Exponential Synchronization of Hyperbolic Complex Spatio-Temporal Networks with Multi-Weights
Abstract
:1. Introduction
2. Problem Formulation
3. Synchronization of HPDECSTNs with a Single Weight
4. Synchronization of HPDECSTNs with Multi-Weights
5. Numerical Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Che, W.W.; Yu, H.; Li, J.Y. Adaptive pinning synchronization of complex networks with negative weights and its application in traffic road network. Int. J. Control. Autom. Syst. 2018, 16, 782–790. [Google Scholar] [CrossRef]
- Rodriguez, M.; Fathy, H.K. Distributed Kuramoto self-synchronization of vehicle speed trajectories in traffic networks. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6786–6796. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, J.; Wang, G.; Wu, Z.G. Dynamic triggering mechanisms for distributed adaptive synchronization control and its application to circuit systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2246–2256. [Google Scholar] [CrossRef]
- Sheng, S.; Zhang, X.; Lu, G. Finite-time outer-synchronization for complex networks with Markov jump topology via hybrid control and its application to image encryption. J. Frankl. Inst. 2018, 355, 6493–6519. [Google Scholar] [CrossRef]
- Moon, S.; Baik, J.J.; Seo, J.M. Chaos synchronization in generalized Lorenz systems and an application to image encryption. Commun. Nonlinear Sci. Numer. Simul. 2021, 96, 105708. [Google Scholar] [CrossRef]
- Tan, X.; Xiang, C.; Cao, J.; Xu, W.; Wen, G.; Rutkowski, L. Synchronization of neural networks via periodic self-triggered impulsive control and its application in image encryption. IEEE Trans. Cybern. 2021. [Google Scholar] [CrossRef]
- Chowdhury, D.D. Synchronization for smart grid infrastructure. In Next Gen Network Synchronization; Springer: Berlin/Heidelberg, Germany, 2021; pp. 181–207. [Google Scholar]
- Behinfaraz, R.; Ghaemi, S.; Khanmohammadi, S.; Badamchizadeh, M.A. Time-varying parameters identification and synchronization of switching complex networks using the adaptive fuzzy-impulsive control with an application to secure communication. Asian J. Control 2022, 24, 377–387. [Google Scholar] [CrossRef]
- Yang, T.; Chua, L.O. Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int. J. Bifurc. Chaos 1997, 7, 645–664. [Google Scholar] [CrossRef]
- Tan, X.; Cao, M.; Cao, J.; Xu, W.; Luo, Y. Event-triggered synchronization of multiagent systems with partial input saturation. IEEE Trans. Control Netw. Syst. 2021, 8, 1406–1416. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, H.; Wang, H. Partial differential equation modeling of rumor propagation in complex networks with higher order of organization. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 053106. [Google Scholar] [CrossRef]
- Li, J.F.; Jahanshahi, H.; Kacar, S.; Chu, Y.M.; Gómez-Aguilar, J.; Alotaibi, N.D.; Alharbi, K.H. On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control. Chaos Solitons Fractals 2021, 145, 110681. [Google Scholar] [CrossRef]
- Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J. Synchronization approach to analysis of biological systems. In The Random and Fluctuating World: Celebrating Two Decades of Fluctuation and Noise Letters; World Scientific: Singapore, 2022; pp. 335–344. [Google Scholar]
- Yang, S.; Hu, C.; Yu, J.; Jiang, H. Finite-time cluster synchronization in complex-variable networks with fractional-order and nonlinear coupling. Neural Netw. 2021, 135, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lu, J.; Jiang, B.; Zhong, J. Network synchronization under distributed delayed impulsive control: Average delayed impulsive weight approach. Nonlinear Anal. Hybrid Syst. 2022, 44, 101148. [Google Scholar] [CrossRef]
- Chai, L.; Liu, J.; Chen, G.; Zhao, X. Dynamics and synchronization of a complex-valued star network. Sci. China Technol. Sci. 2021, 64, 2729–2743. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, X.; Pan, L.; Feng, Y.; Cao, J. Quasi-synchronization of delayed stochastic multiplex networks via impulsive pinning control. IEEE Trans. Syst. Man Cybern. Syst. 2021. [Google Scholar] [CrossRef]
- Ding, X.; Cao, J.; Alsaadi, F.E. Pinning synchronization of fractional-order complex networks with adaptive coupling weights. Int. J. Adapt. Control Signal Process. 2019, 33, 1478–1490. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Wang, J.W.; Li, H.X. Backstepping-based distributed abnormality localization for linear parabolic distributed parameter systems. Automatica 2022, 135, 109930. [Google Scholar] [CrossRef]
- Wang, J.W.; Liu, Y.Q.; Sun, C.Y. Pointwise exponential stabilization of a linear parabolic PDE system using non-collocated pointwise observation. Automatica 2018, 93, 197–210. [Google Scholar] [CrossRef]
- Wang, J.W.; Wang, J.M. Mixed H2/H∞ sampled-data output feedback control design for a semi-linear parabolic PDE in the sense of spatial L∞ norm. Automatica 2019, 103, 282–293. [Google Scholar] [CrossRef]
- Ferrari-Trecate, G.; Buffa, A.; Gati, M. Analysis of coordination in multi-agent systems through partial difference equations. IEEE Trans. Autom. Control 2006, 51, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Chen, B.S. Synchronization of partial differential systems via diffusion coupling. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2655–2668. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, X.; Lam, H.K.; Tsai, S.H. Synchronization analysis for nonlinear complex networks with reaction-diffusion terms using fuzzy-model-based approach. IEEE Trans. Fuzzy Syst. 2020, 29, 1350–1362. [Google Scholar] [CrossRef]
- Luo, Y.; Yao, Y.; Cheng, Z.; Xiao, X.; Liu, H. Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization. Phys. A Stat. Mech. Its Appl. 2021, 562, 125219. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, C.; Yu, J.; Jiang, H.; Wen, S. Synchronization of fractional-order spatiotemporal complex networks with boundary communication. Neurocomputing 2021, 450, 197–207. [Google Scholar] [CrossRef]
- Zheng, B.; Hu, C.; Yu, J.; Jiang, H. Synchronization analysis for delayed spatio-temporal neural networks with fractional-order. Neurocomputing 2021, 441, 226–236. [Google Scholar] [CrossRef]
- Shen, H.; Wang, X.; Wang, J.; Cao, J.; Rutkowski, L. Robust composite H∞ synchronization of Markov jump reaction-diffusion neural networks via a disturbance observer-based method. IEEE Trans. Cybern. 2021. [Google Scholar] [CrossRef]
- Kabalan, A.; Ferrante, F.; Casadei, G.; Cristofaro, A.; Prieur, C. Leader-follower synchronization of a network of boundary-controlled parabolic equations with in-domain coupling. IEEE Control Syst. Lett. 2021, 6, 2006–2011. [Google Scholar] [CrossRef]
- Schneider, K.A.; Gallardo, J.M.; Escalante, C. Efficient GPU implementation of multidimensional incomplete Riemann solvers for hyperbolic nonconservative systems: Applications to shallow water systems with topography and dry areas. J. Sci. Comput. 2022, 92, 1–42. [Google Scholar] [CrossRef]
- Kitsos, C.; Besancon, G.; Prieur, C. High-gain observer design for a class of quasi-linear integro-differential hyperbolic systems: Application to an epidemic model. IEEE Trans. Autom. Control 2021, 67, 292–303. [Google Scholar] [CrossRef]
- Rein, M.; Mohring, J.; Damm, T.; Klar, A. Model order reduction of hyperbolic systems focusing on district heating networks. J. Frankl. Inst. 2021, 358, 7674–7697. [Google Scholar] [CrossRef]
- Dostál, J.; Havlena, V. Mixed mesh finite volume method for 1D hyperbolic systems with application to plug-flow heat exchangers. Mathematics 2021, 9, 2609. [Google Scholar] [CrossRef]
- Aksikas, I. Optimal control and duality-based observer design for a hyperbolic PDEs system with application to fixed-bed reactor. Int. J. Syst. Sci. 2021, 52, 2493–2504. [Google Scholar] [CrossRef]
- Chueshov, I. Invariant manifolds and nonlinear master-slave synchronization in coupled systems. Appl. Anal. 2007, 86, 269–286. [Google Scholar] [CrossRef]
- Li, D.; Rao, B. Boundary Synchronization for Hyperbolic Systems; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Li, T.; Lu, X. Exact boundary synchronization for a kind of first order hyperbolic system. ESAIM Control. Optim. Calc. Var. 2022, 28, 34. [Google Scholar] [CrossRef]
- Lu, X. Local exact boundary synchronization for a kind of first order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 2019, 40, 79–96. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhao, L.H. PD and PI Control for passivity and synchronization of coupled neural networks with multi-weights. IEEE Trans. Netw. Sci. Eng. 2021, 8, 790–802. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, H.N.; Huang, T.; Ren, S.Y. Pinning Synchronization of CDNs with Multi-weights. In Analysis and Control of Output Synchronization for Complex Dynamical Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 145–174. [Google Scholar]
- Jia, Y.; Wu, H.; Cao, J. Non-fragile robust finite-time synchronization for fractional-order discontinuous complex networks with multi-weights and uncertain couplings under asynchronous switching. Appl. Math. Comput. 2020, 370, 124929. [Google Scholar] [CrossRef]
- Li, X.; Wu, H.; Cao, J. Synchronization in finite time for variable-order fractional complex dynamic networks with multi-weights and discontinuous nodes based on sliding mode control strategy. Neural Netw. 2021, 139, 335–347. [Google Scholar] [CrossRef]
- Sakthivel, R.; Sakthivel, R.; Kwon, O.M.; Selvaraj, P.; Anthoni, S.M. Observer-based robust synchronization of fractional-order multi-weighted complex dynamical networks. Nonlinear Dyn. 2019, 98, 1231–1246. [Google Scholar] [CrossRef]
- Bahuguna, D.; Sakthivel, R.; Chadha, A. Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay. Stoch. Anal. Appl. 2017, 35, 63–88. [Google Scholar] [CrossRef]
- Long, H.V.; Thao, H.T.P. Hyers-Ulam stability for nonlocal fractional partial integro-differential equation with uncertainty. J. Intell. Fuzzy Syst. 2018, 34, 233–244. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Yang, C. Exponential Synchronization of Hyperbolic Complex Spatio-Temporal Networks with Multi-Weights. Mathematics 2022, 10, 2451. https://doi.org/10.3390/math10142451
Ma H, Yang C. Exponential Synchronization of Hyperbolic Complex Spatio-Temporal Networks with Multi-Weights. Mathematics. 2022; 10(14):2451. https://doi.org/10.3390/math10142451
Chicago/Turabian StyleMa, Hongkun, and Chengdong Yang. 2022. "Exponential Synchronization of Hyperbolic Complex Spatio-Temporal Networks with Multi-Weights" Mathematics 10, no. 14: 2451. https://doi.org/10.3390/math10142451
APA StyleMa, H., & Yang, C. (2022). Exponential Synchronization of Hyperbolic Complex Spatio-Temporal Networks with Multi-Weights. Mathematics, 10(14), 2451. https://doi.org/10.3390/math10142451