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Abstract: To express wider uncertainty, Běhounek and Daňková studied fuzzy partial logic and partial
function. At the same time, Borzooei generalized t-norms and put forward the concept of partial
t-norms when studying lattice valued quantum effect algebras. Based on partial t-norms, Zhang et al.
studied partial residuated implications (PRIs) and proposed the concept of partial residuated lattices
(PRLs). In this paper, we mainly study the related algebraic structure of fuzzy partial logic. First,
we provide the definitions of regular partial t-norms and regular partial residuated implication
(rPRI) through the general forms of partial t-norms and partial residuated implication. Second, we
define regular partial residuated lattices (rPRLs) and study their corresponding properties. Third,
we study the relations among commutative quasi-residuated lattices, commutative Q-residuated
lattices, partial residuated lattices, and regular partial residuated lattices. Last, in order to obtain
the filter theory of regular partial residuated lattices, we restrict certain conditions and then propose
special regular partial residuated lattices (srPRLs) in order to finally construct the quotient structure
of regular partial residuated lattices.
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1. Introduction

Fuzzy logic and quantum logic are the research directions of many scholars. In
fuzzy logic, it is common to use lattice theory to deal with the framework of fuzzy logic,
especially research on the structure of residuated lattices related to t-norms and their
residuated implications [1,2]. In quantum logic, lattice effect algebra is a representative
kind of quantum structure, and much rich research has been carried out on it [3,4]. Now,
more and more scholars study these two logical structures both alone and in terms of
the relationship between them, including the relationship between residuated lattices and
lattice effect algebras [5–7]. Recently, the research on various implications in lattice effect
algebras has become increasingly active [8–10]. However, these studies are based on full
operations. In practical application, people encounter many “undefined” situations, which
are called partial structures. Effect algebra is a partial algebraic structure in quantum logic.
Běhounek and Novák proposed fuzzy partial logic in [11], which well describes situations in
which certain elements cannot be operated. In [9], Chajda and Länger provide the concept
of quasiresiduated lattice, which is closely related to lattice effect algebras. In [12], Zhang et
al. provide the concept of Q-residuated lattices. In [13], Zhang et al. continued to provide
clear definitions of partial fuzzy implications, partial residuated implications, and partial
algebraic structure (that is, partial residuated lattices), thereby making great contributions
to the study of the relationship between the two logics. In terms of application, there are
many examples of using fuzzy logic to model transition systems with uncertainty [14,15].
In [16], Běhounek and Daňková consider the case in which several inputs or outputs of
the aggregate function are undefined, and apply this theory to a case study. Thus we ask,
is it possible to put forward different concepts in order to further study partial algebraic
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structures? What is the relationship between these structures? This is what we seek to
reveal in this paper. At the same time, whether it a residuated lattice or effect algebra, the
filters represent an important research direction [17–20]. Therefore, we additionally study
the filter theory and quotient structure of the newly proposed partial algebraic structure.

In this paper, based on various partial implications and the partial residuated lattices
proposed by Zhang et al. in [13], we continue to study the structure of partial algebra, pro-
pose regular partial residuated lattices, analyze their properties, determine the conditions
for constructing rPRLs in lattice effect algebra, and further reveal the relationship between
it and PRLs, commutative quasiresiduated lattices, and commutative Q-residuated lattices.
Finally, the concept of a special regular partial residuated lattice is proposed, the filter is
defined, and the quotient structure of the regular partial residuated lattice is constructed.

2. Preliminaries

In this part, we list existing knowledge in order to provide a basis for follow-up research.

Definition 1 ([3]). An effect algebra (E,+,′ , 0, 1) is a partial algebra where + is a partial operation
and ′ is a unary operation such that for all a, b, c ∈ E, if:

(E1) a + b is defined iff b + a is defined, and then a + b = b + a;
(E2) a+ b and (a+ b) + c are defined iff b+ c and a+ (b+ c) are defined, and then (a+ b) + c =

a + (b + c);
(E3) a unique a′ ∈ E with a + a′ = 1;
(E4) if 1 + a is defined then a = 0.

Define a partial order ≤ on E by: a ≤ b iff there exists an element c ∈ E such that a + c = b.
For all a ∈ E, 0 ≤ a ≤ 1, and if (E;≤) is a lattice, we say that E is a lattice effect algebra.

Definition 2 ([9]). A commutative quasiresiduated lattice C = (C,∨,∧,�,→, 0, 1) is a partial
algebra where (C,∨,∧, 0, 1) is a bounded lattice, � is a partial operation, and→ is a full operation
such that for all a, b, c ∈ C, if:

(i) (C,�, 1) is a commutative partial monoid, a� b is defined iff a′ ≤ b;
(ii) a′′ = a, if a ≤ b then b′ ≤ a′;
(iii) (a ∨ b′)� b ≤ b ∧ c iff a ∨ b′ ≤ b→ c.

where a′ = a→ 0.

Theorem 1 ([12]). Let Q be a commutative quasiresiduated lattice. For any a, b, c ∈ Q, the
following hold:

(1) If a′ ≤ b, then a ≤ b→ (a� b);
(2) If a ≤ b, then (b→ a)� b = a;
(3) If a′ ≤ b and c ≤ b, then a� b ≤ c iff a ≤ b→ c.

Definition 3 ([12]). A commutative Q-residuated lattice Q = (Q,∨,∧,�,→, 0, 1) is a partial
algebra where (Q,∨,∧, 0, 1) is a bounded lattice and � and→ are partial operations such that for
all a, b, c ∈ Q, if:

(Q1) (Q,�, 1) is a partial monoid, a� b is defined iff a′ ≤ b;
(Q2) a′′ = a, a ≤ b implies b′ ≤ a′;
(Q3) if a′ ≤ b, then a� b = b� a;
(Q4) if a ≤ b, then b→ a is defined; If b′ ≤ a and c ≤ b, then a� b ≤ c iff a ≤ b→ c.

where a′ = a→ 0.

Theorem 2 ([12]). Let Q be a commutative Q-residuated lattice. For any a, b, c ∈ Q, the following
hold:

(1) If a′ ≤ c, b′ ≤ c and a ≤ b, then a� c ≤ b� c;
(2) If a ≤ c, b ≤ c and a ≤ b, then c→ a ≤ c→ b.
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Definition 4 ([8]). Let L be a bounded lattice. A binary operation � is a partial t-norm on L such
that for all a, b, c ∈ L, if:

(1) 1� a = a;
(2) if a� b is defined, then b� a is defined and a� b = b� a;
(3) if b� c and a� (b� c) are defined, then a� b and (a� b)� c are defined and (a� b)� c =

a� (b� c);
(4) if a ≤ b, u ≤ v and a� u, b� v are defined, then a� u ≤ b� v.

Definition 5 ([13]). Let L be a bounded lattice and � be a partial t-norm on L. A partial operation
→� induced by � is called a partial residuated implication (PRI) such that for all a, b ∈ L, if:

a→⊙ b :=

{
sup{u | a

⊙
u is de f ined and a

⊙
u ≤ b} i f the supremum o f the S exists

unde f ined otherwise
(1)

where S = {u | a
⊙

u is defined and a
⊙

u ≤ b}.

Definition 6 ([13]). A pair (⊗,→) on a poset (P;≤) is a partial adjoint pair (PAP) where ⊗ and
→ are two partial operations such that for all x, y, z ∈ L, if:

(PAP1) The operation ⊗ is isotone, if x ≤ y, x⊗ z and y⊗ z are defined, then x⊗ z ≤ y⊗ z; if
x ≤ y, z⊗ x and z⊗ y are defined, then z⊗ x ≤ z⊗ y.

(PAP2) The operation→ is antitone in the first argument, if x ≤ y, x → z and y→ z are defined,
then y→ z ≤ x → z;→ is isotone in the second argument, if x ≤ y, z→ x and z→ y are
defined, then z→ x ≤ z→ y.

(PAP3) If x⊗ y and x → z are defined, then x⊗ y ≤ z iff y ≤ x → z.

Definition 7 ([13]). A partial algebra (L,∨,∧,⊗,→, 0, 1) is a partial residuated lattice (PRL)
where (L,∨,∧, 0, 1) is a bounded lattice, ⊗ and → are two partial operations, such that for all
x, y, z ∈ L:

(PRL1) if x⊗ y is defined, then y⊗ x is defined, and then x⊗ y = y⊗ x;
(PRL2)if y⊗ z, x⊗ (y⊗ z) are defined, then x⊗ y, (x⊗ y)⊗ z are defined, and then x⊗ (y⊗ z) =

(x⊗ y)⊗ z;
(PRL3) x⊗ 1 is defined and x⊗ 1 = x;
(PRL4) (⊗,→) is a PAP on L.

Definition 8 ([13]). Let L be a bounded lattice. The function PI : L× L → L is called a partial
fuzzy implication (PFI)

(PI1) if a1 ≤ a2, PI(a1, b) and PI(a2, b) are defined, then PI(a2, b) ≤ PI(a1, b);
(PI2) if b1 ≤ b2, PI(a, b1) and PI(a, b2) are defined, then PI(a, b1) ≤ PI(a, b2);
(PI3) PI(0, 0) = PI(1, 1) = 1, PI(1, 0) = 0.

By [13], we know that the PRI defined in Definition 5 is a partial fuzzy implication.

3. Regular Partial Residuated Implications (rPRIs) and Regular Partial Residuated
Lattices (rPRLs)

In [13], Zhang et al. defined partial residuated implication. Based on this, we limit
certain conditions, propose regular partial residuated implication, and study its relationship
with partial residuated implication and partial fuzzy implication. Next, we define the
regular partial residuated lattice, study its properties and the relationship with lattice effect
algebra, and then propose special regular partial residuated lattice and normal regular
partial residuated lattice, which paves the way for the study of the filter theory of regular
partial residuated lattices.

Definition 9. Let L be a bounded lattice, � be a partial t-norm on L, and→� be a PRI derived by
�. If the following conditions hold, then we can say that � is a regular partial t-norm on L and
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→� is a regular partial residuated implication (rPRI).
∀x, y ∈ L, x ≤ y⇒ (y→� z ≤ x →� z and z→� x ≤ z→� y)

Example 1. Let L = {0, a, b, 1}. The Hasse-diagram of (L;≤) is shown in Figure 1, and the
operations � and→� are defined by Tables 1 and 2. Then, � is a regular partial t-norm and→� is
an rPRI.

Figure 1. Hasse diagram of lattice L.

Table 1. The operation �.

� 0 a b 1

0 0 0
a 0 a 0 a
b 0 b
1 0 a b 1

Table 2. The operation→�.

→� 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Theorem 3. Let L be a bounded lattice, � be a regular partial t-norm on L, and→� be an rPRI
induced by �. Then,→� is a PFI.

Proof. The proof follows from Theorem 4.11 in [13].

Through [13], we know that the algebraic structure corresponding to partial t-norms
and their partial residuated implication is a partial residuated lattice. Next, we provide the
corresponding algebraic structures of regular partial t-norms and regular partial residuated
implication: regular partial residuated lattices.

Definition 10. A pair (⊗,→) on a poset (P;≤) is a regular partial adjoint pair (rPAP) where ⊗
is a partial operation and→ is a full operation such that for all x, y, z ∈ L, if

(rPAP1) The operation ⊗ is isotone, if x ≤ y, x⊗ z and y⊗ z are defined, then x⊗ z ≤ y⊗ z; if
x ≤ y, z⊗ x and z⊗ y are defined, then z⊗ x ≤ z⊗ y.

(rPAP2) The operation→ is antitone in the first argument and isotone in the second argument,
if x ≤ y, then y→ z ≤ x → z, z→ x ≤ z→ y.

(rPAP3) If x⊗ y is defined, then x⊗ y ≤ z iff y ≤ x → z.

Definition 11. A partial algebra (L,∨,∧,⊗,→, 0, 1) is a regular partial residuated lattice (rPRL),
where (L,∨,∧, 0, 1) is a bounded lattice, ⊗ is a partial operation, and→ is a full operation, such
that for all x, y, z ∈ L,
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(rPRL1) if x⊗ y is defined, then y⊗ x is defined, and then x⊗ y = y⊗ x;
(rPRL2) if y⊗ z, x⊗ (y⊗ z) are defined, then x⊗ y, (x⊗ y)⊗ z are defined, and then x⊗ (y⊗

z) = (x⊗ y)⊗ z;
(rPRL3) x⊗ 1 is defined and x⊗ 1 = x;
(rPRL4) (⊗,→) is an rPAP on L.

Example 2. Let L = {0, a, b, c, d, 1}. The Hasse-diagram of L is shown in Figure 2, and the
operations ⊗ and→ are defined by Tables 3 and 4. Then L is an rPRL.

Figure 2. Hasse diagram of lattice L.

Table 3. The operation ⊗.

⊗ 0 a b c d 1

0 0 0
a a
b b
c 0 c c
d d d
1 0 a b c d 1

Table 4. The operation→.

→ 0 a b c d 1

0 1 1 1 1 1 1
a 0 1 1 c d 1
b 0 a 1 c d 1
c 0 a b 1 d 1
d 0 b b c 1 1
1 0 a b c d 1

Theorem 4. Let (L,∨,∧,⊗,→, 0, 1) be an rPRL, then L is a PRL.

Proof. We can prove it easily by Definitions 7 and 11.

Theorem 5. Let (L,∨,∧,⊗,→, 0, 1) be an rPRL. Then, for all a, b, c ∈ L,

(1) a→ a = 1;
(2) a→ 1 = 1;
(3) 1→ a = a;
(4) a→ b = 1 iff a ≤ b;
(5) If a⊗ b is defined, then a ≤ b→ (a⊗ b);
(6) If a⊗ b is defined, then a⊗ b ≤ a, a⊗ b ≤ b and a⊗ b ≤ a ∧ b;
(7) If a⊗ b is defined, then a ≤ b→ a.

Proof. (1)–(4) can be obtained from Theorem 4.16 in [13].
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(5) Suppose that a⊗ b is defined; we know a⊗ b ≤ a⊗ b, hence, a ≤ b→ (a⊗ b).
(6) Suppose that a⊗ b is defined; then, it follows from (rPAP1) that a⊗ b ≤ a⊗ 1 = a,

a⊗ b ≤ 1⊗ b = b. Hence, a⊗ b ≤ (a⊗ 1) ∧ (1⊗ b) = a ∧ b.
(7) Suppose that a⊗ b is defined; from (6), a⊗ b ≤ a, thus, a ≤ b→ a.

Theorem 6. Let � be a regular partial t-norm on L and let→� be an rPRI induced by �. Then,
(L,∨,∧,�,→�, 0, 1) is an rPRL.

Proof. By Definitions 4 and 9–11, we can easily come to this conclusion.

Through this theorem, we can find that in Example 1, the lattice structure (L;≤,�,→�
, 0, 1) composed of � and→� is an rPRL.

Definition 12. An rPRL (L,∨,∧,⊗,→, 0, 1) is a special regular partial residuated lattice (sr-
PRL) if:

(1) for all a, b ∈ L, a⊗ (a→ b) is defined;
(2) for all a, b, c ∈ L, if a⊗ b and a⊗ c are defined, then a⊗ (b ∧ c) is defined.

Theorem 7. Let (L,∨,∧,⊗,→, 0, 1) be an srPRL. Then, for all a, b, c ∈ L:

(1) a⊗ (a→ b) ≤ b;
(2) If (b→ c)⊗ (a→ b)⊗ a is defined, then (b→ c)⊗ (a→ b) ≤ a→ c;
(3) If a⊗ b and a⊗ c are defined, then (a⊗ b) ∨ (a⊗ c) ≤ a⊗ (b ∨ c);
(4) If a ≤ b→ c, then b ≤ a→ c;
(5) a→ (b ∧ c) = (a→ b) ∧ (a→ c);
(6) (a ∨ b)→ c = (a→ c) ∧ (b→ c).

Proof.

(1) Because a→ b ≤ a→ b, a⊗ (a→ b) ≤ b.
(2) By (1), we know a ⊗ (a → b) ≤ b; b ⊗ (b → c) ≤ c. From b ⊗ (b → c) ≤ c,

we have b ≤ (b → c) → c. Thus, a ⊗ (a → b) ≤ b ≤ (b → c) → c. Further,
(b→ c)⊗ (a→ b)⊗ a ≤ c, then we get (b→ c)⊗ (a→ b) ≤ a→ c.

(3) If a⊗ b and a⊗ c are defined, then a⊗ (b∨ c) is defined. From b ≤ b∨ c, c ≤ b∨ c, we
have a⊗ b ≤ a⊗ (b ∨ c), a⊗ c ≤ a⊗ (b ∨ c). Hence, (a⊗ b) ∨ (a⊗ c) ≤ a⊗ (b ∨ c).

(4) Because b ⊗ (b → c) ≤ b ⊗ (b → c), then b ≤ (b → c) → (b ⊗ (b → c)). From
a ≤ b → c, we have (b → c) → (b⊗ (b → c)) ≤ a → (b⊗ (b → c)), and we know
b⊗ (b → c) ≤ c, so, a → (b⊗ (b → c)) ≤ a → c. Hence, b ≤ (b → c) → (b⊗ (b →
c)) ≤ a→ (b⊗ (b→ c)) ≤ a→ c, i.e., b ≤ a→ c.

(5) Because b ∧ c ≤ b, b ∧ c ≤ c, then a → (b ∧ c) ≤ a → b, a → (b ∧ c) ≤ a → c; hence,
a→ (b ∧ c) ≤ (a→ b) ∧ (a→ c). By Definition 12 (1) and Theorem 7 (1), a⊗ (a→ b),
a⊗ (a→ c) are defined and a⊗ (a→ b) ≤ b, a⊗ (a→ c) ≤ c, thus, by Definition 12
(2), a ⊗ ((a → b) ∧ (a → c)) is defined and a ⊗ ((a → b) ∧ (a → c)) ≤ b ∧ c, so,
(a→ b) ∧ (a→ c) ≤ a→ (b ∧ c). Hence, a→ (b ∧ c) = (a→ b) ∧ (a→ c).

(6) Because a ≤ a ∨ b, b ≤ a ∨ b, then (a ∨ b) → c ≤ a → c, (a ∨ b) → c ≤ b → c, thus,
(a ∨ b)→ c ≤ (a→ c) ∧ (b→ c). Then, suppose for any t ∈ L, t ≤ a→ c, t ≤ b→ c;
by Theorem 7 (4), a ≤ t → c, b ≤ t → c, thus, a ∨ b ≤ t → c, using Theorem 7
(4) again, t ≤ (a ∨ b) → c. If we make t = (a → c) ∧ (b → c), it is obviously that
t ≤ a → c, t ≤ b → c; then, t ≤ (a ∨ b) → c, i.e., (a → c) ∧ (b → c) ≤ (a ∨ b) → c.
Hence, (a ∨ b)→ c = (a→ c) ∧ (b→ c).

Example 3. Let L = {0, a, b, 1}. The Hasse-diagram of L is shown in Figure 1, and the operations
⊗ and→ are defined by Tables 5 and 6. Then, although L is an rPRL, it is not an srPRL, because
a⊗ (a→ 0) = a⊗ 0 is undefined.
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Table 5. The operation ⊗.

⊗ 0 a b 1

0 0
a a a
b b
1 0 a b 1

Table 6. The operation→.

→ 0 a b 1

0 1 1 1 1
a 0 1 b 1
b a a 1 1
1 0 a b 1

Example 4. Let L = {0, a, b, c, 1}. The Hasse-diagram of L is shown in Figure 3, and the
operations ⊗ and→ are defined by Tables 7 and 8. Then, L is both an rPRL and an srPRL.

Figure 3. Hasse diagram of lattice L.

Table 7. The operation ⊗.

⊗ 0 a b c 1

0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

Table 8. The operation→.

→ 0 a b c 1

0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

Next, we will provide a special regular partial residuated lattice: normal regular partial
residuated lattice, and discuss its related properties in connection with [13].

Definition 13. A pair (⊗,→) on a poset (P;≤) is a normal regular partial adjoint pair (nrPAP)
where ⊗ is a partial operation and→ is a full operation such that for all x, y, z ∈ L, if:
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(nrPAP1) the operation ⊗ is isotone, if x ≤ y and x ⊗ z is defined, then y ⊗ z is defined,
x⊗ z ≤ y⊗ z; if x ≤ y and z⊗ x is defined, then z⊗ y is defined and z⊗ x ≤ z⊗ y.

(nrPAP2) The operation→ is antitone in the first argument and isotone in the second argument, if
x ≤ y, then y→ z ≤ x → z, z→ x ≤ z→ y.

(nrPAP3) If x⊗ y is defined and x⊗ y ≤ z iff y ≤ x → z.

Definition 14. A partial algebra (L,∨,∧,⊗,→, 0, 1) is a normal regular partial residuated lattice
(nrPRL) where (L,∨,∧, 0, 1) is a bounded lattice, ⊗ is a partial operation, and→ is a full operation
such that for all x, y, z ∈ L:

(nrPRL1) if x⊗ y is defined, then y⊗ x is defined and x⊗ y = y⊗ x;
(nrPRL2) if y⊗ z, x⊗ (y⊗ z) are defined, then x⊗ y, (x⊗ y)⊗ z are defined and x⊗ (y⊗ z) =

(x⊗ y)⊗ z;
(nrPRL3) 1⊗ x is defined and 1⊗ x = x;
(nrPRL4) (⊗,→) is an nrPAP on L.

Theorem 8. Let (L;≤,⊗,→, 0, 1) be an nrPRL; then, it is a residuated lattice.

Proof. Through Theorem 4.18 in [13], we conclude that the above statement is true.

Theorem 9. Let L be a bounded lattice, � be a regular partial t-norm, and→� be an rPRI derived
from �. Then, (L,∨,∧,�,→�, 0, 1) is an nrPRL.

Proof. By Definitions 9, 13 and 14, we know that (L;≤,�,→�, 0, 1) is an nrPRL.

Corollary 1. Let L be a bounded lattice, � be a regular partial t-norm, and→� be an rPRI derived
from �. Then, (L,∨,∧,�,→�, 0, 1) is a residuated lattice.

Proof. The proof can be obtained from Theorem 8.

4. Commutative Quasiresiduated Lattices (cqRLs), Commutative Q-Residuated
Lattices (cQRLs) and rPRLs

This section mainly provides the relationship between regular partial residuated
lattices and commutative quasiresiduated lattices, commutative Q-residuated lattices, and
the partial residuated lattices mentioned in [9,12,13].

Theorem 10. Let Q = (Q,∨,∧,�,→, 0, 1) be a cQRL. If it satisfies (for any a, b, c ∈ Q) that
c ≤ a, c ≤ b and a ≤ b, then b→ c ≤ a→ c. Then, L(Q) := (Q,∨,∧,�,→, 0, 1) is a PRL.

Proof. Applying Definitions 3, 6 and 7, we can easily find that (PAP3), (PRL1), (PRL2) and
(PRL3) hold. By Theorem 2 (1), (PAP1) holds, while by Theorem 2 (2) and the content of the
above theorem, (PAP2) holds. Hence, L(Q) is a PRL.

Remark 1. We call the commutative Q-residuated lattice satisfying Theorem 10 a perfect commu-
tative Q-residuated lattice (PCQR).

Theorem 11. Let L = (L,∨,∧,→, 0, 1) be a PRL. If it satisfies (for any a, b, c ∈ L),

(1) If a ≤ b, then b→ a is defined;
(2) a⊗ b is defined iff a→ 0 ≤ b;
(3) (a→ 0)→ 0 = a.

Then Q(L) := (L,∨,∧,⊗,→, 0, 1) is a cQRL.

Proof. For any a, b, c ∈ L, by (2), a′ = a → 0 ≤ b ⇔ a⊗ b is defined. Hence, (Q1) holds.
From this and by (PRL1), (Q3) holds. By (3), a′′ = (a → 0)′ = (a → 0) → 0 = a, and if
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a ≤ b, by (PAP2), b→ 0 ≤ a→ 0⇔ b′ ≤ a′. This means (Q2) holds. By (1), (2) and (PAP3),
(Q4) holds.

Example 5. Let Q = {0, a, b, c, d, 1}. The Hasse-diagram of L is shown in Figure 4, the operations
�,→1 and→2 are defined by Tables 9–11.

Figure 4. Hasse diagram of lattice L.

Table 9. The operation �.

� 0 a b c d 1

0 0
a 0 a
b 0 b
c 0 c
d 0 d
1 0 a b c d 1

Table 10. The operation→1.

→1 0 a b c d 1

0 1 1 1 1 1 1
a b 1 b
b a 1
c d d 1
d c c c 1 1
1 0 a b c d 1

Table 11. The operation→2.

→2 0 a b c d 1

0 1
a b 1
b a 1 1
c d 1 d 1
d c c 1
1 0 a b c d 1

Then (Q,∨,∧,�,→1, 0, 1) is a cQRL, but it is not a PRL (because→1 is not antitone in first
argument: a ≤ 1, but it is not true that 1→ c ≤ a→ c, i.e., it does not satisfy Theorem 10), while
(Q,∨,∧,�,→2, 0, 1) is a cQRL and a PRL (i.e., it satisfies Theorems 10 and 11).

Theorem 12. Let C = (C,∨,∧,�,→, 0, 1) be a cqRL. If it satisfies (for any a, b, c ∈ C),

(1) If a′ ≤ b and a� b ≤ c, then a� b ≤ b ∧ c;
(2) If c ≤ a, c ≤ b and a ≤ b, then b→ c ≤ a→ c.

Then L(C) := (C;≤,�,→, 0, 1) is an rPRL.
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Proof. By Definitions 2, 10 and 11 we know that we only need to prove the following
conditions:

(1) For any a, b, c ∈ C, if a′ ≤ b and a � b ≤ c, then a � b ≤ c ⇔ a � b ≤ b ∧ c ⇔
(a ∨ b′)� b ≤ b ∧ c⇔ a ∨ b′ ≤ b→ c⇔ a ≤ b→ c.

(2) By Theorem 4.8 in [12] and Theorem 2, we can easily find that if a′ ≤ c, b′ ≤ c and
a ≤ b, then a� c ≤ b� c; if a ≤ c, b ≤ c and a ≤ b, then c→ a ≤ c→ b.

Hence, L(C) is an rPRL.

Example 6. Let Q = {0, a, b, c, d, 1}. The Hasse-diagram of L is shown in Figure 4, and the
operations � and→3 are defined by Tables 9 and 12. Then (Q,∨,∧,�,→3, 0, 1) is a cqRL, but
it is not an rPRL (because →3 is not antitone in first argument; a ≤ 1, but it is not true that
1→ c ≤ a→ c).

Table 12. The operation→3.

→3 0 a b c d 1

0 1 1 1 1 1 1
a b 1 b b b 1
b a a 1 a a 1
c d d d 1 d 1
d c c c c 1 1
1 0 a b c d 1

Example 7. Let Q = {0, a, b, 1}. The Hasse-diagram of L is shown in Figure 1, the operations �
and→ are defined by Tables 13 and 14. Then, (Q,∨,∧,�,→, 0, 1) is a cqRL and an rPRL.

Table 13. The operation �.

� 0 a b 1

0 0
a 0 a
b 0 b
1 0 a b 1

Table 14. The operation→.

→ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

5. Filters in Special Regular Partial Residuated Lattices (srPRLs)

In this section, we first define filters on regular partial residuated lattices, and then
define filters and congruence relations on special regular partial residuated lattices. Fur-
thermore, the filter theory of rPRL is established and its quotient structure is constructed.

Definition 15. Let (L,∨,∧,⊗,→, 0, 1) be an srPRL. A nonempty subset F ⊆ L is called a filter if:

(F1) 1 ∈ F;
(F2) if a ∈ F, b ∈ L and a ≤ b, then b ∈ F;
(F3) if a ∈ F, b ∈ F and a⊗ b is defined, then a⊗ b ∈ F.

A filter is called proper if F 6= L.

Example 8. Let L = {0, a, b, c, 1} be an srPRL in Example 4. Then, the proper filters in L are:
{1}, {b, 1}, {c, 1} and {a, b, c, 1}.
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Theorem 13. Let (L,∨,∧,⊗,→, 0, 1) be an srPRL. A subset F is a filter in L iff:

(1) 1 ∈ F;
(2) if a ∈ F, a→ b ∈ F, then b ∈ F.

Proof. (F2) + (F3) ⇒ (2): Because a → b ≤ a → b, we have a ⊗ (a → b) ≤ b, thus,
a⊗ (a→ b) ∈ F and then b ∈ F.

(2) ⇒ (F2) + (F3): (F2) is clearly established. We only need to prove (F3). Because
a⊗ b ≤ a⊗ b, we have b ≤ a → (a⊗ b), and b ∈ F; hence, a → (a⊗ b) ∈ F, and then
a⊗ b ∈ F.

Next, we consider the congruence relation on L, and further make the quotient struc-
ture L/∼F. For this purpose, we provide the following concept of a good filter.

Definition 16. Let (L,∨,∧,⊗,→, 0, 1) be an srPRL, where F is a filter in L. We call F good if it
satisfies (for any a, b, c ∈ L):

(g1) if a ∈ F, b ∈ F, then a ∧ b ∈ F;
(g2) if a⊗ b is defined, a→ (b→ c) ∈ F, then (a⊗ b)→ c ∈ F.

Proposition 1. Let (L,∨,∧,⊗,→, 0, 1) be an srPRL and let F be a good filter in L. Then, for all
a, b, c ∈ L:

(1) if a⊗ b is defined, (a⊗ b)→ c ∈ F, then a→ (b→ c) ∈ F;
(2) if a→ b ∈ F, then (c→ a)→ (c→ b) ∈ F;
(3) if a→ b ∈ F, then (b→ c)→ (a→ c) ∈ F;
(4) if a⊗ c, b⊗ c are defined and a→ b ∈ F, then (a⊗ c)→ (b⊗ c) ∈ F.

Proof.

(1) According to the hypothesis, we know (a⊗ b)⊗ ((a⊗ b)→ c) is defined, by (a⊗ b)→
c ≤ (a⊗ b)→ c, so ((a⊗ b)→ c)⊗ (a⊗ b) ≤ c, we have ((a⊗ b)→ c)⊗ a ≤ b→ c,
hence (a⊗ b)→ c ≤ a→ (b→ c). Because (a⊗ b)→ c ∈ F, a→ (b→ c) ∈ F.

(2) By Definition 12 (1), c⊗ (c → a) is defined, and by Theorem 7 (1), c⊗ (c → a) ≤ a,
then a → b ≤ (c ⊗ (c → a)) → b, and a → b ∈ F, thus, (c ⊗ (c → a)) → b ∈ F,
by Proposition 1 (1), (c→ a)→ (c→ b) ∈ F.

(3) By Definition 12 (1), b⊗ (b → c) is defined, and by Theorem 7 (1), b⊗ (b → c) ≤ c,
then b ≤ (b → c) → c, so, a → b ≤ a → ((b → c) → c), and a → b ∈ F, so,
a→ ((b→ c)→ c) ∈ F, by Proposition 1 (1), (b→ c)→ (a→ c) ∈ F.

(4) According to the hypothesis, we know a→ (c→ (b⊗ c)) is defined, and (b⊗ c)→
(b ⊗ c) ∈ F, then by Proposition 1 (1), b → (c → (b ⊗ c)) ∈ F, use Proposition 1
(2), (a → b) → [a → (c → (b⊗ c))] ∈ F, hence, a → (c → (b⊗ c)) ∈ F, applying
Definition 16 (g2), we obtain (a⊗ c)→ (b⊗ c) ∈ F.

Definition 17. Let (L,∨,∧,→, 0, 1) be an rPRL and let F be a filter in L. For all a, b ∈ L, define
a binary relation ∼F:

a ∼F b iff a→ b ∈ F and b→ a ∈ F

Theorem 14. Let (L,∨,∧,→, 0, 1) be an srPRL, F be a good filter in L, and ∼F be the binary
relation in Definition 17. Then, ∼F is an equivalence relation on L.

Proof.

(1) a→ a = 1 ∈ F, so a ∼F a.
(2) Applying Definition 17, ∼F is symmetric.
(3) If a ∼F b and b ∼F c, then for some a, b, c ∈ L. For one thing, a → b ∈ F, by

Proposition 1 (3), (b → c) → (a → c) ∈ F, so a → c ∈ F. For another, c → b ∈ F,
similarly, (b→ a)→ (c→ a) ∈ F, so c→ a ∈ F. Hence, a ∼F c.
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Example 9. Let L = {0, a, b, c, 1} be an srPRL in Example 4. Then, the proper filters in L are:{1},
{b, 1}, {c, 1} and {a, b, c, 1}; they are all good filters.

Definition 18. Let (L,∨,∧,⊗,→, 0, 1) be an srPRL. A binary relation ∼ is called a congruence
such that for all a, b, a1, b1 ∈ L, if:

(C1) ∼ is an equivalence relation;
(C2) if a ∼ a1, b ∼ b1, then (a ∨ b) ∼ (a1 ∨ b1);
(C3) if a ∼ a1, b ∼ b1, then (a ∧ b) ∼ (a1 ∧ b1);
(C4) if a ∼ a1, b ∼ b1, a⊗ b and a1 ⊗ b1 are defined, then a⊗ b ∼ a1 ⊗ b1;
(C5) if a ∼ a1, b ∼ b1, then (a→ b) ∼ (a1 → b1).

Theorem 15. Let (L,∨,∧,→, 0, 1) be an srPRL, F be a good filter in L, and ∼F be the binary
relation in Definition 17. Then, ∼F is a congruence relation on L.

Proof. By Theorem 14, ∼F is an equivalence relation.

(C2) Suppose that a ∼F a1, b ∼F b1; then, a→ a1 ∈ F, b→ b1 ∈ F. Applying a1 ≤ a1 ∨ b1,
b1 ≤ a1 ∨ b1, we have a → a1 ≤ a → (a1 ∨ b1), b → b1 ≤ b → (a1 ∨ b1). From
a → a1 ∈ F, b → b1 ∈ F, we have a → (a1 ∨ b1) ∈ F, b → (a1 ∨ b1) ∈ F. By
Definition 16 (g1), (a→ (a1 ∨ b1))∧ (b→ (a1 ∨ b1)) ∈ F, from this and Theorem 7 (6),
(a ∨ b) → (a1 ∨ b1) = (a → (a1 ∨ b1)) ∧ (b → (a1 ∨ b1)), so, (a ∨ b) → (a1 ∨ b1) ∈ F.
Similarly, we can prove that (a1 ∨ b1)→ (a ∨ b) ∈ F. Thus, (a ∨ b) ∼F (a1 ∨ b1).

(C3) Suppose that a ∼F a1, b ∼F b, then a → a1 ∈ F, b → b1 ∈ F. Applying a ∧ b ≤ a,
a ∧ b ≤ b, we have a→ a1 ≤ (a ∧ b)→ a1, b→ b1 ≤ (a ∧ b)→ b1. From a→ a1 ∈ F,
b → b1 ∈ F, we have (a ∧ b) → a1 ∈ F, (a ∧ b) → b1 ∈ F. By Definition 16 (g1),
((a ∧ b) → a1) ∧ ((a ∧ b) → b1) ∈ F. By Theorem 7 (5), ((a ∧ b) → a1) ∧ ((a ∧ b) →
b1) = (a ∧ b)→ (a1 ∧ b1). Thus, (a ∧ b)→ (a1 ∧ b1) ∈ F. Similarly, we can prove that
(a1 ∧ b1)→ (a ∧ b) ∈ F. Thus, (a ∧ b) ∼F (a1 ∧ b1).

(C4) Suppose that a ∼F a1, b ∼F b, a⊗ b and a1 ⊗ b are defined, and a→ a1 ∈ F, applying
Proposition 1 (4), we have (a ⊗ b) → (a1 ⊗ b) ∈ F. Similarly, we can prove that
(a1 ⊗ b)→ (a⊗ b) ∈ F. Thus, a⊗ b ∼F a1 ⊗ b. For the same reason, a1 ⊗ b ∼F a1 ⊗ b1.
In conclusion, a⊗ b ∼F a1 ⊗ b1.

(C5) From a ∼F a, b ∼F b1, and b → b1 ∈ F, applying Proposition 1 (2), (a → b) →
(a → b1) ∈ F, similarly, (a → b1) → (a → b) ∈ F. Hence, (a → b) ∼F (a → b1).
Similarly, applying Proposition 1 (3), we can obtain (a → b1) ∼F (a1 → b1). Thus,
(a→ b) ∼F (a1 → b1).

In the following content, [a]F represents the equivalence class of a for the equivalence
relation ∼F for any a ∈ L, and we denote the set of all equivalence classes as L/∼F. Next,
we construct the quotient structure of rPRLs.

Definition 19. Let (L,∨,∧,⊗,→, 0, 1) be an rPRL, F be a good filter, and ∼F be the congruence
relation in Theorem 15. Define the following binary relation and binary operations on L/∼F (for all
m, n ∈ L):

[m]F ≤ [n]F i f f [m]F → [n]F = [1]F (2)

[m]F ∨ [n]F := [m ∨ n]F (3)

[m]F ∧ [n]F := [m ∧ n]F (4)

[m]F ⊗ [n]F :=

{
[m⊗ n]F, ∀u ∈ [m]F, v ∈ [n]F and u⊗ v is de f ined
unde f ined, ∃u ∈ [m]F, v ∈ [n]F and u⊗ v is unde f ined

(5)

[m]F → [n]F := [m→ n]F (6)
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According to Theorem 15, it is easy to verify that the binary relation and binary
operations defined in Definition 19 are good.

Theorem 16. Let (L,∨,∧,⊗,→, 0, 1) be an rPRL and let F be a good filter. Then, (L/∼F,
∨,∧,⊗,→, [0]F, [1]F) is an rPRL.

Proof. Through the congruence relation defined in Definition 18, we know that it is rea-
sonable to define ≤ on L/∼F. Next, we prove that (L/∼F,∨,∧,⊗,→, [0]F, [1]F) is an rPRL.
First, we prove that ≤ is a partial order relation on L/∼F.

(1) Reflexivity is clearly established;
(2) If [m]F ≤ [n]F and [n]F ≤ [m]F, then [m]F → [n]F = [m → n]F = [1]F, so, 1 → (m →

n) = m → n ∈ F, [n]F → [m]F = [n → m]F = [1]F, so, 1 → (n → m) = n → m ∈ F.
Hence, [m]F = [n]F. Antisymmetry holds.

(3) If [m]F ≤ [n]F and [n]F ≤ [l]F, then [m]F → [n]F = [m → n]F = [1]F, [n]F → [l]F =
[n → l]F = [1]F. By (2), we know m → n ∈ F; for the same reason, n → l ∈ F.
Applying Proposition 1 (2), (m → n) → (m → l) ∈ F, thus, (m → l) ∈ F. Hence,
(m → l) → 1 = 1 ∈ F, and 1 → (m → l) = m → l ∈ F, that is, [m]F → [l]F = [m →
l]F = [1]F, hence, [m]F ≤ [l]F. Transitivity holds.

Secondly, we prove that (L/ ∼F,∨,∧, [0]F, [1]F) is a bounded lattice.
For any m, n ∈ L, m ∧ n ≤ m, n, then ([m]F ∧ [n]F) → [m]F = [(m ∧ n) → m]F = [1]F,

([m]F ∧ [n]F) → [n]F = [(m ∧ n) → n]F = [1]F, thus, [m]F ∧ [n]F ≤ [m]F, [n]F. If [a]F ≤
[m]F, [n]F, we have [a]F → [m]F = [a → m]F = [1]F, [a]F → [n]F = [a → n]F = [1]F.
That is, a → m ∈ F, a → n ∈ F, then, by Definition 16 (g1), (a → m) ∧ (a → n) ∈ F.
By Theorem 7 (5), a → (m ∧ n) = (a → m) ∧ (a → n). Hence, a → (m ∧ n) ∈ F,
then we have [a]F → [m ∧ n]F = [a → (m ∧ n)]F = [1]F, i.e., [a]F ≤ [m ∧ n]F. Hence,
[m ∧ n]F = [m]F ∧ [n]F.

For any m, n ∈ L, m, n ≤ (m∨ n), then [m]F → ([m]F ∨ [n]F) = [m→ (m∨ n)]F = [1]F,
[n]F → ([m]F ∨ [n]F) = [n → (m ∨ n)]F = [1]F, so, [m]F, [n]F ≤ [m]F ∨ [n]F. If [m]F, [n]F ≤
[b]F, we have [m]F → [b]F = [m → b]F = [1]F, [n]F → [b]F = [n → b]F = [1]F. That
is, m → b ∈ F, n → b ∈ F, then, by Definition 16 (g1), (m → b) ∧ (n → b) ∈ F. By
Theorem 7 (6), (m ∨ n)→ b = (m→ b) ∧ (n→ b). Hence, (m ∨ n)→ b ∈ F, then we have
[m ∨ n]F → [b]F = [(m ∨ n)→ b]F = [1]F, i.e., [m ∨ n]F ≤ [b]F. So, [m ∨ n]F = [m]F ∨ [n]F.

Finally, according to [13], we can find that (rPRL1), (rPRL2), (rPRL3) and (rPAP1) are
true. Next, we just prove that (rPAP2) and (rPAP3) are true:

(rPAP2) For any [m]F, [n]F, [l]F ∈ L/ ∼F. By Definition 19, we have [m]F ≤ [n]F, then
[m]F → [n]F = [m → n]F = [1]F, i.e., m → n ∈ F. For the first variable, [n]F → [l]F =
[n → l]F, [m]F → [l]F = [m → l]F, applying Proposition 1 (3), we know (n → l) →
(m → l) ∈ F = [1]F, then, [(n → l) → (m → l)]F = [n → l]F → [m → l]F = [1]F, i.e.,
[n → l]F ≤ [m → l]F. For the second variable, [l]F → [m]F = [l → m]F, [l]F → [n]F =
[l → n]F, applying Proposition 1 (2), we have (l → m) → (l → n) ∈ F = [1]F, then,
[(l → m)→ (l → n)]F = [l → m]F → [l → n]F = [1]F, i.e., [l → m]F ≤ [l → n]F.

(rPAP3) For any [m]F, [n]F, [l]F ∈ L/ ∼F. By Definition 19, if [m]F ⊗ [n]F is defined,
then: (⇒) when [m]F ⊗ [n]F ≤ [l]F,

(1) If ∀u ∈ [m]F, v ∈ [n]F and u⊗ v is defined, then [m]F ⊗ [n]F = [m⊗ n]F. [m]F ⊗ [n]F ≤
[l]F ⇔ [m⊗ n]F ≤ [l]F ⇔ [(m⊗ n) → l]F = [1]F, i.e., (m⊗ n) → l ∈ F, applying
Proposition 1 (1), we have n→ (m→ l) ∈ F = [1]F, further, [n→ (m→ l)]F = [1]F,
and [n]F → [m→ l]F = [1]F ⇔ [n]F ≤ [m→ l]F ⇔ [n]F ≤ [m]F → [l]F.

(2) Suppose [n]F = [1]F, [m]F ⊗ [n]F = [m]F. Thus, we have [m]F ⊗ [n]F ≤ [l]F ⇔ [m]F ≤
[l]F ⇔ [m → l]F = [1]F, and we can obtain [1]F ≤ [m → l]F ⇔ [n]F ≤ [m → l]F ⇔
[n]F ≤ [m]F → [l]F.

(⇐) When [n]F ≤ [m]F → [l]F, we know [n]F ≤ [m→ l]F ⇔ [n]F → [m→ l]F = [1]F,
hence, n → (m → l) ∈ F = [1]F, applying Definition 16 (g2), we have (n⊗m) → l ∈ F,
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i.e., (m⊗ n) → l ∈ F = [1]F, thus, [(m⊗ n) → l]F = [1]F ⇔ [m⊗ n]F ≤ [l]F ⇔ [m]F ⊗
[n]F ≤ [l]F.

Therefore, (L/ ∼F,∨,∧,⊗,→, [0]F, [1]F) is an rPRL.

Example 10. Let L = {0, a, b, c, 1}, (L,∨,∧,⊗,→, 0, 1) be an srPRL in Example 4. L/ ∼F=
{{0}, {a, b}, {c, 1}}, where F is a good filter and F = {c, 1}. The Hasse-diagram of L/∼F is
shown in Figure 5, and the operations � and→ are defined by Tables 15 and 16. Then, L/∼F is an
rPRL.

Figure 5. Hasse diagram of lattice L/∼F.

Table 15. The operation ⊗ on L/∼F.

⊗ [0]F [a]F [1]F

[0]F [0]F [0]F
[a]F [0]F [a]F [a]F
[1]F [0]F [a]F [1]F

Table 16. The operation→ on L/∼F.

→ [0]F [a]F [1]F

[0]F [1]F [1]F [1]F
[a]F [0]F [1]F [1]F
[1]F [0]F [a]F [1]F

6. Conclusions

By constraining the implication operation in partial residuated lattices, we obtained
regular partial residuated lattices and performed a series of tests on them. First, the
regular partial residuated implication was defined, and the relationship between rPRI
and PFI is revealed by Theorem 3. Second, according to the concept of regular partial
residuated lattices, the properties were studied. Then, from Theorems 10 and 11, we
obtained the transformation relationship between a commutative Q-residuated lattice and
partial residuated lattice, and Theorem 12 shows the condition in which a commutative
quasiresiduated lattice becomes a regular partial residuated lattice. This can be intuitively
displayed with Figure 6.
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Figure 6. Relationship between some algebraic structures.

What we want to explain here is the following: if the implication in PCQR is a full
operation, we call it rPCQR.

(*) represents that it is an rPCQR and that the commutative quasiresiduated lattice
satisfies Theorem 12 (1) (Example 7).

Finally, after the concept of special regular partial residuated lattices is obtained, filters
and good filters are defined, the quotient structure theory is provided by Definition 19, and
it is proven that it is a regular partial residuated lattice using Theorem 16.

In the future, we will continue to study partial residuated lattices and their special
subclasses, and reveal the internal relationship between partial residuated lattices (regular
partial residuated lattices) and other logical algebras [21–23]. In addition, we will study
fuzzy reasoning and fuzzy rough sets based on partial residuated lattices, as well as other
applications [24–26].
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