds that S ∩V(Cij) contains two vertices
that do not form an antipodal pair in Cij. We first show that any nice set S is a vertex metric
generator in G. In order to see this, let x and x′ be a pair of vertices from G. Notice that x
and x′ belong to at least one cycle Cij in G. Since S is nice, S ∩V(Cij) contains two vertices
that are not antipodal in Cij, which implies that S ∩ V(Cij) is a vertex metric generator
in Cij. Therefore, x and x′ are distinguished by S ∩V(Cij) in Cij. Since Cij is an isometric
subgraph of G, this further implies that x and x′ are distinguished by S in G, so S is a vertex
metric generator of G. To complete the proof, for every a ∈ V(G), we extend a to a nice set.

Let us assume G = Θp,p,p. If p ≤ 3, the set S = {u, v1, w1} is a nice set in G. Therefore,
S is a vertex metric generator, which, due to the symmetry of G, proves the claim. Therefore,
let us assume that p ≥ 4. By symmetry, we may assume that a = ui, where 0 ≤ i ≤ bp/2c.
However, then, Si = {ui, v1, w1} is a nice set in G.

Assume now that G = Θp,p,p+2. If p = 2, it is easy to see that sets S = {u, v1, w1}
and S = {u, v1, w2} are nice in G, which, due to the symmetry of G, proves the claim.
If p > 2, then, due to the symmetry of G, it is sufficient to prove the claim for a = ui,
where 0 ≤ i ≤ bp/2c, and for a = wj, where 1 ≤ j ≤ bp/2c+ 1. If a = ui for i ≤ bp/2c,
then S = {ui, v1, w1} is nice in G. On the other hand, if a = wj for j ≤ bp/2c+ 1, then
S = {u1, v1, wj} is nice in G.

By Lemmas 2 and 3, the following statement holds.

Theorem 1. For p ≥ 2, it holds that dim(Θp,p,p) = dim(Θp,p,p+2) = 3.

Since, in any Θ-graph G, it holds that L(G) = 0 and c(G) = 2, the above theorem
gives the following corollary.

Corollary 1. We have dim(Θp,p,p) = dim(Θp,p,p+2) = 2c(G)− 1.
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Hence, for Θp,p,p and Θp,p,p+2, the bound from Conjecture 3 holds with equality.
Similarly, when considering the edge metric dimension of Θ-graphs, we have the following.

Lemma 4. Let G = Θ1,2,2 or Θp,p,q with 2 ≤ p ≤ 3 and p ≤ q ≤ p+ 2. Then, for any a ∈ V(G),
there are b, c ∈ V(G) such that S = {a, b, c} is an edge metric generator in G.

Proof. As p = 2 or 3 and q ∈ {p, p + 1, p + 2}, the problem is finite. To avoid a tedious
proof, the statement was easily verified by a computer by checking all sets S ⊆ V(G) of
cardinality three.

Proposition 1. Let G = Θ1,2,2 or Θp,p,q with 2 ≤ p ≤ 3 and p ≤ q ≤ p + 2. Then,
edim(G) = 3.

Proof. Similarly as before, by a computer, we checked easily that there is no edge metric
generator of size two. Then, the claim follows from Lemma 4.

Corollary 2. Let G = Θ1,2,2 or G = Θp,p,q for 2 ≤ p ≤ 3 and p ≤ q ≤ p + 2. Then,
edim(G) = 2c(G)− 1.

3. Θ-Graphs with Metric Dimensions Equal to 2

In this section, we show that all remaining Θ-graphs, i.e., all Θ-graphs not mentioned
in the previous section, have the vertex (respectively the edge) metric dimension equal to 2.
We first consider the vertex metric dimension. For all remaining Θ-graphs, we show that
there is a set S of cardinality two that is a vertex metric generator; see Figure 2.

Lemma 5. Let G = Θp,q,r, where p ≤ q ≤ r, and let S be a set of vertices in G, defined in the
following way:

(i) If one of p, q, r is odd and at least 3 and one of p, q, r is even, say q ≥ 3 is odd and r is even,
then S = {v(q−1)/2, wr/2};

(ii) If p = 1 and both q and r are even, then S = {u, wr/2};
(iii) If all p, q, r are even and q /∈ {p, p + 2}, then S = {v1, wr/2};
(iv) If all of p, q, r are even, q ∈ {p, p + 2}, and r ≥ p + 4, then S = {vq/2, w1};
(v) If all p, q, r are even and q = r = p + 2, then S = {v1, w1};
(vi) If all p, q, r are odd and q /∈ {p, p + 2}, then S = {v1, w(r−1)/2};
(vii) If all p, q, r are odd, q ∈ {p, p + 2} and r ≥ p + 4, then S = {v(q−1)/2, w1};
(viii) If all p, q, r are odd and q = r = p + 2, then S = {v1, w1}.
Then, S is a vertex metric generator in G.

Proof. First, we introduce some notation. For a vertex a ∈ V(G), we denote by Pa the
partition of V(G) according to the distances from a. That is, if x, x′ are in the same set of
Pa, then d(a, x) = d(a, x′). To prove that S = {a, b} is a vertex metric generator in G, it
suffices to show that d(b, x) 6= d(b, x′) for every pair of vertices x, x′ from a common set of
Pa. Proceeding by way of contradiction, if d(b, x) = d(b, x′), then the shortest path from b
to x cannot contain a path from b to x′ and vice versa. This simplifies our consideration
since Θp,q,r contains only two branching vertices (i.e., vertices of degree at least 3). Let us
now consider each of the eight cases separately:

(i) For the vertex wr/2 ∈ S, we have

Pw r
2
= ({w r

2
}, {wi, wr−i}

r
2−1
i=0 , {ui, vi, up−i, vq−i}

b p
2 c

i=1 , {vi, vq−i}
b q

2 c
i=b p

2 c+1
).

We have to show that the other vertex of S, i.e., v(q−1)/2, distinguishes all pairs of vertices
from a common set of Pw r

2
. The first type of set in Pw r

2
that contains at least one pair of
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vertices is {wi, wr−i}, so we have to show that wi and wr−i are distinguished by v(q−1)/2,
and that follows from

d(v q−1
2

, wi) = i +
q− 1

2
< i +

q + 1
2

= d(w q−1
2

, wr−i).

The next set from Pw r
2

to consider is of the type {ui, vi, up−i, vq−i}, where we have

d(v q−1
2

, vi) < d(v q−1
2

, vq−i) < d(v q−1
2

, ui) < d(y q−1
2

, up−i),

where the last two expressions have place only if i ≤ b p
2 c. Therefore, all pairs of vertices

from that set are distinguished by v(q−1)/2 ∈ S. Notice that the inequality covers also the
last type of set from Pw r

2
. Furthermore, observe that we did not use the fact that p ≤ q ≤ r

here, so the proof covers all cases when one of p, q, r is odd and at least 3 and one of p, q, r
is even.

(ii) Analogously, as in (i), we have

Pw r
2
= ({w r

2
}, {wi, wr−i}

r
2−1
i=0 , {vi, vq−i}

q
2−1
i=1 , {v q

2
}).

It remains to show that u distinguishes all pairs of vertices that belong to a common set
of Pw r

2
. This is seen from d(u, wi) = i < i + 1 = d(u, wr−i) and d(u, vi) = i < i + 1 =

d(u, vq−i).

(iii) We have

Pw r
2
= ({w r

2
}, {wi, wr−i}

r
2−1
i=0 , {ui, vi, up−i, vq−i}

p
2
i=1, {vi, vq−i}

q
2
i= p

2 +1
).

(Observe that the third set has just three vertices if i = p/2, and the last set has just one
vertex if i = q/2.) We show that v1 ∈ S distinguishes all pairs of vertices from a common
set of Pw r

2
. Regarding set {wi, wr−i}, notice that d(v1, wi) = i + 1 < 1+ p + i = d(v1, wr−i).

The next sets of Pw r
2

are of the form {ui, vi, up−i, vq−i}, where

d(v1, vi) = i− 1 < i + 1 = d(v1, ui),

and assuming that v1 does not distinguish the other possible pairs leads to a contradic-
tion, namely d(v1, ui) = d(v1, up−i) implies i + 1 = q− 1 + i and q = 2, a contradiction;
d(v1, ui) = d(v1, vq−i) implies i + 1 = q− i− 1 and i = q/2− 1, but such ui exists only if
q ≤ p + 2, a contradiction; d(v1, vi) = d(v1, up−i) implies i− 1 = p− i + 1 and i = p/2 + 1,
but such i is over the limit for this set; d(v1, vi) = d(v1, vq−i) implies i− 1 = 1 + p + i or
simplified p = −2, a contradiction; d(v1, up−i) = d(v1, vq−i) implies 1 + p− i = q− i− 1
and q = p + 2, a contradiction.

For the last set of Pw r
2

, we have d(v1, vi) = i− 1 < q− i− 1 = d(v1, vi), whenever

i < q/2, and for i = q/2, the set is a singleton.

(iv) For vq/2 ∈ S we have

Pv q
2
= ({v q

2
}, {vi, vq−i}

q
2−1
i=0 , {ui, wi, up−i, wr−i}

p
2
i=1, {wi, wr−i}

r
2
i= p

2 +1
).

Now, we consider the distances from w1 ∈ S. Assuming d(w1, vi) = d(w1, vq−i) implies
i + 1 = p + 1 + i, so p = 0, a contradiction.

The next set to consider is of the form {ui, wi, up−i, wr−i}. We have

d(w1, wi) = i− 1 < min{d(w1, ui), d(w1, up−i), d(w1, wr−i)},
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which resolves three of the six possible pairs of vertices. For all other possible pairs, we
assume that they are not distinguished by w1 and show that it leads to a contradiction.
Namely, d(w1, ui) = d(w1, up−i) implies i + 1 = 1 + q + i or simplified q = 0, a contra-
diction; d(w1, ui) = d(w1, wr−i) implies i + 1 = r − i − 1, which reduces to i = r/2− 1,
but such i exceeds the limit for this set, since r ≥ p + 4; d(w1, up−i) = d(w1, wr−i) implies
1 + p− i = r− i− 1, which reduces to r = p + 2, a contradiction.

For the last set of Pv q
2

, if wi 6= wr−i and d(w1, wi) = d(w1, wr−i), then i− 1 = p + 1+ i

and p = −2, a contradiction.

(v) The partition for v1 ∈ S is

Pv1 = ({v1}, {u, v2}, {ui, vi+2, wi}
p−1
i=1 , {v, wp}, {wp+1}),

and for distances from w1 ∈ S, we have

d(w1, u) = 1 < 3 = d(w1, v2),

d(w1, wi) = i− 1 < d(w1, ui) = i + 1 < d(w1, vi+2) = i + 3,

d(w1, wp) = p− 1 < p + 1 = d(w1, v).

(vi) For w(r−1)/2 ∈ S, we have

Pw r−1
2

= ({w r−1
2
}, {wi, wr−i−1}

r−3
2

i=0 , {u1, v1, v}, {ui, vi, up−i+1, vq−i+1}
p+1

2
i=2 , {vi, vq−i+1}

q+1
2

i= p+3
2
).

Now, consider the distances from v1 ∈ S. Assume d(v1, wi) = d(v1, wr−i+1) implies
i + 1 = p + 1 + i + 1, which reduces to p = −1, a contradiction.

In the next set {u1, v1, v} of Pw r−1
2

, there are three possible pairs of vertices, for which

we have
d(v1, v1) = 0 < d(v1, u1) = 2 < d(v1, v) = p + 1,

where the last inequality holds if p > 1, otherwise u1 = v, so there is no pair to be
distinguished.

The next set from Pw r−1
2

is of the type {ui, vi, up−i+1, vq−i+1}, where we first have

d(v1, vi) = i− 1 < i + 1 = d(v1, ui), so the pair ui, vi is distinguished by v1 ∈ S. For all
remaining pairs of vertices from that set, we show that assuming they are not distinguished
by s1 ∈ S leads to a contradiction. If d(v1, ui) = d(v1, up−i+1), then i + 1 = q− 1 + i− 1
and q = 3, a contradiction; if d(v1, ui) = d(v1, vq−i+1), then i + 1 = q− i + 1− 1, which
reduces to i = (q − 1)/2, but such i exceeds the limit since q > p + 2; if d(v1, vi) =
d(v1, up−i+1), then i− 1 = 1 + p− i + 1 and, therefore, i = (p + 3)/2, but such i exceeds
the limit; if d(v1, vi) = d(v1, vq−i+1), then i− 1 = 1 + p + i− 1, which reduces to p = −1,
a contradiction; finally, if d(v1, up−i+1) = d(v1, vq−i+1), then 1 + p− i + 1 = q− i + 1− 1,
and therefore, q = p + 2, a contradiction.

As for the last type of set in Pw r−1
2

, if vi 6= vq−i+1 and d(v1, vi) = d(v1, vq−i+1), then

i− 1 = 1 + p + i− 1, and so, p = −1, a contradiction.

(vii) Observe that

Pv q−1
2

= ({v q−1
2
}, {vi, vq−i−1}

q−3
2

i=0 , {u1, w1, v}, {ui, wi, up−i+1, wr−i+1}
p+1

2
i=2 , {wi, wr−i+1}

r+1
2

i= p+3
2
).

Now, we consider the distances from w1 ∈ S. If d(w1, vi) = d(w1, vq−i−1), then i + 1 =
p + 1 + i + 1 and p = −1, a contradiction.

As for the set {u1, w1, v} ∈ Pv q−1
2

, we have

d(w1, w1) = 0 < d(w1, u1) = 2 < d(w1, v) = r− 1.
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Therefore, all three pairs of vertices from this set are distinguished by w1.
For the next set of Pv q−1

2

, we first have

d(w1, wi) = i− 1 < min{d(w1, ui), d(w1, up−i+1), d(w1, wr−i+1)},

so w1 distinguishes wi from all the other vertices in that set. If d(w1, ui) = d(w1, up−i+1),
then i + 1 = 1 + q + i − 1 and q = 1, a contradiction. If d(w1, ui) = d(w1, wr−i+1), then
i + 1 = r− i + 1− 1 and i = (r− 1)/2 ≥ (p + 3)/2, but such i exceeds the limit. Finally,
d(w1, up−i+1) = d(w1, wr−i+1) implies 1 + p − i + 1 = r − i + 1 − 1, which reduces to
r = p + 2, a contradiction.

For the last set of Pv q−1
2

, if wi 6= wr−i+1 and d(w1, wi) = d(w1, wr−i+1), then i− 1 =

1 + p + i− 1 and p = −1, a contradiction.

(viii) Observe that

Pv1 = ({v1}, {u, v2}, {ui, vi+2, wi}
p−1
i=1 , {v, wp}, {wp+1}).

Hence, Pv1 (and also, Pw1) does not depend on the parity of p. Therefore, analogous to
case (v), one can show that S = {v1, w1} is a vertex metric generator in this case.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 2. Vertex metric generators from Lemma 5.

Using Lemma 5, we can prove that all Θ-graphs not mentioned in the previous section
have metric dimension 2.

Theorem 2. Let G be a Θ-graph such that G 6= Θp,p,p and Θp,p,p+2 with p ≥ 2. Then, dim(G) = 2.

Proof. It is sufficient to show that Lemma 5 includes all Θ-graphs distinct from Θp,p,p and
Θp,p,p+2. Cases (iii)-(v) of this lemma obviously include all Θ-graphs distinct from Θp,p,p
and Θp,p,p+2 in which all three parameters p, q, and r are even. Similarly, cases (vi)–(viii)
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of the same lemma include all Θ-graphs in which all three parameters are odd. It remains
to show that cases (i)–(ii) cover all Θ-graphs in which p, q, and r do not have the same
parity. In that case, at least one of the parameters is odd. If none of the parameters is equal
to one, then Lemma 5. (i) covers the cases. If there is parameter equal to 1, then p = 1,
since p ≤ q ≤ r. Since G has no parallel edges, q ≥ 2. Hence, if one of q and r is odd, then
this parameter is at least 3 and the other parameter is even, which is covered by Lemma 5.
(i) again. The only remaining case when p = 1 and both q and r are even is covered by
Lemma 5. (ii).

As regards the motivating question for this investigation, Theorem 2 yields the follow-
ing corollary.

Corollary 3. Let G be a Θ-graph such that G 6= Θp,p,p and G 6= Θp,p,p+2. Then, dim(G) <
2c(G)− 1.

Now, we consider the edge metric dimension of Θ-graphs. We proceed analogously
as in the case of vertex metric dimension. The edge metric generators from the following
lemma are illustrated in Figure 3.

Lemma 6. Let G = Θp,q,r, where p ≤ q ≤ r, and let S be a set of vertices in G defined in the
following way:

(i) If p < q, r ≥ 3, and p + r is even, then S = {w(r−p)/2, w(r+p)/2};
(ii) If p < q, r ≥ p + 3, and p + r is odd, then S = {wb(r−p)/2c, wd(r+p)/2e};
(iii) If p < q, r = p + 1, and (p, q, r) 6= (1, 2, 2), then S = {v1, w1};
(iv) If p = q and p ≥ 4, then S = {u2, v1};
(v) If p = q and r ≥ p + 3, then S = {v1, w1}.
Then, S is an edge metric generator in G.

Proof. The proof is analogous to the proof of Lemma 5. Let a be a vertex in G. By P e
a , we

denote the partition of E(G) according to the distances from a. To prove that S = {a, b}
is an edge metric generator for G, it suffices to show that d(b, e) 6= d(b, f ) for every pair
of edges e, f from a common set of P e

a . Furthermore, to abbreviate the notation, an edge
uiui+1 will be denoted by u+

i or u−i+1, and a similar notation will be used for edges vivi+1
and wiwi+1. We now consider each of the five cases separately:

(i) Denote a = (r− p)/2 and b = (r + p)/2. Then, for wa ∈ S, we have

P e
wa = ({w−a−i, w+

a+i}
a−1
i=0 , {u+

i , v+i , w+
r−p+i}

p−1
i=0 , {v+p+i, v−q−i}

b q−p
2 c

i=0 ).

Next, we suppose that wb has the same distance to a pair of edges from a common set of
P e

wa , and we always come to a contradiction. Here, and in the next cases, the first distance
is denoted by d1 and the second distance is denoted by d2.

Let us first consider the set {w−a−i, w+
a+i} from P e

wa . If d(wb, w−a−i) = d(wb, w+
a+i), then

d1 = d(wb, wa−i). Further, d2 = d(wb, wa+i) (otherwise, d2 < d1), and so, d(wb, wa−i) =
d(wb, wa+i). Consequently, b− (a− i) = (a+ i)− b, and therefore, a = b, which contradicts
p ≥ 1.

Let us now consider the set {u+
i , v+i , w+

r−p+i} ∈ P
e
wa and the distances from wb to the

three possible pairs of edges from this set. If d(wb, u+
i ) = d(wb, v+i ), then d1 = d(wb, ui+1),

since d1 < d(wa, v) = d(wb, u). Analogously, d2 = d(wb, vi+1). Thus, p − (i + 1) =
q− (i + 1) and p = q, a contradiction. The next pair is u+

i and w+
r−p+i, where assuming

d(wb, u+
i ) = d(wb, w+

r−p+i) yields d1 = d(wb, ui+1) and d2 = d(wb, wr−p+i+1). Thus,

r− r + p
2

+ p− (i + 1) =
r + p

2
− (r− p + i + 1)
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which reduces to r = p, a contradiction. The last pair is v+i and w+
r−p+i, in which case

d(wb, v+i ) = d(wb, w+
r−p+i) implies d2 > d(wb, v) = d(wa, u), and so, d2 = d(wb, wr−p+i+1)

and d1 = d(wb, vi+1). This gives

r− r + p
2

+ q− (i + 1) =
r + p

2
− (r− p + i + 1)

and r + q = 2p, a contradiction.
It remains to consider the set {v+p+i, v−q−i} ∈ P

e
wa . Assuming d(wb, v+p+i) = d(wb, v−q−i)

yields d2 = d(wb, vq−i) = d(wb, v) + d(v, vq−i). However, d({u, v}, {vp+i, vp+i+1}) >
d(v, vq−i) and d({u, v}, wb) ≥ d(wb, v). Therefore, d1 > d2, a contradiction.

(ii) Since r ≥ p + 3, we have b(r − p)/2c ≥ b3/2c = 1. Since p ≥ 1, we have
b(r− p)/2c < d(r + p)/2e. Hence, 1 ≤ b(r− p)/2c < br/2c. Denote a = b(r− p)/2c and
b = d(r + p)/2e. Then, for wa ∈ S, we have

P e
wa = ({w−a−i, w+

a+i}
a−1
i=0 , {u+

i , v+i , w+
2a+i}

p−1
i=0 , {v+p , v−q , w+

r−1}, {v
+
p+i, v−q−i}

b q−p−1
2 c

i=1 ).

For each of the sets from P e
wa , we now show that all possible pairs of edges from that

set are distinguished by wb ∈ S. Let us first consider the set {w−a−i, w+
a+i}. Assuming

d(wb, w−a−i) = d(wb, w+
a+i), analogous as in (i), we obtain a = b, which contradicts p ≥ 1.

Now, consider {u+
i , v+i , w+

2a+i}. If d(wb, u+
i ) = d(wb, v+i ), then analogously as in (i),

we obtain p = q, a contradiction. If d(wb, u+
i ) = d(wb, w+

2a+i), then d1 = d(wb, ui+1) and
d2 = d(wb, w2a+i+1). Thus,

r− r + p + 1
2

+ p− (i + 1) =
r + p + 1

2
− (2

r− p− 1
2

+ i + 1)

which reduces to r = p + 2, a contradiction. Finally, if d(wb, v+i ) = d(wb, w+
2a+i), then

d1 = d(wb, vi+1) and d2 = d(wb, w2a+i+1). Thus,

r− r + p + 1
2

+ q− (i + 1) =
r + p + 1

2
− (2

r− p− 1
2

+ i + 1)

and hence, r + q = 2p + 2, a contradiction.
For edges from {v+p , v−q , w+

r−1}, we have d(wb, w+
r−1) = d(wb, wr−1) = r− b− 1 and

d(wb, v−q ) = d(wb, v) = r− b, so that d(wb, w+
r−1) < d(wb, v−q ). If d(wb, w+

r−1) = d(wb, v+p ),
then d2 = d(wb, vp). Therefore, r − b− 1 = b + p, and consequently, r − p− 1 = 2b =
r + p + 1, a contradiction. Finally, if d(wb, v−q ) = d(wb, v+p ), then d2 = d(wb, vp). Therefore,
r− b = b + p, and consequently, r− p = 2b = r + p + 1, a contradiction.

Finally, consider {v+p+i, v−q−i}. Assuming d(wb, v+p+i) = d(wb, v−q−i) yields

d2 = d(wb, vq−i) = d(wb, v) + d(v, vq−i)

< min{d({u, v}, {vp+i, vp+i+1}) + d(wb, {u, v})} ≤ d1,

a contradiction.

(iii) Notice that, in this case, G = Θp,p+1,p+1, where p ≥ 2. For v1 ∈ S, the partition is

P e
v1

= ({v−1 , v+1 }, {u
+
i , v+i+2, w+

i }
p−2
i=0 , {u+

p−1, w+
p−1, w−p+1}).

First, consider the set {v−1 , v+1 }. Since p ≥ 2, we have d(w1, v−1 ) = 1 < 2 = d(w1, v+1 ), so
v−1 and v+1 are distinguished by w1 ∈ S.

Now, consider {u+
i , v+i+2, w+

i }. Since

d(w1, w+
i ) ≤ i < d(w1, u+

i ) = i + 1 < i + 2 ≤ d(w1, v+i+2),
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all three pairs are distinguished by w1 ∈ S.
Finally, for {u+

p−1, w+
p−1, w−p+1}, we have

d(w1, w+
p−1) = p− 2 < d(w1, w−p+1) = p− 1 < d(w1, u+

p−1) = p.

(iv) Observe that

P e
v1

= ({v−1 , v+1 }, {u
+
i , v+i+2, w+

i }
p−3
i=0 , {u+

p−2, u−p , w+
p−2, w−r }, {w+

p−1+i, w−r−1−i}
d r−p

2 e
i=0 ).

First, for the unique pair from {v−1 , v+1 }, it holds that d(u2, v−1 ) = 2 < d(u2, v+1 ) = 3 if
p ≥ 4, so it is distinguished by u2.

Next, consider {u+
i , v+i+2, w+

i }. Suppose that d(u2, u+
i ) = d(u2, v+i+2). If i ≥ 2, then

d1 = i− 2, and consequently, d2 = i + 4, a contradiction. Hence, 0 ≤ i ≤ 2 and

d(u2, u+
i ) = d(u2, ui+1) = 1− i < d(u2, v+i+2) = d(u2, vi+3) = p− 2 + p− (i + 3),

a contradiction. For the second pair u+
i and w+

i , since i ≤ p− 3, we have

d(u2, u+
i ) ≤ (i− 2) + 3 < i + 2 = d(u2, wi) = d(u2, w+

i ).

For the last pair v+i+2 and w+
i , we assume that d(u2, v+i+2) = d(u2, w+

i ). We distinguish three
subcases:

- If 0 ≤ i ≤ p− 5, then d1 = d(u2, vi+2) = i + 4 > i + 2 = d(u2, wi) = d2;
- If i = p− 4, then d1 = d(u2, vi+3) = p− 1 > p− 2 = d(u2, wi) = d2;
- If i = p− 3, then d1 = d(u2, vi+3) = p− 2 < p− 1 = d(u2, wi) = d2.

Now, we consider the set {u+
p−2, u−p , w+

p−2, w−r }. We have

d(u2, u+
p−2) = p− 4 < d(u2, u−p ) = p− 3 < d(u2, w−r ) = p− 2 < d(u2, w+

p−2) ≥ p− 1,

where the last inequality is an equality only if r = p.
Finally, for {w+

p−1+i, w−r−1−i}, suppose that d(u2, w+
p−1+i) = d(u2, w−r−1−i). Then, d2 =

d(u2, wr−1−i), and so, d1 = d(u2, wp−1+i). Thus, 2 + p− 1 + i = p− 2 + r− (r− 1− i) and
1 = −1, a contradiction.

(v) Observe that

P e
v1

= ({v−1 , v+1 }, {u
+
i , v+i+2, w+

i }
p−3
i=0 , {u+

p−2, u−p , w+
p−2, w−r }, {w+

p−1+i, w−r−1−i}
d r−p

2 e
i=0 ).

First, consider the set {v−1 , v+1 }. Since r ≥ 4, we have d(w1, v−1 ) = 1 < 2 = d(w1, v+1 ).
Next, consider the set {u+

i , v+i+2, w+
i }. We have

d(w1, v+i+2) = i + 3 > d(w1, u+
i ) = i + 1 > d(w1, w+

i ) ≤ i,

where the last inequality is an equality only if i = 0 and the first equality is a consequence
of r ≥ p + 3.

Now, consider the set {u+
p−2, u−p , w+

p−2, w−r }. We have

d(w1, w+
p−2) = p− 3 < d(w1, u+

p−2) = p− 1 < d(w1, u−p ) = p < d(w1, w−r ) = p + 1,

where the last inequality holds since r ≥ p + 3.
Finally, consider the set {w+

p−1+i, w−r−1−i}. If d(w1, w+
p−1+i) = d(w1, w−r−1−i), then

d1 = d(w1, wp−1+i), and so, d2 = d(w1, wr−1−i). Thus, p− 1+ i− 1 = 1+ p+ r− (r− 1− i)
and −2 = 2, a contradiction. This concludes the proof.
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(i) (ii) (iii)

(iv) (v)

Figure 3. Edge metric generators from Lemma 6.

The following statement is a consequence of Lemma 6.

Theorem 3. Let G be a Θ-graph such that G 6= Θ1,2,2 and Θp,p,q for 2 ≤ p ≤ 3 and p ≤ q ≤
p + 2. Then, edim(G) = 2.

Proof. First suppose that p < q. If p + r is even, then r ≥ 3, so Lemma 6. (i) covers this
case. On the other hand, if p + r is odd, then r ≥ p + 1, so Lemma 6. (ii) and Lemma 6. (iii)
cover all cases except Θ1,2,2.

Now, suppose that p = q. Then, Lemma 6. (v) covers all cases, except Θp,p,p, Θp,p,p+1,
and Θp,p,p+2. These remaining cases are covered by Lemma 6. (iv) when p ≥ 4. Hence,
uncovered cases are Θ2,2,2, Θ2,2,3, Θ2,2,4, Θ3,3,3, Θ3,3,4, and Θ3,3,5.

Supporting our motivation, Theorem 3 yields the following corollary.

Corollary 4. Let G be a Θ-graph such that G 6= Θ1,2,2 and Θp,p,q for 2 ≤ p ≤ 3 and p ≤ q ≤
p + 2. Then, edim(G) < 2c(G)− 1.

4. Further Work

In this paper, we investigated Conjecture 3 (respectively Conjecture 4), which states
that the vertex (respectively the edge) metric dimension of a graph G 6= Cn with δ(G) ≥ 2
is bounded above by 2c(G)− 1. It was established in [26] that the conjectures hold for
cacti without leaves and that, for other leafless graphs, the problem reduces to 2-connected
graphs, i.e., if the conjectures hold for 2-connected graphs distinct from a cycle, then they
hold in general. In this paper, we considered Θ-graphs, since they are the most simple
2-connected graphs distinct from cycles. We established that Conjectures 3 and 4 hold
on this class of graphs, and we characterized all Θ-graphs for which the upper bound is
attained.

Besides Θ-graphs attaining the upper bound 2c(G)− 1, it was previously established
that the same upper bound is also attained by metric dimensions of some leafless cacti. To
be more precise, a daisy graph is any graph consisting of at least two cycles that all share
the same vertex. A cycle in a daisy graph is also called a petal. Now, it was established
that dim(G) attains the bound 2c(G)− 1 if G is a daisy graph without odd petals and that
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edim(G) reaches the same bound for any daisy graph G. We expect that these graphs are
the only graphs with δ(G) ≥ 2 whose metric dimensions reach the bound. Therefore, we
conclude the paper by stating the following two conjectures.

Conjecture 5. Let G be a connected graph with δ(G) ≥ 2. Then, dim(G) = 2c(G)− 1 if and
only if G is a daisy graph without odd petals, G = Θp,p,p or G = Θp,p,p+2.

Conjecture 6. Let G be a connected graph with δ(G) ≥ 2. Then, edim(G) = 2c(G)− 1 if and
only if G is a daisy graph, G = Θ1,2,2 or G = Θp,p,q with 2 ≤ p ≤ 3 and p ≤ q ≤ p + 2.

Similar as with Conjectures 3 and 4, we show in the next proposition that the above
two conjectures reduce to the same problem on 2-connected graphs. In order to do so, we
use a result from [26], which states that c(G) = c(G1) + · · ·+ c(Gq) where G1, . . . , Gq is the
complete list of blocks of G.

Proposition 2. If Conjecture 5 (respectively Conjecture 6) holds for 2-connected graphs, then it
holds in general.

Proof. We say that G is vertex extremal, if G = Θp,p,p or G = Θp,p,p+2. We say G is edge
extremal if G = Θ1,2,2 or G = Θp,p,q for 2 ≤ p ≤ 3 and p ≤ q ≤ p + 2. Now, let G be
a graph with δ(G) ≥ 2, which is not 2-connected. According to Lemma 1, the equality
dim(G) = 2c(G)− 1 (respectively edim(G) = 2c(G)− 1) may hold only when every non-
trivial block of G distinct from a cycle is vertex extremal (respectively edge extremal) and
all blocks of G share a vertex.

We shall now construct a vertex (respectively an edge) metric generator in such a
graph whose size is smaller than 2c(G)− 1, which is sufficient to prove the claim. Let v be
a vertex of G shared by all blocks in G. Let us assume G1, . . . , Gq are all non-trivial blocks
in G denoted so that Gi is a cycle whenever i > p. According to Lemma 3 (respectively
Lemma 4), for 1 ≤ i ≤ p, there is a vertex (respectively an edge) metric generator S′i in Gi
such that v ∈ S′i , and for such i, let us denote Si = S′i\{v}. For i > p, let Si consist of a
single vertex, which is a neighbor of v in Gi. Now, let S = S1 ∪ · · · ∪ Sq. Observe that the
set S distinguishes in G all pairs of vertices (respectively edges) that belong to the same
block of G; this follows from the fact that a pair of vertices (respectively edges) that is
distinguished by v in Gi is in G distinguished by every vertex s ∈ S\V(Gi).

By the above, a pair of vertices (respectively edges) x and x′ is not distinguished by
S in G only if x belongs to Gi and x′ belongs to Gj, i 6= j. In such a case, we say Gi and
Gj are critically incident. Therefore, let Gi and Gj be critically incident with x ∈ V(Gi),
x′ ∈ V(Gj) such that x and x′ are not distinguished by S. Let further s ∈ Si and s′ ∈ Sj.
Then, d(s, x) = d(s, x′) and d(s′, x) = d(s′, x′). Denote a = d(s, v), b = d(v, x), c = d(s′, v)
and d = d(v, x′). Then,

(a + d) + (c + b) = d(s, x′) + d(s′, x) = d(s, x) + d(s′, x′)

≤ d(s, v) + d(v, x) + d(s′, v) + d(v, x′) = a + b + c + d,

and so, a shortest path from x (respectively x′) to every vertex from Si (respectively Sj)
leads through v. Hence, b = d and a = c.

If b > 1, then let x1 (respectively x′1) be a neighbor of x (respectively x′) on a shortest
path from v to x (respectively x′). Then, for every s∗ ∈ Si ∪ Sj, we have d(s∗, x1) =
d(s∗, x′1) = a + b− 1, so x1 and x′1 are not distinguished by S as well.

Finally, let x2 and x′2 be another pair of vertices that is not distinguished by S, x2 ∈
V(Gi), and x′2 ∈ V(Gj), and let d(v, x2) = d(v, x). Then, x and x2 are not distinguished by
Si, which means that x2 = x and, analogously, x′2 = x′.

Thus, vertices y ∈ V(Gi), for which there exists y′ ∈ V(Gj) such that y, y′ is a pair
not distinguished by S, form a path starting at a neighbor of v. Denote this neighbor by
z. If there is k 6= j such that Gi and Gk are critically incident as well, then, again, vertices
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y ∈ V(Gi), for which there exists y∗ ∈ V(Gk) such that y, y∗ is a pair not distinguished by
S, form a path starting at z. Therefore, it is sufficient to add z to Si, and all pairs of vertices
from Gi and Gk (as well as from Gi and Gj) will be distinguished.

We conclude that it is sufficient to introduce to S at most q − 1 vertices, and all
pairs x and x′ from distinct blocks will also be distinguished by S. Consequently, since
|Si| = dim(Gi)− 1, we have

dim(G) ≤
q

∑
i=1

(dim(Gi)− 1) + q− 1 =
q

∑
i=1

dim(Gi)− 1

=
p

∑
i=1

(2c(Gi)− 1) +
q

∑
i=p+1

2c(Gi)− 1 = 2c(G)− p− 1

which is obviously smaller than 2c(G)− 1 for p ≥ 1. If p = 0, then G is a cactus graph,
and for cacti, it was already established that the bound is attained only for daisy graphs
without odd petals. The proof for edim(G) is analogous.
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