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Abstract

:

This paper deals with the leader-following synchronization of first-order, semi-linear, complex spatio-temporal networks. Firstly, two sorts of complex spatio-temporal networks based on hyperbolic partial differential equations (CSTNHPDEs) are built: one with a single weight and the other with multi-weights. Then, a new distributed controller is designed to address CSTNHPDE with a single weight. Sufficient conditions for the synchronization and exponential synchronization of CSTNHPDE are presented by showing the gain ranges. Thirdly, the proposed distributed controller addresses of CSTNHPDE with multi-weights, and gain ranges are obtained for synchronization and exponential synchronization, respectively. Finally, two examples show the effectiveness and good performance of the control methods.
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1. Introduction


The synchronization of complex networks, a group dynamical behavior, aims to drive nodes to perform a designated task synchronously. It has been applied to many engineering aspects, such as intelligent traffic [1,2], circuit systems [3], image processing [4,5,6], smart grids [7], secure communication [8,9], multi-agent systems [10], rumor propagation [11], data security [12], biological systems [13], etc.



A number of important works discuss the synchronization of complex networks [14,15,16,17,18]. This literature shows node dynamics depending only on time. In practice, the dynamics of all processes are spatio-temporal [19,20,21]. As a consequence, it is necessary to study complex spatio-temporal networks (CSTNs), which is with spatio-temporal characteristics [22]. Wu et al. studied the synchronization of CSTNs with space-independent coefficients and space-dependent coefficients, with or without spatio-temporal disturbance [23]. Huang et al. proposed a fuzzy synchronization method for nonlinear CSTNs with reaction—diffusion terms [24]. Luo et al. studied event-triggered control for the finite-time synchronization of reaction–diffusion CSTNs [25]. Yang et al. studied the boundary control of fractional-order CSTNs [26]. Zheng et al. researched synchronization analysis for fractional-order CSTNs with time delays [27]. Shen et al. studied the   H ∞   synchronization of Markov jump CSTNs using an observer-based method [28]. Kabalan et al. studied boundary control for the synchronization of leader–follower CSTNs with in-domain coupling [29].



Most references are modeled by parabolic PDEs, while there are few methods studying hyperbolic PDEs. There are many hyperbolic PDEs systems in practice, including shallow-water systems [30], epidemic models [31], district heating networks [32], heat exchangers [33], and reactor models [34]. Therefore, it is important to study the synchronization of hyperbolic PDEs-based CSTNs (HPDECSTNs).



Chueshov presented invariant manifolds and nonlinear master–slave synchronization hyperbolic and parabolic CSTNs [35]. Li studied the synchronization, exact synchronization and approximate synchronization of HPDECSTNs [36]. Li and Lu researched exact-boundary synchronization for a kind of first-order hyperbolic system [37]. Lu proposed a local exact-boundary synchronization for a kind of first-order, quasi-linear hyperbolic system [38]. However, technical difficulties remain regarding the synchronization of a semi-linear, first-order HPDECSTNs when the convection coefficient is symmetric semi-negative definite or semi-positive definite, which motivate this paper. Multi-weights exist in many physical networks [39,40,41,42,43]. As a result, HPDECSTN with multi-weights is important and remains challenging.



This paper mainly studies the leader-following synchronization control of a semi-linear HPDECSTN with two sorts of boundary conditions in a one-dimensional space. This paper’s contributions are as follows: (1) Two sorts of HPDECSTN models are built, one with a single weight and the other with multi-weights. (2) A new distributed controller is designed to address CSTNHPDE with a single weight. Sufficient conditions for the synchronization and exponential synchronization of CSTNHPDE are presented by providing the gain ranges. (3) The proposed distributed controller addresses CSTNHPDE with multi-weights and gain ranges, obtained for synchronization and exponential synchronization, respectively. (4) Two examples show the effectiveness and good performance of the control methods.



Notations: Let   I N   denote the identity matrix with Nth order,   P > 0   ( P < 0 )   denote symmetric positive definite (negative definite), and    λ  max ( min )    ( · )    denote the maximum (minimum) eigenvalue.




2. Problem Formulation


This paper first studies a class of leader-following, semi-linear, hyperbolic PDE-based, complex spatio-temporal networks (HPDECSTNs) with a single weight. The following node is assumed to be


           ∂  z i   ( ζ , t )    ∂ t   =   ∂  z i   ( ζ , t )    ∂ ζ   + A  z i   ( ζ , t )  + B f  (  z i   ( ζ , t )  )  + c  ∑  j = 1  N    g  i j   Γ  z j   ( ζ , t )   +  u i   ( ζ , t )  ,           z i   ( L , t )  = 0 ,           z i   ( ζ , 0 )  =  z i 0   ( ζ )  , i ∈  { 1 , 2 , ⋯ , N }  ,      



(1)




where   ( ζ , t ) ∈ [ 0 , L ] × [ 0 , ∞ )   are space and time, respectively.    z i   ( ζ , t )    and    u i   ( ζ , t )  ∈  R n    are the state and control input, respectively.   0 < L ∈ R   is a constant.   A ∈  R  n × n   , B ∈  R  n × n    , and   Γ ∈  R  n × n     are constant matrices.   f ( · )   is a nonlinear function. The coupling strength   c > 0   is a constant.   G =   (  g  i j   )   N × N     satisfies    g  i i   = −   ∑  j = 1 , j ≠ i  N    g  i j    .



The leader node is assumed to be


           ∂ s ( ζ , t )   ∂ t   =   ∂ s ( ζ , t )   ∂ ζ   + A s  ( ζ , t )  + B f  ( s  ( ζ , t )  )  ,          s ( L , t ) = 0 ,          s  ( ζ , 0 )  =  s 0   ( ζ )  ,      



(2)




where   s  ( ζ , t )  ∈  R n    is the state.



This paper aims to study a distributed controller    u i   ( ζ , t )   , driving HPDECSTN (1) to the leader node (2), designed as


   u i   ( ζ , t )  =  d i   ( s  ( ζ , t )  −  z i   ( ζ , t )  )  ,  



(3)




where   d i   are the control gains to be determined.



Definition 1.

HPDECSTN (1) reaches synchronization, if


    lim  t → ∞    | |   z i   ( ζ , t )  − s  ( ζ , t )   | |  = 0 , i ∈  { 1 , 2 , ⋯ , N }  .   



(4)









Definition 2.

Given   ρ > 0  , HPDECSTN (1) reaches exponential synchronization, if there is a real number   σ > 0   such that


    | |   z i   ( ζ , t )  −  s  ( ζ , t )  | |  ≤  σ exp  ( − 2 ρ t )  | |   z i 0   ( ζ )  −  s 0   ( ζ )   | |  , i ∈  { 1 , 2 , ⋯ , N }  .   



(5)









Assumption 1.

For any    ζ 1  ,  ζ 2  ∈ R  , then   0 < X ∈ R ,   satisfying


       | f  (  ζ 1  )  − f  (  ζ 2  )  |  ≤ X  |  ζ 1  −  ζ 2  |  .      



(6)










3. Synchronization of HPDECSTNs with a Single Weight


Let the synchronization error be    e i   ( ζ , t )     =  Δ   z i   ( ζ , t )  − s  ( ζ , t )   . The error system of between HPDECSTN (1) and (2)) yields


           ∂ e ( ζ , t )   ∂ t   =   ∂ e ( ζ , t )   ∂ ζ   +  (  I N  ⊗ A )  e  ( ζ , t )  +  (  I N  ⊗ B )  F  ( e  ( ζ , t )  )  +  ( G ⊗ Γ )  e  ( ζ , t )  + u  ( ζ , t )  ,          e ( L , t ) = 0 ,          e  ( ζ , 0 )  =  e 0   ( ζ )  ,      



(7)




where     e  i 0   ( ζ )     =  Δ   z i 0   ( ζ )  −  s 0   ( ζ )   ,   u  ( t )     =  Δ    [   u 1 T   ( t )   ,   u 2 T   ( t )   , ⋯ ,    u N T   ( t )   ]  T   ,   e  ( ζ , t )     =  Δ    [   e 1 T   ( ζ , t )   ,   e 2 T   ( ζ , t )   , ⋯ ,   e N T   ( ζ , t )   ]  T   ,   F  (  e i   ( ζ , t )  )     =  Δ  f  (  z i   ( ζ , t )  )  − f  ( s  ( ζ , t )  )   , and   F  ( e  ( ζ , t )  )     =  Δ    [  F T   (  e 1   ( ζ , t )  )  ,  F T   (  e 2   ( ζ , t )  )  , ⋯ ,  F T   (  e N   ( ζ , t )  )  ]  T   .



Theorem 1.

Suppose Assumption 1 holds. HPDECSTN (1) reaches synchronization under the controller (2), if


    d i  >  λ max   ( Ψ )  ,   



(8)




where   Ψ ≜  I N  ⊗   A +  A T   2  + 0.5  I N  ⊗ B  B T  + 0.5  χ 2   I  N n   + 0.5 c  ( G ⊗ Γ +  G T  ⊗  Γ T  )   .





Proof. 

Choose the Lyapunov functional candidate as follows:


     V ( t ) =     0.5  ∫  0  L    e T   ( ζ , t )  e  ( ζ , t )  d ζ  .     



(9)







One has


      V ˙   ( t )  =      ∫  0  L    e T   ( ζ , t )    ∂ e ( ζ , t )   ∂ t   d ζ       =     ∫  0  L    e T   ( ζ , t )    ∂ e ( ζ , t )   ∂ ζ   d ζ           +  ∫  0  L    e T   ( ζ , t )   (  I N  ⊗ A + c G ⊗ Γ )  e  ( ζ , t )  d ζ           +  ∫ 0 L    e T   ( ζ , t )  F  ( e  ( ζ , t )  )  d ζ  −  ∫  0  L    e T   ( ζ , t )   ( D ⊗  I n  )  e  ( ζ , t )  d ζ  ,     



(10)




where   D    =  Δ  d i a g {  d 1  ,  d 2  , ⋯ ,  d N  }  .



By integrating by parts,


         ∫  0  L    e T   ( ζ , t )    ∂ e ( ζ , t )   ∂ ζ   d ζ       =     e T     ( ζ , t )  e  ( ζ , t )  |   ζ = 0   ζ = L            −  ∫  0  L     ∂  e T   ( ζ , t )    ∂ ζ   e  ( ζ , t )        =    −  e T   ( 0 , t )  e  ( 0 , t )           −  ∫  0  L    e T   ( ζ , t )    ∂ e ( ζ , t )   ∂ ζ   d ζ       ≤    −  ∫  0  L    e T   ( ζ , t )    ∂ e ( ζ , t )   ∂ ζ   d ζ  ,     



(11)




which implies


   ∫  0  L    e T   ( ζ , t )    ∂ e ( ζ , t )   ∂ ζ   d ζ  ≤ − 0.5  e T   ( 0 , t )  e  ( 0 , t )  .  



(12)







Under Assumption 1,


         ∫ 0 L     e T   ( ζ , t )  B F  ( e  ( ζ , t )  )   d ζ       ≤    0.5  ∫ 0 L     e T   ( ζ , t )  B  B T  e  ( ζ , t )   d ζ  + 0.5  ∫ 0 L     F T   ( ζ , t )  F  ( ζ , t )   d ζ       =     ∫ 0 L     e T   ( ζ , t )   ( 0.5  I N  ⊗ B  B T  + 0.5  χ 2   I  N n   )  e  ( ζ , t )   d ζ  .     



(13)







The substitution of (11)–(13) into (10) yields,


      V ˙   ( t )  ⩽      ∫ 0 L    e T   ( ζ , t )   ( Ψ − D ⊗  I n  )  e  ( ζ , t )  d ζ  ,     



(14)




where   Ψ ≜  I N  ⊗   A +  A T   2  + 0.5  I N  ⊗ B  B T  + 0.5  χ 2   I  N n   + c G ⊗ Γ   and   D = d i a g {  d 1  ,  d 2  , ⋯ ,  d N  }  .



It is obvious that (8) implies


  Ψ − D ⊗  I n  < 0 .  



(15)







The substitution of (15) into (14) yields,    V ˙   ( t )  ⩽ −  λ min   ( D ⊗  I n  − Ψ )   | | e  ( · , t )  | |   , for all non-zero   e ( ζ , t )  , implying synchronization of HPDECSTN (1). □





Theorem 2.

Suppose Assumption 1 holds. Given   ρ > 0  , HPDECSTN (1) reaches exponential synchronization under the controller (2), if


    d i  >  λ max   ( Ψ + ρ  I  N n   )  ,   



(16)




where   Ψ ≜  I N  ⊗   A +  A T   2  + 0.5  I N  ⊗ B  B T  + 0.5  χ 2   I  N n   + 0.5 c  ( G ⊗ Γ +  G T  ⊗  Γ T  )   .





Proof. 



         V ˙   ( t )  + 2 ρ V  ( t )        ≤      ∫ 0 L    e T   ( ζ , t )   ( Ψ + ρ  I  N n   − D ⊗  I n  )  e  ( ζ , t )  d ζ       ≤    0 ,     



(17)




which implies


  V ( t ) ≤ V ( 0 ) exp  ( − 2 ρ t )  .  



(18)







It follows from (18) that


   | |   e i   ( ζ , t )    | |  2 2  ≤ σ exp  ( − 2 ρ t )  ,  



(19)




where   σ =  | |   e i 0   ( ζ )    | |  2 2   . Therefore, exponential synchronization is obtained. □






4. Synchronization of HPDECSTNs with Multi-Weights


This section studies a class of semi-linear HPDECSTNs with multi-weights, where the following node is as follows:


           ∂  z i   ( ζ , t )    ∂ t   =   ∂  z i   ( ζ , t )    ∂ ζ   + A  z i   ( ζ , t )  + B f  (  z i   ( ζ , t )  )  +  c 1   ∑  j = 1  N    g  i j  1   Γ 1   z j   ( ζ , t )                            +  c 2   ∑  j = 1  N    g  i j  2   Γ 2   z j   ( ζ , t )   + ⋯ +  c l   ∑  j = 1  N    g  i j  l   Γ l   z j   ( ζ , t )   +  u i   ( ζ , t )  ,           z i   ( 0 , t )  = 0 ,           z i   ( ζ , t )  =  z i 0   ( ζ , t )  ,      



(20)




where    Γ 1  ∈  R  n × n    ,    Γ 2  ∈  R  n × n   , ⋯ ,  Γ l  ∈  R  n × n     are constant matrices.    G k  =   (  g  i j  k  )   N × N     satisfies    g  i i  k  = −   ∑  j = 1 , j ≠ i  N    g  i j  k   .



The error system of between HPDECSTN (20) and (2) with multi-weights can be obtained as


           ∂ e ( ζ , t )   ∂ t   = Θ   ∂ e ( ζ , t )   ∂ ζ   +  (  I N  ⊗ A )  e  ( ζ , t )  + F  ( e  ( ζ , t )  )  +  c 1   (  G 1  ⊗  Γ 1  )  e  ( ζ , t )                           +  c 2   (  G 2  ⊗  Γ 2  )  e  ( ζ , t )  + ⋯ +  c l   (  G l  ⊗  Γ l  )  e  ( ζ , t )  +  u i   ( ζ , t )  ,            ∂ e ( 0 , t )   ∂ ζ   = 0 ,          e  ( ζ , 0 )  =  e 0   ( ζ )  .      



(21)







Theorem 3.

Suppose that Assumption 1 holds. HPDECSTN (20) reaches synchronization under the controller (2), if


    d i  >  λ max   ( Ξ )  ,   



(22)




where   Ξ ≜  I N  ⊗   A +  A T   2  + 0.5  I N  ⊗ B  B T  + 0.5  χ 2   I  N n   + 0.5  c 1   (  G 1  ⊗  Γ 1  +  G 1 T  ⊗  Γ 1 T  )  + 0.5  c 2   (  G 2  ⊗  Γ 2  +  G 2 T  ⊗  Γ 2 T  )  + ⋯ + 0.5  c l   (  G l  ⊗  Γ l  +  G l T  ⊗  Γ l T  )   .





Proof. 

The proof is similar to that of Theorem 1, and so it is omitted. □





Theorem 4.

Suppose that Assumption 1 holds. Given   ρ > 0  , HPDECSTN (20) reaches exponential synchronization under the controller (2), if


    d i  >  λ max   ( Ξ + ρ  I  N n   )  ,   



(23)




where   Ξ ≜  I N  ⊗   A +  A T   2  + 0.5  I N  ⊗ B  B T  + 0.5  χ 2   I  N n   + 0.5  c 1   (  G 1  ⊗  Γ 1  +  G 1 T  ⊗  Γ 1 T  )  + 0.5  c 2   (  G 2  ⊗  Γ 2  +  G 2 T  ⊗  Γ 2 T  )  + ⋯ + 0.5  c l   (  G l  ⊗  Γ l  +  G l T  ⊗  Γ l T  )   .





Proof. 

The proof is similar to that of Theorem 2, and so it is omitted. □





Remark 1.

This paper addresses not only the synchronization of HPDECSTNs, but also the exponential synchronization. Moreover, this paper addresses HPDECSTNs not only with a single weight, but also with multi-weights.





Remark 2.

Compared with the results modeled by ordinary differential equations with multi-weights [39,40,41,42,43], this paper addresses spatio-temporal models with multi-weights.





Remark 3.

Different from the control design for synchronization of parabolic PDEs-based CSTNs [44,45], this paper deals with the synchronization of hyperbolic PDEs-based CSTNs.





Remark 4.

Only a few important results discussed the synchronization, exact synchronization and approximate synchronization of HPDECSTNs [36,37,38]. Different from those with a single weight, this paper addresses the case with multi-weights.






5. Numerical Simulation


Example 1.

Consider a single weighted HPDECSTN (1) with random initial conditions and


      A =      5.1     2.7       − 1.1     4.2      , B =      0.5     − 0.2       0.2     1.5      , Γ =     2    − 1      1   2     , L = 1 , c = 0.2 , f  ( · )  = t a n h  ( · )  .      



(24)







The single weight takes


      G =      − 5    1   2   2      − 1    4   3   0     1   1    − 3    1      − 3     − 2     − 3    8     .      



(25)







Figure 1 shows that HPDECSTN (1) cannot reach synchronization without control. It is obvious that   χ = 1  . With Theorem 1, solve (16) by Matlab, the feedback gains    d i  = 12.04   are obtained. Figure 2 shows that HPDECSTN (1) reaches exponential synchronization under the controller (2) with    d i  = 12.04  . The controller (2) with the feedback gains    d i  = 12.04   is shown in Figure 3.





Example 2.

Consider multi-weighted HPDECSTN (20) with random initial conditions and the same parameters as those of Example 1, except:


    c 1  = 0.8 ,  c 2  = 0.3 ,  c 3  = 0.4 ,  c 4  = 0.5   



(26)







The weights take


          G 1  =      − 5    1   2   2      − 1    4   3   0     1   1    − 3    1      − 3     − 2     − 3    8     ,  G 2  =     6    − 1     − 2     − 3       − 2    4    − 3    1     1   2    − 3    0      − 1     − 3     − 3    7     ,      



(27)






        G 3  =       − 2    4   1    − 3       2    − 1    3    − 4        − 2     − 1     − 2    5      6   2    − 3     − 5      ,  G 4  =       − 5    1   2   2      1   3    − 2     − 2        − 7     − 2    3   6       − 3    1    − 3    5     .      



(28)







Figure 4 shows that HPDECSTN (20) cannot reach synchronization without control. With Theorem 4, solving (23) using Matlab, the feedback gains    d i  = 26.21   are obtained. Figure 5 shows that HPDECSTN (20) reaches exponential synchronization under controller (2) with    d i  = 26.21  . The controller (2) with the feedback gains    d i  = 26.21   is shown in Figure 6.






6. Conclusions


This paper has dealt with the leader-following synchronization control of two classes of semi-linear HPDECSTNs: one HPDECSTN with a single weight, and the other with multi-weights. To drive HPDECSTNs to synchronization, one new distributed controller was constructed. Dealing with HPDECSTNs with a single weight, sufficient conditions for synchronization and exponential synchronization of CSTNHPDE were presented by providing gain ranges. Furthermore, the proposed distributed controller was used to address CSTNHPDE with multi-weights and gain ranges, which were obtained for synchronization and exponential synchronization, respectively. Two examples illustrated the effectiveness of the developed theoretical results. In future work, the event-triggered control and pinning control of HPDECSTNs will be studied.
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Figure 1.   e ( ζ , t )   of HPDECSTN (1) without control. 
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Figure 2.   e ( ζ , t )   of HPDECSTN (1) with control. 
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Figure 3. The control input of HPDECSTN (1). 
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Figure 4.   e ( ζ , t )   of HPDECSTN (1) without control. 
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Figure 5.   e ( ζ , t )   of HPDECSTN (1) with control. 
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Figure 6. The control input of HPDECSTN (1). 
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