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Abstract: A hybrid replenishment policy in double sources queuing-inventory system is proposed.
If the inventory level drops to the reorder point s, then a regular order of the fixed volume Q = S
− s is generated to a slow and cheap source, where S denotes the maximum size of the system’s
warehouse. If the inventory level falls below a certain threshold value r, where r < s, then the
system instantly cancels the regular order and generates an emergency order to a fast and expensive
source where the replenishment quantity should be able to bring the inventory level back to S at
the replenishment epoch. In addition to consuming customers, the system also receives destructive
customers that do not require inventory but destroy them. The stability condition for the system
under study is found, steady-state probabilities are calculated, and formulas for finding performance
measures are proposed. The problem of minimizing the total cost of the system under the proposed
hybrid replenishment policy is solved by choosing the appropriate values of the order point and the
threshold value.

Keywords: queuing-inventory system; double sources; hybrid replenishment policy; matrix-geometric
method
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1. Introduction

There are deep connections between models of queuing systems (QS) and inventory
management systems (IMS), see [1–3]. Moreover, in some cases, QS models are transformed
into IMS models and vice versa by a simple change of terms.

For a long time, QS and IMS models were studied separately. The study of logistic
systems, which are hybrids of QS and IMS, began in the early 1990s. The first publications
devoted to the study of these models are [4,5]. Subsequently, these systems were called
queuing-inventory systems (QIS) [6,7]. The theory of QISs has been intensively developed
over the past three decades, and its state of the art is described in detail in the review
papers [8,9].

These days there are various important directions of development of QISs theory.
Taking into account the features studied here QIS, the works devoted to systems with
perishable inventory [10–15], systems with impatient customers [16–21], systems with
multi-class customers [22–30], systems with retrial customers [31–42], and production-
inventory systems [43–48] should be noted. Note that the classification of QIS models
based on some specific feature (indicator) is not a simple problem since many of the
above-indicated models simultaneously have many features.

In classical models of perishable QIS, it is assumed that items might be damaged after
a random period of time (aging of items) with known cumulative distribution function
(CDF), in other words, the models with non-instantaneous damaging of inventory are
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considered. However, in practice, items can be damaged instantly due to various reasons.
For example, in a shop that sells breakable items, damage to items may be the result of
the careless actions of an employee. Another example is the sale of electrical goods or
computers, where damage to an item can occur even at the time of their sale as a result of a
power surge in the electrical network. Perishable QIS models of this type have hardly been
studied, see [49]. In this paper, the flow of inventory deterioration events is modeled as
a flow of destructive customers (d-customers). Note that d-customers can be considered
as an analog of negative customers in classical QS. However, it is necessary to take into
account that in QS, negative customers force regular customers out of the system, but here
d-customers destroy stocks (items).

The impatience of customers in QIS is taken into account similarly in classical models
of queuing systems. However, in contrast to models of QS, a new feature appears in QIS for
the classification of consuming customers (c-customers). Indeed, in QIS some customers
may refuse to purchase the item after being served, i.e., they require only service and
do not require items. In other words, here, the classification of customers is carried out
not at the moment of their receipt, but after the completion of the service process. The
multi-class QIS model of this type was first studied in [50]. Here, we also take into account
this phenomenon.

An analysis of the available literature showed that the vast majority of studies are
devoted to QIS with a single source of replenishment, while it is assumed that the rate of
replenishment is a constant value. However, there are a few works devoted to production-
inventory systems in which the inventory is replenished by an external supplier and an
internal production [48]. In [48] it is assumed that an order for replenishment is sent to an
external as soon as the inventory level drops to some value, and the items are delivered
after the random lead-time. In addition to the external supplier, an internal replenishment
(production) follows a Poisson process with a finite rate. The waiting room of the c-
customers and the storage size are assumed to be unlimited. Note that the last assumption
is unusual for real QIS.

Models of QIS with a single source but with different replenishment rates were first
studied in [33,43]. In these works, authors propose models of QISs in which replenish-
ment rates depend on inventory level, i.e., the lower the inventory level, the faster the
replenishment rate.

Note that in order to increase the reliability of timely servicing of c-customers, im-
prove performance measures, and minimize the total cost of the investigated systems, it is
necessary to organize the supply of inventory from several sources. At the same time, the
usage of multiple sources leads to solving a number of problems, including determining
the moments of supply from various sources, as well as the distribution of order quantities
between them. It is important to note that these tasks differ from the tasks of choosing
the efficient supplier from a finite set of suppliers with different characteristics (order lead
times and replenishment costs). Note that the task of optimal distribution of orders between
a fast and expensive supplier and a slow but inexpensive supplier is solved in [51].

In addition, almost all works assume that a unified replenishment policy (RP) is used
throughout the entire period of operating of the QIS. Nevertheless, the study of state-
dependent RP (when RP depends on inventory level, number of customers in the system,
etc.) is of great scientific and practical interest. A replenishment policy that simultaneously
uses different (known) policies within a single system is called a hybrid policy.

Despite their importance, the models of multi-source QISs with hybrid RP have been
minimally explored. To our best knowledge, the first work that studies QIS with a hybrid
RP, but with a single source, is [10]. It considers a perishable QIS with a single server and
a limited buffer for primary customers and an unlimited buffer for feedback customers.
Primary customers form a MAP-flow (Markov Arrival Process, MAP), their service time,
and inventory lifetime have exponential CDF, and the lead-time has phase-type CDF. It is
assumed that, depending on the inventory level of the system, either a fixed or a variable
supply RP is used.
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As far as the authors are aware, in [52] the first attempt was made to develop hybrid
RP in Markovian double sources QIS with perishable inventory and negative customers.
In that paper, the following RP is proposed. If the inventory level drops to a fixed value
r, r > (S/2), order of quantity Q1 = S− r is placed from the first source; if it drops to a
prefixed level s, s < Q1, order of quantity Q2 = S− s > s + 1 is placed from the second
source. The lead times from the first and second sources have an exponential CDF with
paramerets η1 and η2, respectively, η2 > η1. Unfortunately, as proposed in [52], hybrid RP
is not the correct one. Indeed, in accordance with the proposed RP, it is expected that if the
current inventory level is, say s, then two replenishments are possible: one of them might
arrive from the first source (with size S− r) and another replenishment can be done by
the second source (with size S− s). As a result, total size of replenishments is more than
stock capacity of the system. Note that the indicated inaccuracy is also clearly visible from
the proposed formulas (see p. 296), which determine the elements of the corresponding
matrices for applying the matrix-geometric method [53].

In [54], separate models of double-sources QIS with instantly damaging inventory
that use a single RP were proposed. In the referenced paper, one model uses the (s, S)-
policy, and the other model uses the (s, Q)-policy during the entire period of the system’s
operation. Note that (s, S)-policy (sometimes it is called “Up to S” policy) is an inventory
policy in which the order volume is as much as it is able to bring the level back to S at
the replenishment epoch; in (s, Q)-policy the order volume is fixed and is equal to Q = S-s.
It is assumed that when using each RP, the choice of the source is made depending on
the current inventory level. This paper is a continuation of the investigation that began
in [54]. Here, new hybrid RP with cancellation is proposed in double-sources QIS, instantly
damaging the inventory. This assumes that no stock order is placed until the inventory level
is above the reorder point s, s < (S/2). As soon as the inventory level drops to the value s,
then the (s, Q)-policy is used. Since the order is fulfilled with a random delay, before the
order arrives, the inventory level may decrease as a result of their release to c-customers, as
well as the result of their destruction. To increase the chances of c-customers being serviced,
it is allowed to order inventory from a fast source if the inventory level of the system falls
to a dangerous (critical) level r, 0 ≤ r < s. Such an order is called an emergency order, and
the “Up to S” policy is used here. Regular and emergency orders may arrive at the same
time (or within a short period), and as a result, the total volume of these orders may be
greater than the system’s maximum warehouse size. To prevent such cases, at the time of
placing an emergency order, the regular order is canceled immediately.

QIS models with a procedure for canceling a previously booked inventory by c-
customers have been proposed in the papers [34,55,56]. Note that in the indicated papers
canceling is related to booked inventory, but not to orders for replenishment of inventory.

Analysis of available literature shows that in the known models of QIS with double
sources, it is assumed that the system uses a single replenishment policy. Here we propose
a new hybrid RP in the QIS with double sources where RP is state-dependent, i.e., it is
changed depending on the current inventory level. Moreover, we take into account the
instant damage to the items due to technical reasons.

Note that the proposed model of QIS with hybrid RP is realistic and it is applicable in
practice. The practical application of this model allows managers to more reliably organize
the work of a particular QIS with double sources by choosing an effective RP. To our best
knowledge, this model is not studied in the literature.

In this paper, we propose a new hybrid RP in QIS with double sources and develop
a method for calculating and optimizing its performance measures by selecting optimal
values of parameters of the proposed RP.

The paper is organized as follows. In Section 2, we describe the QIS model with a new
hybrid replenishment policy and formulate the problem. In Section 3, the calculation of
steady-state probabilities is carried out using the matrix-geometric method, and the stability
condition under the proposed replenishment policy is derived. Formulas for calculations
of the main performance measures are presented in Section 4. A numerical illustration,
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including the minimization of the total cost, is provided in Section 5. Section 6 concludes
the study and indicates future directions of investigation.

2. Model and Proposed Hybrid RP

Consider single server QIS with double sources. Consumer customers form Poisson
flow with rate λ, and for simplicity let us assume that each c-customer requires an item of
the same size. Besides the c-customers, Poisson flow of d-customers with rate κ arrives in
the system. Upon the arrival of d-customers, the inventory level instantly decreases by one
item. It is assumed that the d-customers may even destroy the stock that is in the release
status to the c-customer. If the stock level is equal to zero, then the received d-customer
does not affect the operation of the system.

If upon the arrival of c-customer the server is idle and the inventory level is positive,
then it is immediately accepted for servicing; if at this moment the inventory level is
positive and the server is busy, then the c-customer enters an infinite buffer for waiting.

If upon arrival of the c-customer the inventory level is equal to zero, then it either
enters the queue with a probability (w.p.) φ1 or leaves the system w.p. φ2 = 1− φ1.

A customer at the head of the queue becomes impatient if the inventory level drops to
zero before it can be serviced. In other words, in such cases, the c-customer at the head of
the queue waits for some random time, which has an exponential CDF with average τ−1,
and after this time it leaves the system as an unsatisfied demand.

After the completion of the service, the c-customer either does not buy the goods w.p.
σ1 or w.p. σ2 = 1− σ1 it buys the goods. In both cases, the service time of c-customers has
exponential CDF, but its mean value is different, i.e., if the c-customer refuses to buy the
goods, then the average time of its service is µ−1

1 , otherwise this time is µ−1
2 .

It is assumed that the system has the ability to change both the lead-time and order
size according to the current inventory level in order to increase the chances of c-customers
to acquire inventory. This means that replenishments are made from two sources: slow
Source-1 and fast Source-2. The lead time from each source has an exponential CDF, but
their average values are different, i.e., if an order is sent to Source-i, then the average delay
for the supply of stock is ν−1

i , i = 1, 2, where ν2 > ν1.
The following hybrid RP is proposed. If the stock level drops to the value s, 0 < s < (S/2),

then an order of size Q = S− s is made to Source-1. When the inventory level drops to the
threshold (critical) value r, 0 ≤ r < s, then the order from Source-1 is canceled instantly
and the “Up to S” policy is used to send the order to Source-2. A fast source is assumed to
be expensive compared to a slow source and cancellations from a slow source associated
with certain penalties.

The problem is to find the joint distribution of the number of c-customers in the system
and the inventory level of the system. In addition, it is required to calculate the main
performance measures of the system and solve the problem of choosing the optimal values
of the reorder point and the threshold value in order to minimize the total cost (TC) when
using the proposed replenishment policy. The TC include variable and fixed costs for each
type of order and cancellation of the order, as well as the cost of holding inventory, penalties
due to the loss of c-customers as a result of their impatience, and penalties for their sojourn
time in the system.

3. Model Analysis

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.
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The operation of the system is described by a two-dimensional Markov chain (2D MC)
with states of the form (n, m), where n is number of c-customers in the system, n ≥ 0, and
m is inventory level, m = 0, 1, I, S. State space of this 2D MC is given as

E =
∞⋃

n=0
L(n),

where L(n) = {(n, 0), I . . . , (n, S)} is n-th level, n = 0, 1, 2, . . ..

3.1. The Stability Condition

Transition rate from state (n1, m1) ∈ E to state (n2, m2) ∈ E is denoted by
q((n1, m1), (n2, m2)). Transitions between states in space E occur due to the following
events: (i) the arrival of c-customers, (ii) the completion of servicing of c-customers,
(iii) the departure of c-customers from the queue due to its impatience, (iv) the arrival of
d-customers, and (v) restocking.

As a result of the analysis of events (i)–(v), we find that the positive elements of the
generator of the 2D MC study are defined as follows:

q((n1, m1), (n2, m2)) =



λφ1, if n2 = n1 + 1, m2 = m1 = 0,
λ, if n2 = n1 + 1, m2 = m1 > 0,

µ1σ1, if n2 = n1 − 1, m2 = m1 > 0,
µ2σ2, if n2 = n1 − 1, m2 = m1 − 1,

κ, if n2 = n1, m1 > 0, m2 = m1 − 1,
τ, if n1 > 0, n2 = n1 − 1, m2 = m1 = 0,
ν1, if n2 = n1, r < m1 ≤ s, m2 = m1 + S− s,
ν2, if n2 = n1, 0 ≤ m1 ≤ r, m2 = S.

(1)

From relations (1), we conclude that constructed 2D MC represents Level Independent
Quasi-Birth-Death (LIQBD) process. After re-numbering of states in a lexicographic way
(i.e., the states are numbered according to the order (0, 0), (0, 1), . . . , (0, S), (1, 0), (1, 1), . . . ,
(1, S), . . .), we find that the generator of this LIQBD has the following form:

G =


B A0 O . . . O . . .

A2 A1 A0 O O . . .
O A2 A1 A0 O . . .
O O A2 A1 A0 . . .
...

...
. . . . . . . . .

...


where O denotes zero square matrix with dimension S + 1, and block matrices B = ‖bij‖,
Ak = ‖a

(k)
ij ‖, k = 0, 2, i, j = 0, S, are square matrix with the same dimension, where non-zero

entities are determined as follows:

bij =



ν2, if 0 ≤ i ≤ r, j = S,
ν1, if r < i ≤ s, j = i + S− s,
κ, if 0 < i ≤ S, j = i− 1,

−(ν2 + λφ1), if i = j = 0,
−(ν2 + κ + λ), if 0 < i ≤ r, i = j,
−(ν1 + κ + λ), if r < i ≤ s, i = j,
−(κ + λ), if s < i ≤ S, i = j;

(2)

a(0)ij =

{
λφ1, if i = j = 0,

λ, if i > 0, i = j;
(3)
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a(1)ij =



ν2, if 0 ≤ i ≤ r, j = S,
ν1, if r < i ≤ s, j = i + S− s,
κ, if 0 < i ≤ S, j = i− 1,

−(τ + ν2 + λφ1), if i = j = 0,
−(ν2 + κ + λ + µ1σ1 + µ2σ2), if 0 < i ≤ r, i = j,
−(ν1 + κ + λ + µ1σ1 + µ2σ2), if r < i ≤ s, i = j,
−(κ + λ + µ1σ1 + µ2σ2), if s < i ≤ S, i = j;

(4)

a(2)ij =


τ, if i = j = 0,

µ1σ1, if i > 0, i = j,
µ2σ2, if i > 0, j = i− 1.

(5)

Theorem 1. The system is stable if, and only if, the following the condition is satisfied:

λ(1− φ2π(0)) < τπ(0) + (µ1σ1 + µ2σ2)(1− π(0)), (6)

where

π(0) =

(
r+1

∑
m=0

αm +
s+1

∑
m=r+2

βm + (S− 2s + r− 1)βs+1 +
S

∑
m=S−s+r+1

γm

)−1

;

αm =

{
1, if m = 0,

θ2(1 + θ2)
m−1, if 1 ≤ m ≤ r + 1;

βm = θ2

(
1 + θ2

1 + θ1

)r
(1 + θ1)

m−1, r + 1 < m ≤ s + 1;

γm = θ2

r

∑
k=0

αk + θ1

s

∑
k=m−(S−s)

βk, S− s + r + 1 < m ≤ S; θiνi/(µ2σ2 + κ), i = 1, 2.

Proof of Theorem 1. Steady-state distribution corresponding to generator

A = A0 + A1 + A2

is denoted by π = (π(0), π(1), . . . , π(S)). Quantities π(m) are the probabilities that the
inventory level is equal to m, and they are satisfied with the following system of equilibrium
equations (SEE):

πA = 0, πe = 1 (7)

where 0 is zero row vector with dimension S + 1 and e is a column vector of the same
dimension in which all entities are one.

From relations (3)–(5), we conclude that non-zero entities of the generator A =
‖aij‖, i, j = 0, S, are calculated as follows:

aij =



−ν2, if i = j = 0,
ν2, if 0 ≤ i ≤ r, j = S,
ν1, if r < i ≤ s, j = i + S− s,

µ2σ2 + κ, if i > 0, j = i− 1,
−(µ2σ2 + κ + ν2), if 0 < i ≤ r, j = i,
−(µ2σ2 + κ + ν1), if r < i ≤ s, j = i,
−(µ2σ2 + κ), if i > s, j = i.

(8)

When constructing the SEE (7), taking into account the specific structure of the matrix
A, the following four cases should be distinguished.
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Case 0 ≤ m ≤ r:

(ν2 + (µ2σ2 + κ)(1− δm,0))π(m) = (µ2σ2 + κ)π(m + 1); (9)

Case r + 1 ≤ m ≤ s:

(ν1 + (µ2σ2 + κ))π(m) = (µ2σ2 + κ)π(m + 1); (10)

Case s + 1 ≤ m ≤ S− s + r:

(µ2σ2 + κ)π(m) = (µ2σ2 + κ)π(m + 1); (11)

Case S− s + r + 1 ≤ m ≤ S:

(µ2σ2 + κ)π(m) = (µ2σ2 + κ)π(m + 1)(1− δm,S) + ν1

r

∑
k=0

π(k) + ν2

s

∑
k=m−(S−s)

π(k) (12)

Hereinafter, δx,y are Kronecker symbols. Recurrent methods might be used for solving
the SEE (9)–(11). Indeed, from Equation (9) we have π(m) = αmπ(0), 0 ≤ m ≤ r + 1; by
taking into account Equation (10) we obtain π(m) = βmπ(0), r + 2 ≤ m ≤ s + 1. From
Equation (11) we conclude that π(m) = π(m + 1), s + 1 ≤ m ≤ S− s + r− 1. Equation for
state m = S (see a system of Equation (12)) is taken into account in the previous equation
for state m = S − 1, and so on, i.e., this procedure is executed until equation for state
m = S− s + r + 1. Then we obtain π(m) = γmπ(0), S− s + r + 1 ≤ m ≤ S. In other words,
we obtain solution of SEE (9)–(12) in the explicit form:

π(m) =


αmπ(0), if 1 ≤ m ≤ r + 1,
βmπ(0), if r + 1 < m ≤ s + 1,

βs+1π(0), if s + 1 < m ≤ S− s + r,
γmπ(0), if S− s + r < m ≤ S.

(13)

The unknown probability π(0) in Formula (13) is determined from normalizing con-
dition, i.e., π(0) + π(1) + . . . + π(S) = 1. It means that π(0) is calculated by the formula
that is indicated in (6). From [33] (pp. 81–83) we conclude that the given LIQBD is ergodic
if, and only if, the following condition is satisfied:

πA0e < πA2e (14)

Therefore, by taking into account relations (3), (5), and (13), after some algebra from
(14), we conclude that relation (6) is true. �

Remark 1. The stability condition (6) has the following probabilistic meaning: when there is no
inventory, and because of their impatience, the rate of c-customers admitted to the queue should be
less than the weighted total rate of customers leaving the system as a result of service completion.
Condition (6) becomes simpler if we assume that µ1 = µ2 = µ, i.e., in this case condition (6) is
written as λ(1− φ2π(0)) < τπ(0) + µ(1− π(0)). Last condition can be replaced by a simple
condition λ < max(µ, τ).

Remark 2. In special cases when φ1 = 0 and τ = 0 from (6) at σ2 = 0, we obtain classical
stability condition of single server queue with infinity buffer, i.e., λ < µ1. This fact is expected
one since under these assumptions initial QIS model becomes classical queuing model M/M/1/∞.
Another interesting fact is the following result: if we set σ2 = 1, φ1 = 0 and τ = 0 then we obtain
condition λ < µ2. In other words, under last assumptions stability, the condition does not depend
on inventory capacity (S), rate of d-customers (κ), and replenishment rates from different sources
(ν1, ν2). Similar results for single source QIS models are established in papers [50,57,58].
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3.2. The Steady-State Probabilities

In accordance with the algorithm for LIQBD (see [53], pp. 81–83), we conclude
that under ergodicity condition (6) steady state probabilities p = (p0, p1, p2, . . .), where
pn = (p(n, 0), p(n, 1), . . . , p(n, S)) are determined as

pn = p0Rn, n ≥ 1,

where R is non-negative and minimal solution of the matrix-quadratic equation:

R2 A2 + RA1 + A0 = 0

Probabilities of boundary states, p0, are calculated from the following system of equations:

p0(B + RA2) = 0,

p0(I − R)−1e = 1,

where I is the identity square matrix with dimension S + 1.

4. Performance Measures and Total Cost

Performance measures are calculated via steady state probabilities of the system
as follows:

Average inventory level (Sav)

Sav =
S

∑
m=1

m
∞

∑
n=0

p(n, m); (15)

Average supply from Source-i, i = 1, 2, (Vav(i))

Vav(1) = (S− s)
s

∑
m=r+1

∞

∑
n=0

p(n, m); Vav(2) =
r

∑
m=0

(S−m)
∞

∑
n=0

p(n, m); (16)

Average number of c-customers in system (Lav)

Lav =
∞

∑
n=1

n
S

∑
m=0

p(n, m); (17)

Average damaging rate of stocks (DRS):

DRS = κ

(
1−

∞

∑
n=0

p(n, 0)

)
; (18)

Average reorder rate from Source-1 (RR1):

RR1 = κp(0, s + 1) + (µ2σ2 + κ)
∞

∑
n=1

p(n, s + 1); (19)

Average reorder rate from Source-2 (RR2):

RR2 = κp(0, r + 1) + (µ2σ2 + κ)
∞

∑
n=1

p(n, r + 1). (20)

Remark 3. The average rate of emergency orders is equal to the average rate of cancellations (RC)
of regular orders.
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Loss probability of c-customers (PL):

PL = φ2

∞

∑
n=0

p(n, 0) +
τ

τ + λφ1 + ν2

∞

∑
n=1

p(n,
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2

𝑖=1

+ 𝑐𝑐𝑅𝑅2 + 𝑐ℎ𝑆𝑎𝑣 + 𝑐𝑑𝐷𝑅𝑆 + 𝑐𝑙𝜆𝑃𝐿 + 𝑐𝑤𝐿𝑎𝑣 , (22) 

0). (21)

The developed Formulas (15)–(21) allow us to calculate the expected total costs (TC)
as follows:

TC(s, r) =
2

∑
i=1

(Ki + cr(i)Vav(i))RRi + ccRR2 + chSav + cdDRS + clλPL + cwLav, (22)

where Ki are the fixed costs of one order from Source-i; cr(i) are the procurement costs per
unit inventory from Source-i, i = 1, 2; cc is the cost due to order cancellation from Source-1;
ch is the holding cost of an inventory unit per unit time; cd is the cost due to damage per
unit inventory; cl is the cost of losing a c-customer; cw is the waiting cost of a c-customer
per unit time.

Remark 4. For brevity, only on the left side of (22) are the arguments of the functional TC(s, r)
explicitly indicated, although it is obvious that all terms of the sum on the right side of (22) are also
functions of these arguments.

5. Numerical Results

The behavior of the system performance measures (15)–(21) concerning changes in the
values of the initial system parameters when using the proposed RP can be studied using
Tables 1–9. Let us briefly analyze the contents of these tables. Note that in all numerical
experiments it is assumed that φ1 = 0.7, σ1 = 0.3. The values of other parameters are
indicated in the title of the tables. Note that the analysis of these tables showed that almost
all results are theoretically expected.

Table 1. Dependence of the performance measures on parameter λ; µ1 = 5, µ2 = 6, κ = 2, τ = 2,
ν1 = 3, ν2 = 5, r = 3, s = 8, S = 18.

λ Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

2 12.4415 1.0791 0.0472 0.3388 0.0151 1.9996 10−4 0.5406
2.2 12.4227 1.0732 0.0972 0.351 0.016 1.9943 10−3 0.6287
2.4 12.3999 1.0729 0.1435 0.3639 0.0172 1.9895 1.8 × 10−3 0.7327
2.6 12.3769 1.0774 0.1805 0.3757 0.0186 1.9858 2.5 × 10−3 0.8390
2.8 12.3509 1.0864 0.2148 0.3881 0.0202 1.9825 3.1 × 10−3 0.9659
3.0 12.3231 1.0996 0.2446 0.4006 0.0221 1.9797 3.6 × 10−3 1.1116
3.2 12.2940 1.1168 0.2701 0.413 0.0243 1.9775 4.0 × 10−3 1.2806
3.4 12.2620 1.1389 0.2925 0.4262 0.0269 1.9757 4.4 × 10−3 1.4899

Table 2. Dependence of the performance measures on parameter µ1; λ = 2, µ2 = 6, κ = 2, τ = 2,
ν1 = 3, ν2 = 5, r = 3, s = 8, S = 18.

µ1 Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

4.0 12.4207 1.1001 0.0509 0.3463 0.0163 1.9995 10−4 0.5883
4.2 12.4250 1.0957 0.0501 0.3447 0.0160 1.9995 9.1 × 10−5 0.5781
4.4 12.4294 1.0912 0.0493 0.3431 0.0157 1.9995 8.9 × 10−5 0.5677
4.6 12.4334 1.0873 0.0486 0.3417 0.0155 1.9996 8.7 × 10−5 0.5587
4.8 12.4374 1.0831 0.0478 0.3402 0.0153 1.9996 8.5 × 10−5 0.5495
5.0 12.4414 1.0790 0.0471 0.3388 0.0151 1.9996 8.3 × 10−5 0.5406
5.2 12.4454 1.0751 0.0464 0.3374 0.0149 1.9996 8.1 × 10−5 0.5319
5.4 12.4492 1.0712 0.0458 0.3360 0.0146 1.9996 7.9 × 10−5 0.5236



Mathematics 2022, 10, 2423 10 of 16

Table 3. Dependence of the performance measures on parameter µ2; λ = 2, µ1 = 5, κ = 2, τ = 2,
ν1 = 3, ν2 = 5, r = 3, s = 8, S = 18.

µ2 Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

5.0 12.4603 1.0599 0.0439 0.3320 0.0140 1.99962 7.6 × 10−5 0.6667
5.2 12.4561 1.0641 0.0446 0.3335 0.0142 1.99961 7.7 × 10−5 0.6370
5.4 12.4522 1.0682 0.0453 0.3349 0.0145 1.99961 7.9 × 10−5 0.6098
5.6 12.4484 1.0720 0.0459 0.3363 0.0147 1.99960 8.0 × 10−5 0.5848
5.8 12.4448 1.0756 0.0465 0.3375 0.0149 1.99959 8.2 × 10−5 0.5618
6.0 12.4414 1.079 0.0471 0.3387 0.0150 1.99958 8.3 × 10−5 0.5406
6.2 12.4382 1.0823 0.0477 0.3399 0.0152 1.99957 8.4 × 10−5 0.5209
6.4 12.4351 1.0854 0.0482 0.3410 0.0154 1.99957 8.5 × 10−5 0.5025

Table 4. Dependence of the performance measures on parameter κ; λ = 2, µ1 = 5, µ2 = 6, τ = 2,
ν1 = 3, ν2 = 5, r = 3, s = 8, S = 18.

κ Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

2.0 12.4414 1.0790 0.0471 0.3387 0.0151 1.9995 8.3 × 10−5 0.54062
2.2 12.4105 1.0836 0.1024 0.3557 0.0167 2.1933 1.054 × 10−3 0.54068
2.4 12.3788 1.0881 0.1573 0.3724 0.0183 2.3859 2.018 × 10−3 0.54074
2.6 12.3463 1.0923 0.2120 0.3890 0.0199 2.5775 2.976 × 10−3 0.54081
2.8 12.3132 1.0963 0.2663 0.4055 0.0217 2.7680 3.927 × 10−3 0.54088
3.0 12.2796 1.1002 0.3202 0.4218 0.0235 2.9574 4.87 × 10−3 0.54095
3.2 12.2456 1.1040 0.3739 0.4380 0.0253 3.1487 5.811 × 10−3 0.54102
3.4 12.2113 1.1076 0.4272 0.4541 0.0271 3.3332 6.743 × 10−3 0.54110

Table 5. Dependence of the performance measures on parameter τ; λ = 2, µ1 = 5, µ2 = 6, κ = 2,
ν1 = 3, ν2 = 5, r = 3, s = 8, S = 18.

τ Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

2.0 12.4414 1.079 0.0471 0.3387 0.01507 1.9995 8.3 × 10−5 0.54062
2.2 12.4414 1.079 0.0471 0.3387 0.01507 1.9995 8.4 × 10−5 0.54061
2.4 12.4415 1.079 0.0471 0.3387 0.01507 1.9995 8.5 × 10−5 0.54060
2.6 12.4415 1.079 0.0471 0.3387 0.01507 1.9995 8.6 × 10−5 0.54059
2.8 12.4415 1.079 0.0471 0.3387 0.01507 1.9995 8.7 × 10−5 0.54058
3.0 12.4415 1.079 0.0471 0.3387 0.01507 1.9995 8.8 × 10−5 0.54057
3.2 12.4415 1.079 0.0471 0.3387 0.01507 1.9995 8.8 × 10−5 0.54056
3.4 12.4415 1.079 0.0471 0.3387 0.01507 1.9995 8.9 × 10−5 0.54056

Table 6. Dependence of the performance measures on parameter ν1; λ = 2, µ1 = 5, µ2 = 6, κ = 2,
ν2 = 5, τ = 2, r = 3, s = 8, S = 18.

ν1 Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

3 12.4414 1.0790 0.0471 0.3387 0.01501 1.9995 8.3 × 10−5 0.54062
3.2 12.4958 1.0218 0.0406 0.3399 0.0129 1.9996 7.1 × 10−5 0.54061
3.4 11.0000 0.9698 0.0351 0.3409 0.0112 1.9996 6.2 × 10−5 0.54060
3.6 12.5909 0.9223 0.0305 0.3418 0.0098 1.9997 5.4 × 10−5 0.54059
3.8 12.6326 0.8789 0.0266 0.3425 0.0085 1.9997 4.7 × 10−5 0.54059
4 12.6709 0.8392 0.0232 0.3431 0.0074 1.9997 4.1 × 10−5 0.54058

4.2 12.7079 0.8009 0.0203 0.3436 0.0065 1.9998 3.6 × 10−5 0.54057
4.4 12.7388 0.7689 0.0179 0.3441 0.0058 1.9998 3.2 × 10−5 0.54057



Mathematics 2022, 10, 2423 11 of 16

Table 7. Dependence of the performance measures on parameter ν2; λ = 2, µ1 = 5, µ2 = 6, κ = 2,
ν1 = 3, τ = 2, r = 3, s = 8, S = 18.

ν2 Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

5.0 12.4414 1.0790 0.0471 0.3387 0.01507 1.9995 8.3 × 10−5 0.540621
5.2 12.4427 1.0792 0.0452 0.3388 0.01507 1.9996 7.4 × 10−5 0.540612
5.4 12.4438 1.0793 0.0435 0.3388 0.01507 1.9996 6.6 × 10−5 0.540604
5.6 12.4449 1.0794 0.0419 0.3389 0.01507 1.9996 5.9 × 10−5 0.540598
5.8 12.4459 1.0795 0.0404 0.3389 0.01507 1.9997 5.3 × 10−5 0.540592
6.0 12.4468 1.0796 0.0390 0.3389 0.01507 1.9997 4.8 × 10−5 0.540587
6.2 12.4476 1.0796 0.0377 0.3389 0.01507 1.9997 4.3 × 10−5 0.540582
6.4 12.4484 1.0797 0.0365 0.3390 0.01508 1.9997 3.9 × 10−5 0.540578

Table 8. Dependence of the performance measures on parameter s; λ = 2, µ1 = 5, µ2 = 6, κ = 2,
ν1 = 3, ν2 = 5, τ = 2, r = 3, S = 21.

s Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

5 12.8203 0.7865 0.2224 0.2071 0.05962 1.9984 3.27 × 10−4 0.540858
6 13.1548 0.9432 0.1285 0.2231 0.03446 1.999 1.89 × 10−4 0.540724
7 13.5332 1.0332 0.0746 0.2414 0.02001 1.9994 1.1 × 10−4 0.540647
8 13.9522 1.0852 0.0434 0.2621 0.01160 1.9996 6.4 × 10−5 0.540603
9 14.4019 1.1154 0.0254 0.2856 0.00681 1.9998 3.7 × 10−5 0.540577

Table 9. Dependence of the performance measures on parameter r; λ = 2, µ1 = 5, µ2 = 6, κ = 2,
ν1 = 3, ν2 = 5, τ = 2, s = 8, S = 18.

r Sav Vav (1) Vav (2) RR1 RR2 DRS PL Lav

2 12.3958 1.1125 0.0271 0.3419 0.0081 1.9994 1.1 × 10−4 0.540647
3 12.4414 1.0791 0.0472 0.3387 0.0151 1.9995 8.3 × 10−5 0.540621
4 12.5161 1.0217 0.0840 0.3350 0.0278 1.9995 6.9 × 10−5 0.54060
5 12.6339 0.9261 0.1390 0.3286 0.0508 1.9997 4.7 × 10−5 0.540586
6 12.7965 0.7652 0.2355 0.3223 0.0928 1.9998 3.5 × 10−5 0.540575

From Table 1, we conclude that with an increase in the intensity of c-customers, the
average inventory level decreases at a very low rate, i.e., with an increase in the intensity
of c-customers by 70%, the inventory level decreases by 1.5%. Average supply volume
from Source-2 increases at a fairly high rate with an increase in the intensity of c-customers.
However, an average supply volume from Source-1 decreases first and then increases
at a slow rate with an increase in the intensity of c-customers. Note that the last fact is
a single counterintuitive result in all numerical experiments. The re-order rate for each
source increases at a fairly high rate, with an increase in the intensity of c-customers. The
last facts are explained as follows: with the increase in the intensity of c-customers, the
inventory level frequently drops to the points of regular and emergency orders. The average
damaging rate of stocks decreases at a low rate with increasing intensity of c-customers,
since with an increase in the intensity of c-customers, the probability that the inventory
level is greater than zero decreases (see Formula (18)). An increase in the intensity of
c-customers leads to an increase in the probability of their loss and the average number of
orders in the system also increases, while the growth rates of these measures are quite high.

With an increase in the service intensity of c-customers that do not require items, the
average inventory level remains almost unchanged (it grows at a negligible rate), i.e., with
an increase in the intensity of c-customers by 35%, the inventory level will increase by 0.1%
(see Table 2). Table 2 also shows that the average supply volume from each source, as well
as the reorder rates for each source, decrease at a very low rate, with an increase in the
intensity of servicing c-customers that do not require items. Such behavior of indicated
measures is explained by the fact that here the average inventory level is higher than the
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regular order point. The average damaging rate of stocks is almost constant since the
probability that the inventory level is greater than zero is very close to 1. An increase
in the intensity of service of c-customers that do not require items leads to a decrease in
the loss probability of customers, and the average number of c-customers in the system
decreases as well. The last facts coincide with well-known facts from the classical theory of
queuing systems.

From Table 3, we conclude that with an increase in the service intensity of c-customers
that require items, the average inventory level decreases at an insignificant rate (almost
does not change). This is in contrast to Table 2, where the average supply volume from
each source, as well as the reorder rate for each source, increase (albeit at a very slow rate).
These facts are explained as follows: with an increase in the service intensity of c-customers
that require items, the average inventory level decreases. The average damaging rate of
stocks, as in Table 2, is almost constant. An increase in the service intensity of c-customers
that require items leads to an increase in the loss probability of customers since in this case
the probability that the inventory level drops to zero will increase (see Formula (21)). As
expected, an increase in the service intensity of c-customers that require items decreases
the average number of c-customers in the system.

From Table 4, we conclude that with an increase in the intensity of d-customers, the
average inventory level decreases at a negligible rate. Here, the average supply volume
from each source, as well as the reorder rates for each source, increase, because the average
inventory level decreases. The average damaging rate of stocks, as expected, is also on the
rise. An increase in the intensity of d-customers leads to an increase in the loss probability of
c-customers since in this case the probability that the inventory level drops to zero increases.
As expected, with an increase in the intensity of d-customers, the average number of
c-customers in the system, although at an insignificant rate, increases.

Note that an increase in the intensity of c-customer’s impatience has almost no effect
on the performance measures of the system (see Table 5).

With an increase in the intensity of the supply of stocks from a slow source, the average
inventory level grows at a low rate (see Table 6). From this table, it can be seen that the
supply volumes from each source are decreasing, while the volumes of supplies from the
fast source are decreasing at a high rate. An interesting result is that the intensity of orders
to a slow source increase, while the intensity of orders to a fast source decrease. The average
damaging rate of stocks is almost independent of the supply intensity from a slow source.
Decreasing the lead-time from a slow source reduces the loss probability of c-customers
because it reduces the probability that the inventory level is zero. The average number of
c-customers in the system is almost constant.

As above mentioned, with an increase in the intensity of the supply of inventory from
a fast source, the average inventory level grows at a low rate (see Table 7). Table 7 shows
that the supply volume from the fast source decreases, and the supply volume from the
slow source, as well as the reorder rates to both sources, is almost constant. In addition
to them, the average damaging rate of stocks is a constant value. As above (see Table 6),
reducing the lead-time from a fast source leads to a decrease in the loss probability of
c-customers, and the average number of c-customers in the system is almost constant.

From Table 8, we conclude that with an increase in the value of the regular order
point, the average inventory level increases at a significant rate. An interesting result is that
with an increase in the value of the regular order point, the supply volume and reorder
rate from a slow source increase. At the same time, the supply volume and reorder rate
from a fast source are decreasing. These facts are explained as follows: as the value of the
regular reorder point increases, and the probability that the inventory level drops below the
emergency reorder point decreases. The inventor deterioration rate increases at a negligible
rate, as the probability that the inventory level is greater than zero increases. For the same
reason, the loss probability of c-customers is reduced. The average number of c-customers
in the system is almost constant.
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Table 9 shows that with an increase in the value of the emergency order point, the
average inventory level increases at an insignificant rate. Contrary to Table 8, here, with
an increase in the value of the emergency order point, the supply volume and reorder rate
from a fast source increase. At the same time, the supply volume and reorder rate from
a slow source are decreasing. As above (see Table 8), the rate of inventory deterioration
increases at an insignificant rate, the loss probability of c-customers decreases, and the
average number of c-customers in the system is almost constant.

Now, consider the problem of minimizing the expected TC (22) by choosing the
appropriate values of the parameters s (regular re-order point) and r (emergency re-order
point). Here, we assume that the remaining parameters of the system (structural and load)
are fixed.

The values of the initial parameters of the model and the coefficients in the functional
(22) are chosen as follows [54]:

λ = 20, κ = 10, µ1 = 35, µ2 = 25, τ = 20, ν1 = 5, ν2 = 10, σ1 = 0.4, φ1 = 0.6;

K1 = 100, K2 = 200, cr(1) = 50, cr(2) = 100, cc = 50, ch = 35, cd = 75, cl = 200, cw = 50.

Optimization problem is formulated as follows: it is required to find such pairs of
optimal values (s∗, r∗) in order to minimize the functional (22). This problem is formally
written as

(s∗, r∗) = arg min
(s,r)∈X

TC(s, r). (23)

The problem (23) always has a solution since the domain of feasible solutions X =
{(s, r) : 0 < s < (S/2), 0 ≤ r < s} is a discrete and finite set. Results of problem are shown
in Table 10, where the minimal value of TC is denoted by bold. For selected values of
initial parameters, the optimal solution of the problem (23) is (s∗, r∗) = (3, 0). Note that
points (4, 0) and (5, 0) are very close to the optimal solution. In addition, we note the
following properties of the TC for selected values of the initial parameters: (1) for fixed
values of the argument s, it is increasing with respect to the argument r; (2) for fixed values
of the argument r, it is a convex function with respect to the argument s; (3) a simultaneous
increase in the values of both parameters s and r in the feasible set leads to an increase in
the value of the TC. Based on the complexity of the form of the TC, it is not possible to
draw general theoretical conclusions regarding its behavior, as well as the location of the
optimal point (s∗, r∗).

At the end of this section, we note that, in contrast to single-source QISs, here managers
have more freedom to achieve desired economic goals. At the same time, in real systems,
managers cannot control the values of the load parameters of the system. Therefore, in
order to achieve the goals indicated above, it is necessary to find the optimal values for the
parameters s and r of the proposed hybrid policy. However, it should be noted that despite
the fact that the performance measures change smoothly relative to the values of the initial
parameters (both load and structural), finding the optimal values of these parameters is
not a trivial task (moreover, in some cases the behavior of the performance measures can
be unexpected). In other words, for each concrete QIS it is necessary to solve the specified
problem. Here we also note that other formulations of the optimization problem for this
QIS are also possible, i.e., it is possible to solve conditional optimization problems. In
particular, it is possible to consider the problem of maximizing the revenue of the given
QIS subject with existence of some restrictions on performance measures. For instance, it is
possible to impose restrictions on the probability of loss of customers or on the re-order
rates from various sources. Such tasks require special investigations.
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Table 10. Results of problem (23); λ = 20, µ1 = 35, µ2 = 25, κ = 2, ν1 = 5, ν2 = 10, τ = 20, φ1 = 0.6,
σ1 = 0.4, σ2 = 0.6, S = 25.

TC

r
s

1 2 3 4 5 6 7 8 9 10 11 12

0 1537 1505 1495 1496 1503 1513 1526 1542 1560 1580 1601 1623

1 1571 1534 1523 1522 1528 1538 1551 1567 1580 1605 1627

2 1604 1564 1550 1548 1553 1563 1576 1592 1609 1629

3 1637 1594 1578 1574 1578 1588 1601 1617 1636

4 1672 1624 1606 1601 1604 1614 1627 1642

5 1706 1656 1635 1629 1632 1641 1654

6 1742 1687 1665 1658 1660 1669

7 1779 1722 1697 1686 1690

8 1817 1798 1757 1730

9 1861 1795 1766

10 1907 1836

11 1956

6. Conclusions and Future Works

A hybrid replenishment policy is proposed in double sources QIS with an infinite
queue, where a fast source is more expensive than a slow source. It is based on the combined
use of two known RPs with a fixed supply volume and with a variable supply volume. If the
inventory level drops to the reorder point, then regular replenishment of stocks is carried
out from a slow source according to the RP with a fixed supply volume. When the stock
level drops to a critical value, less than the reorder point, then emergency replenishment of
stocks is carried out from a fast source according to the RP with a variable supply volume.
Another feature of the model under study is that inventory damage occurs instantly upon
the arrival of destructive customers.

It is shown that the mathematical model of the investigated system using the proposed
hybrid RP is a 2D MC, which has a three-diagonal generator. The ergodicity condition
for the constructed 2D MC is found and the matrix-geometric method is used to find
its stationary distribution. Formulas for calculating the performance measures of the
investigated system are proposed and the problem of its optimization is solved.

The direction of future work should be the investigation of the similar QISs with MAP
flows of c-customers and/or d-customers as well as with PH distribution of service times
for c-customers. Another direction is the investigation of QISs in which the size of damaged
items is a random variable with a known CDF including models with catastrophes (i.e.,
when all stocks are destroyed). Finally, an important direction is the study of QISs, in
which the order volumes depend not only on the level of inventory but also depend on
the current number of c-customers in the system. These problems are the objects of our
further research.
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