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Abstract: The presented paper discusses the matrix summability of the Walsh–Fourier series. In
particular, we discuss the convergence of matrix transforms in L1 space and in CW space in terms of
modulus of continuity and matrix transform variation. Moreover, we show the sharpness of our result.
We also discuss some properties of the maximal operator t∗( f ) of the matrix transform of the Walsh–
Fourier series. As a consequence, we obtain the sufficient condition so that the matrix transforms
tn( f ) of the Walsh–Fourier series are convergent almost everywhere to the function f . The problems
listed above are related to the corresponding Lebesgue constant of the matrix transformations. The
paper sets out two-sides estimates for Lebesgue constants. The proven theorems can be used in the
case of a variety of summability methods. Specifically, the proven theorems are used in the case of
Cesàro means with varying parameters.
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1. Introduction

The issues of summability of Fourier series have been studied by many authors. In
particular, different methods of summabilities are known in the literature. The summability
methods are concerned with matrix transformations of partial sums of Walsh–Fourier series.
It is well known that the partial sums of Walsh–Fourier series are not convergent in the
norm both in the classes of continuous functions and in classes of integrable functions [1]
(Chapter 4). It is also known that there is an integral function whose Walsh–Fourier series
is divergent at all points [1,2].

An example of matrix transformation is the Fejér or arithmetic mean. In this case,
there is a matrix transformation where the elements (tk,n = 1/n, 1 ≤ k ≤ n) of each row of
the corresponding triangular matrix are constants. As a result of such a transformation,
we obtain a new sequence that can be convergent in the space CW and L1, and is also
convergent almost everywhere for all integrable functions [1,2].

Another example of matrix summability is summability by the Riesz’s logarithmic
method (tk,n = 1

k log n ). The new sequence has “good” properties (convergence in the space
CW and L1 as well as convergence almost everywhere for all integrable functions).

From the above, we can assume that if the matrix transformations whose first n element
of the nth row represents a non-increasing sequence, then the new sequence obtained as a
result of such a transformation is characterized by “good” properties (see estimation (29),
Theorem 5 and Corollary 4).

Examples of matrix transformations whose first n element of the nth row represents
an increasing sequence are:
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• (C, α), α > 0 summability (tk,n = Aα−1
n−k/Aα

n, 0 ≤ k ≤ n ), where

Aα
n :=

(1 + α) . . . (n + α)

n!
;

• Nörlund logarithmic summability (tk,n = 1
(n−k) log n , 0 ≤ k < n);

• Cesàro means with varying parameters (tk,n = Aαn−1
n−k /Aαn

n , 0 ≤ k ≤ n, αn → 0 as
n→ ∞).

In the case for (C, α) summability (α > 0), it is known that the new sequence obtained
by matrix transformation (tk,n = Aα−1

n−k/Aα
n, 0 ≤ k ≤ n ) has “good” properties [1–3]. On

the other hand, if (tk,n = 1
(n−k) log n , 0 ≤ k < n) or (tk,n = Aαn−1

n−k /Aαn
n , 0 ≤ k ≤ n, αn → 0 as

n→ ∞), then the new sequences are not characterized by “good” properties [4,5].
Therefore, the sequences obtained by matrix transformations can have “good” or “bad”

properties. The article sets out the necessary and sufficient conditions for the sequence
obtained as a result of the matrix transformation to be convergence in the space CW and L1
(see Theorem 3, Corollarys 2 and 3, Theorem 4).

Sufficient conditions have been established for the sequence obtained as a result of the
matrix transformation to be almost everywhere convergent (see Theorem 6).

Note that the behavior of the sequences obtained as a result of the matrix transforma-
tion depends on two-sided estimations of the integral norm (Lebesgue’s constant) of the
corresponding kernel of the matrix transformation (see Theorem 1).

The theorems can be used for various methods of summability. At the end of the
article, the theorems are used in the case of Cesàro means with varying parameters; this
new result improves the theorem of Gát and Abu Joudeh [6].

2. Definitions

Let P denote the set of positive integers, N := P ∪ {0}. By a dyadic interval in
I := [0, 1), we mean one of the form I(l, k) :=

[
l

2k , l+1
2k

)
for some k ∈ N, 0 ≤ l < 2k. Given

k ∈ N and x ∈ I, let Ik(x) denote the dyadic interval of length 2−k which contains the point
x. We use also the notation In := In(0)(n ∈ N), Ik(x) := I\Ik(x). Let

x =
∞

∑
n=0

xn2−(n+1)

be the dyadic expansion of x ∈ I, where xn = 0 or 1, and if x is a dyadic rational number,
we choose the expansion which terminates in 0′s. We also use the following notation

Ik(x) = Ik(x0, x1, . . . , xk−1).

For any given n ∈ N, it is possible to write n uniquely as

n =
∞

∑
k=0

εk(n)2k,

where εk(n) = 0 or 1 for k ∈ N. This expression will be called the binary expansion of n and
the numbers εk(n) will be called the binary coefficients of n. Let us denote for 1 ≤ n ∈ N,
|n| := max{j ∈ N:ε j(n) 6= 0}, that is 2|n| ≤ n < 2|n|+1.

Let us set the definition of the nth (n ∈ N) Walsh–Paley function at point x ∈ I as:

wn(x) = (−1)

∞
∑

j=0
ε j(n)xj

.
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Let us denote by u the logical addition on I. That is, for any x, y ∈ I and k, n ∈ N

x u y :=
∞

∑
n=0
|xn − yn|2−(n+1).

Let us define the binary operator ⊕ : N×N→N by

k⊕ n =
∞

∑
i=0
|εi(k)− εi(n)|2i. (1)

It is well known (see [1], p. 5) that

wm⊕n(x) = wm(x)wn(x), x ∈ I (n, m ∈ N). (2)

The Walsh–Dirichlet kernel is defined by

Dn(x) =
n−1

∑
k=0

wk(x), D∗n := wnDn.

Recall that [1,2]
D2n(x) = 2nχIn(x), (3)

where χE is the characteristic function of the set E,

Dn = wn

∞

∑
k=0

εk(n)rkD2k , (4)

D2n+m = D2n + w2n Dm (m < 2n). (5)

The partial sums of Walsh–Fourier series of a function f ∈ L1(I) are defined as follows:
S0( f ) = 0 and

Sn( f ; x) :=
n−1

∑
k=0

f̂ (k)wk(x) (n ∈ N),

where f̂ (k) =
∫
I

f wk.

3. Triangular Matrix Transforms

Let T := (tk,n) be an infinite triangular matrix satisfying the following conditions:

(a) tk,n ≥ 0, k, n ∈ N;
(b) tk,n = 0, k > n;

(c)
n
∑

k=1
tk,n = 1.

We define the nth triangular matrix transform of the Walsh–Fourier series by

tn( f ; x) :=
n

∑
k=1

tk,nSk( f ; x) (n ∈ P). (6)

The triangular matrix transform kernels are defined by

Fn(t) :=
n

∑
k=1

tk,nDk(t).

We have
tn( f , x) = ( f ∗ Fn)(x) =

∫
I

f (x u t)Fn(t)d(t).
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Let us define the following matrices

T :=


t1( f ; x)

...
tn( f , x)

...

, S :=


S1( f ; x)

...
Sn( f ; x)

...

,

m(T) :=



t11 0 0 · · · 0 0 · · ·
t12 t22 0 · · · 0 0 · · ·
...

...
...

...
...

t1n t2n t3n · · · tnn 0 · · ·
...

...
...

... · · ·

.

Then, equality (6) can be written as follows

T = m(T)× S.

The Fejér means and kernels are denoted by

σ = m(σ)× S,

where

m(σ) :=



1 0 0 · · · 0 0 · · ·
1
2

1
2 0 · · · 0 0 · · ·

...
...

...
...

...
1
n

1
n

1
n · · · 1

n 0 · · ·
...

...
...

... · · ·

, σ :=


σ1( f ; x)

...
σn( f ; x)

...

.

It is easily seen that

σn( f , x) :=
1
n

n

∑
k=1

Sk( f , x), Kn(t) :=
1
n

n

∑
k=1

Dk(t),

σn( f , x) = ( f ∗ Kn)(x) =
∫
I

f (x u t)Kn(t)d(t).

It is well known that L1 norms of Fejér kernels are uniformly bounded, that is

‖Kn‖1 ≤ c for all n ∈ N. (7)

Yano [7] estimated the value of c, and he gave c = 2. Recently, in paper [8], it was
shown that the exact value of c is 17

15 .

4. Auxiliary Results

This section will mention the definitions and notations from the book [1] (Chapter 3).
For each n ∈ N, let An represent the σ-algebra generated by the collection of dyadic

intervals {I(k, n) : k = 0, 1, . . . , 2n − 1}. Thus, every element of An is a finite union of
intervals of the form [k2−n, (k + 1)2−n) or an empty set.

Let L(An) represent the collection of An-measurable functions on I. By the Paley
Lemma [1] (Chapter 1, p. 12), L(An) coincides with the collection of Walsh polynomials of
order less than 2n.

A sequence of functions ( fn : n ∈ N) is called a dyadic martingale if each fn belongs
to L(An) and ∫

E

fn+1 =
∫
E

fn(E ∈ An, n ∈ N).



Mathematics 2022, 10, 2458 5 of 25

Let A denote the collection of sequences β := {βn : n ∈ N} which satisfy βn ∈ L(An)
for n ∈ N and

‖β‖ := sup
n∈N
‖βn‖∞ < ∞.

For a given β ∈ A and f ∈ L1(I), the martingale transform of f is defined by

T(β)( f ) :=
∞

∑
n=0

βn∆n f ,

where ∆n f := S2n+1( f )− S2n( f ) for n ∈ N. The maximal martingale transform is defined
by

T∗(β)( f ) := sup
N∈N

∣∣∣∣∣ N

∑
n=0

βn∆n f

∣∣∣∣∣.
The next Lemma plays an important role in our paper and methods [1] [page 97].

Lemma 1 (Schipp, Simon, Wade and Pál [1]). Let f ∈ L1(I), y > 0, and β ∈ A. Then, the
operator T∗(β) is of weak type (1,1). That is, there exists an absolute constant C such that

y|{x ∈ I : T∗(β)( f ) > y}| ≤ C‖β‖‖ f ‖1.

5. Kernel Representation and L1-Norm of the Matrix Transform Kernels

First, we start with a useful decomposition of the kernel function F∗n := wnFn. We use
the next notation in the proof.

Tn,(k) :=
k

∑
l=1

tl,n, T(k)
n :=

n

∑
l=k

tl,n

and

n(s) :=
∞

∑
j=s

ε j(n)2j, n(s) :=
s

∑
j=0

ε j(n)2j.

We note that
n
∑

l=1
tl,n = Tn,(n) = T(1)

n .

Lemma 2. Let 0 < n ∈ N. Then, the next decomposition of the matrix transform kernel holds:

F∗n =
|n|

∑
s=0

εs(n)T
(n(s))
n (D2s+1 − D2s)

+
|n|

∑
s=0

εs(n)wn(s)

2s−1

∑
k=1

tk+n(s+1),nDk.
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Proof of Lemma 2. For any positive integer n, we write that

Fn =
n

∑
k=1

tk,nDk = −
n−1

∑
k=1

Tn,(k)wk + DnTn,(n)

= −
n−1

∑
k=1

Tn,(k)wk +

(
n−1

∑
k=1

wk

)
Tn,(n) + Tn,(n)

=
n−1

∑
k=1

(
Tn,(n) − Tn,(k)

)
wk + Tn,(n)

=
n−1

∑
k=1

T(k+1)
n wk + Tn,(n)

=
n−1

∑
k=0

T(k+1)
n wk.

Then, from (2), we have that

Fn =
|n|

∑
s=0

εs(n)
n(s)−1

∑
k=n(s+1)

T(k+1)
n wk

=
|n|

∑
s=0

εs(n)
2s−1

∑
k=0

T(
k+1+n(s+1))

n wk+n(s+1)

=
|n|

∑
s=0

εs(n)wn(s+1)

2s−1

∑
k=0

T(
k+1+n(s+1))

n wk

=
|n|

∑
s=0

εs(n)wn(s+1)

2s−1

∑
k=1

(
T(

k+n(s+1))
n − T(

k+1+n(s+1))
n

)
Dk

+
|n|

∑
s=0

εs(n)wn(s+1)T
(n(s))
n D2s .

For x ∈ Is, we have
wn(s)(x) = w2s(x) (8)

Hence,

wnFn =
|n|

∑
s=0

εs(n)T
(n(s))
n w2s D2s (9)

+
|n|

∑
s=0

εs(n)wn(s)

2s−1

∑
k=1

(
T(

k+n(s+1))
n − T(

k+1+n(s+1))
n

)
Dk

=: F∗n,1 + F∗n,2.

This completes the proof of Lemma 2.

We introduce the notation

t∗n( f ) := f ∗ F∗n , t∗n,1 := f ∗ F∗n,1, t∗n,2 := f ∗ F∗n,2.

Before we discuss the L1-norm of the kernels Fn, we prove the following lemma.
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Lemma 3. Let
(
αj : j ∈ N

)
be a non-decreasing (in sign αj ↑) bounded sequence of positive

real numbers α(n) := (αj(n) := αjε j(n) : j ∈ N). Let the kernel of martingale transform
T(α(n)) f = f ∗M(α(n)) be defined by

M(α(n)) :=
∞

∑
j=1

ε j(n)αj
(

D2j+1 − D2j
)
.

Then

‖M(α(n))‖1 ∼
|n|

∑
k=1
|εk(n)− εk+1(n)|αk. (10)

Proof of Lemma 3. We write that

M(α(n)) =
|n|−1

∑
j=1

(ε j(n)αj − ε j+1(n)αj+1)D2j+1

+ε |n|(n)α|n|D2|n|+1 − ε1(n)α1D21 .

This and equality (3) yield that

‖M(α(n))‖1 ≤ 2‖α‖+
|n|−1

∑
j=1
|ε j(n)αj − ε j+1(n)αj+1| (11)

≤ 2‖α‖+
|n|−1

∑
j=1
|ε j(n)− ε j+1(n)|αj +

|n|−1

∑
j=1

ε j+1(n)|αj − αj+1|.

Since α := (αn : n ∈ N) is non-decreasing, we can write

|n|−1

∑
j=2

ε j+1(n)|αj − αj+1| ≤
|n|−1

∑
j=1
|αj − αj+1| = α|n| − α1 ≤ ‖ff‖. (12)

This yields

‖Mn(α)‖1 ≤ 3‖α‖+
|n|−1

∑
j=2
|ε j(n)− ε j+1(n)|αj. (13)

Now, we show the lower estimate for ‖Mn(α)‖1. We use the construction in the
book ([1], p. 35). Let us choose the strictly monotone increasing sequences ai and bi
(i = 1, . . . , s) such that

0 < a1 ≤ b1 < a2 ≤ b2 < . . . < as ≤ bs < as+1 = ∞.

It is easy to see that
bj + 1 < aj+1

holds. We define the nature number n = ∑∞
j=0 ε j(n)2j by

ε j(n) :=

{
1, if ai ≤ j ≤ bi for an i ∈ {1, . . . , s},
0, if bi < j < ai+1 for an i ∈ {1, . . . , s} or j < a1.

(14)

Let us set the sets

Ak :=
(

1
2ak+1 ,

1
2ak

)
, Bk :=

(
1

2bk+2 ,
1

2bk+1

)
, k = 1, . . . , s.
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For x ∈ Ak, we have that

|M(α(n))(x)| =
∣∣∣∣∣ |n|∑

j=1
ε j(n)αj(D2j+1(x)− D2j(x))

∣∣∣∣∣
=

∣∣∣∣∣k−1

∑
i=1

bi

∑
j=ai

αj(D2j+1(x)− D2j(x)) +
bk

∑
j=ak

αj(D2j+1(x)− D2j(x))

∣∣∣∣∣
=

∣∣∣∣∣k−1

∑
i=1

bi

∑
j=ai

αj2j − αak 2ak

∣∣∣∣∣.
The construction of the sequences {ak} and {bk} yields

k−1

∑
i=1

bi

∑
j=ai

αj2j ≤ αbk−1

k−1

∑
i=1

(2bi+1 − 2ai )

≤ αbk−1

k−1

∑
i=1

(2bi+1 − 2bi−1+1)

≤ αbk−1
2bk−1+1 ≤ αak 2bk−1+1

and
|Mn(α)(x)| ≥ αak 2ak − αak 2bk−1+1 ≥ αak 2ak−1.

That is, we obtain that∫
Ak

|M(α(n))(x)|dx ≥ αak 2ak−12−ak−1 ≥
αak−1

4
. (15)

Now, we set x ∈ Bk.

|M(α(n))(x)| =

∣∣∣∣∣ k

∑
i=1

bi

∑
j=ai

αj(D2j+1(x)− D2j(x))

∣∣∣∣∣
=

k

∑
i=1

bi

∑
j=ai

αj2j ≥ αbk
2bk

and ∫
Bk

|M(α(n))(x)|dx ≥ αbk
2bk 2−bk−2 =

αbk

4
. (16)

The sets Ak and Bk are pairwise disjoint intervals (k = 1, . . . , s), and we have

‖M(α(n))‖1 ≥
s

∑
k=1

(∫
Ak

|M(α(n))(x)|dx +
∫

Bk

|M(α(n))(x)|dx
)

≥ 1
4

s

∑
k=1

(αak−1 + αbk
)

(see inequalities (15) and (16) as well). Taking into account that

|ε j(n)− ε j+1(n)| =
{

1, if j = ak − 1 or j = bk for a k ∈ {1, . . . , s},
0, otherwise,

we conclude that

‖M(α(n))‖1 ≥
1
4

|n|

∑
j=1
|ε j(n)− ε j+1(n)|αj. (17)
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Summarizing our results in inequalities (13) and (17), we complete the proof.

Theorem 1. (a) If the sequence {tk,n : 1 ≤ k ≤ n} is monotone non-increasing (in sign tk,n ↓) for
any fixed n, then there exists a positive constant c such that

‖Fn‖1 ≤ c (18)

holds for all n ∈ P.
(b) If the sequence {tk,n : 1 ≤ k ≤ n} is monotone non-decreasing (in sign tk,n ↑) for any

fixed n, then

‖Fn‖1 ∼
|n|

∑
s=1
|εs(n)− εs+1(n)|T

(n(s))
n . (19)

Proof of Theorem 1. First, let the sequence {tk,n : 1 ≤ k ≤ n} be monotone non-increasing
(in sign tk,n ↓). For the kernel Fn, we apply Abel’s transformation

Fn =
n−1

∑
k=1

(tk,n − tk+1,n)kKk + tn,nnKn. (20)

Inequality (7) implies that

‖Fn‖1 ≤
n−1

∑
k=1
|tk,n − tk+1,n|k‖Kk‖1 + tn,nn‖Kn‖1

≤ c

(
n−1

∑
k=1

(tk,n − tk+1,n)k + tn,nn

)
(21)

≤ c
n

∑
k=1

tk,n ≤ c.

Second, let the sequence {tk,n : 1 ≤ k ≤ n} be monotone non-decreasing (in sign tk,n ↑).
Theorem 2 yields that

‖Fn‖1 = ‖F∗n‖1 ≤ ‖F∗n,1‖1 + ‖F∗n,2‖1.

Applying Lemma 3 with setting αs := T(n(s))
n , we obtain

‖F∗n,1‖1 ∼
|n|

∑
s=1
|εs(n)− εs+1(n)|T

(n(s))
n .

At last, we discuss the norm ‖F∗n,2‖1. In case εs(n) = 1, we write that

Is :=
2s−1

∑
k=1

tk+n(s+1),nDk =
2s−1

∑
k=1

tk+n(s)−2s ,nDk (22)

=
2s−1

∑
l=1

tn(s)−l,nD2s−l (s = 0, . . . , |n| − 1).

For s = |n|, we have that

I|n| :=
2|n|−1

∑
k=1

tk,nDk =
2|n|−1

∑
l=1

t2|n|−l,nD2|n|−l .

It is known that

D2k−j = D2k − w2k−1Dj for j = 1, . . . , 2k − 1. (23)
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Applying equality (23) and Abel’s transformation, we obtain

Is = D2s

2s−1

∑
l=1

tn(s)−l,n − w2s−1

2s−1

∑
l=1

tn(s)−l,nDl (24)

= D2s

2s−1

∑
l=1

tn(s)−l,n

−w2s−1

(
2s−2

∑
l=1

(tn(s)−l,n − tn(s)−l−1,n)lKl + tn(s)−2s+1,n(2
s − 1)K2s−1

)
.

Analogously, we transform the expression I|n|. Inequality (7) yields

‖Is‖1 ≤ c
2s−1

∑
l=1

tn(s)−l,n (s = 0, . . . , |n|)

and

‖I|n|‖1 ≤
2|n|−1

∑
l=1

t2|n|−l,n.

Thus,

‖F∗n,2‖1 =

∥∥∥∥∥ |n|∑
s=0

εs(n)wn(s) Is

∥∥∥∥∥
1

≤
|n|

∑
s=0
‖Is‖1 ≤ c

n

∑
k=1

tk,n ≤ c. (25)

Theorem 1 is proved.

6. Convergence In Measure of Matrix Transform of Walsh–Fourier Series

Theorem 2. Let {tk,n : 1 ≤ k ≤ n} be a monotone non-decreasing (or monotone non-increasing)
sequence for any fixed n. Then, there exists a positive constant c such that

y|{x ∈ I : |tn( f )| > y}| ≤ c‖ f ‖1

holds for all f ∈ L1(I) and y > 0.

Proof of Theorem 2. First, let the sequence {tk,n : 1 ≤ k ≤ n} be monotone non-increasing
(in sign tk,n ↓). Since, by Theorem 1, we write that

‖tn( f )‖1 = ‖ f ∗ Fn‖1 ≤ ‖ f ‖1‖Fn‖1 ≤ c‖ f ‖1. (26)

(for more details, see [1,2]). We immediately learn that the operator tn is of weak type (1,1).
Second, let the sequence {tk,n : 1 ≤ k ≤ n} be monotone non-decreasing (in sign tk,n ↑).

Lemma 2 yields that
t∗n( f ) = f ∗ F∗n = f ∗ F∗n,1 + f ∗ F∗n,2.

Since t∗n,1( f ) = f ∗ F∗n,1 is a martingale transform with coefficients εs(n)T
(n(s))
n , we

apply Lemma 1. This lemma gives immediately that the operator t∗n,1 is of weak type (1, 1).
That is, there exists a positive constant c such that

y
∣∣{x ∈ I : |t∗n,1( f )| > y}

∣∣ ≤ c‖ f ‖1 (y > 0) (27)

holds for all f ∈ L1(I).
For the operator t∗n,2, we apply inequality (25) and write that

‖t∗n,2( f )‖1 = ‖ f ∗ Fn,2‖1 ≤ ‖ f ‖1‖F∗n,2‖1 ≤ c‖ f ‖1. (28)

(for more details, see [1,2]). That is, the operator t∗n,2 is of weak type (1,1).
Inequalities (26)–(28) complete the proof of Theorem 2.
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Theorem 2 implies that the following is valid.

Corollary 1. Let {tk,n : 1 ≤ k ≤ n} be a monotone non-decreasing (or monotone non-increasing)
sequence for any fixed n. Then, for all f ∈ L1(I), tn( f )→ f in measure as n→ ∞.

Remark 1. In the case that the sequence {tk,n : 1 ≤ k ≤ n} is not increasing for any fixed n,
below, more is proved. In particular, the weak type inequality for the maximal operator t∗( f ) is
proved (see Theorem 5).

7. Convergence in L1-Norm and CW -Norm

Let CW(I) represent the collection of functions f which are continuous at every dyadic
irrational, continuous from the right on I, and have a finite limit from the left on I, all this
in the usual topology.

Set ‖ f ‖CW := supx∈I | f (x)|. Let us denote by Lp(I) the usual Lebesgue spaces on
I with the corresponding norm ‖.‖p (1 ≤ p < ∞). Let X := X(I) be either L1(I) or
CW(I) with the corresponding norm denoted by ‖.‖X. The modulus of continuity, when
X = CW(I), and the integrated modulus of continuity, while X = L1(I) are defined by

ω

(
1
2n , f

)
X

:= sup
h∈In

‖ f (. u h)− f (.)‖X .

In this section, we discuss the convergence of matrix transforms in L1 space and in CW
in terms of modulus of continuity and matrix transform variation. Moreover, in Theorem 4,
we show the sharpness of our result.

For non-negative integer n, the variation of n is defined by

V(n) :=
∞

∑
k=0
|εk(n)− εk+1(n)|+ ε0(n)

(see [1], p. 34). Motivated by this definition for the monotone non-decreasing sequence
{tk,n : 1 ≤ k ≤ n} (in sign tk,n ↑), we introduce the matrix transform variation of n by

V(n, {tk,n}) :=
|n|

∑
k=1
|εk(n)− εk+1(n)|T

(n(k))
n .

For the convenience of the reader, the main theorems of this section will be formulated
first, and the proofs will be given below.

Theorem 3. Let f ∈ X(I) and {tk,n : 1 ≤ k ≤ n} be a sequence of non-negative numbers.
(a) If the sequence {tk,n : 1 ≤ k ≤ n} is monotone non-increasing (in sign tk,n ↓), then

‖tn( f )− f ‖X ≤ c1ω

(
1

2|n|
, f
)

X
+ c2ω

(
1

2|n|−1
, f
)

X
(29)

+c3

|n|−2

∑
r=0

2rt2r ,nω

(
1
2r , f

)
X

.

(b) If the sequence {tk,n : 1 ≤ k ≤ n} is monotone non-decreasing (in sign tk,n ↑), then

‖tn( f )− f ‖X ≤ c1V(n, {tk,n})ω
(

1
2|n|

, f
)

X

+c2ω

(
1

2|n|−1
, f
)

X
(30)

+c3

|n|−2

∑
r=0

2rt2r+1−1,nω

(
1
2r , f

)
X

.
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Proof of Theorem 3. We carry out the proof of Theorem 3 for space X = L1(I). The proof
for X = CW is similar and even simpler. Keeping in mind that ∑n

k=1 tk,n = 1, we write that

tn( f , x)− f (x) =
∫
I
( f (x u t)− f (x))

n

∑
k=2|n|

tk,nDk(t)dt

+
∫
I
( f (x u t)− f (x))

2|n|−1

∑
k=2|n|−1

tk,nDk(t)dt (31)

+
∫
I
( f (x u t)− f (x))

2|n|−1−1

∑
k=1

tk,nDk(t)dt

=: I1 + I2 + I3.

First, we discuss the expression I1. We write that

I1 =
∫
I
( f (x u t)− S2|n|( f , x u t))

n

∑
k=2|n|

tk,nDk(t)dt

+
∫
I
(S2|n|( f , x u t)− S2|n|( f , x))

n

∑
k=2|n|

tk,nDk(t)dt

+
∫
I
(S2|n|( f , x)− f (x))

n

∑
k=2|n|

tk,nDk(t)dt (32)

=: I1,1 + I1,2 + I1,3.

It is easily seen that I1,2 = 0. Applying generalized Minkowski’s inequality, we have

‖I1,1‖X ≤ ω

(
1

2|n|
, f
)

X

∫
I

∣∣∣∣∣ n

∑
k=2|n|

tk,nDk(t)

∣∣∣∣∣dt. (33)

For sequence tk,n ↑, we learn immediately that

‖I1,1‖X ≤ ω

(
1

2|n|
, f
)

X
(1 + V(n, {tk,n})).

Analogously, we can prove that

‖I1,3‖X ≤ ω

(
1

2|n|
, f
)

X
(1 + V(n, {tk,n})).

That is, we have that

‖I1‖X ≤ ω

(
1

2|n|
, f
)

X
(1 + V(n, {tk,n})). (34)

For sequence tk,n ↓ we apply the equality (5), and we obtain

n

∑
k=2|n|

tk,nDk =
n−2|n|

∑
l=0

t2|n|+l,nD2|n|+l

=
n−2|n|

∑
l=0

t2|n|+l,nD2|n| + w2|n|

n−2|n|

∑
l=1

t2|n|+l,nDl .

Applying Abel’s transform and inequalities (7) and (33), we learn that

‖I1,1‖X ≤ cω

(
1

2|n|
, f
)

X
.
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Analogously, we can prove that

‖I1,3‖X ≤ cω

(
1

2|n|
, f
)

X
.

That is, we have that

‖I1‖X ≤ cω

(
1

2|n|
, f
)

X
. (35)

The estimation of the I2 is analogous to the estimation of the I1, and we have

‖I2‖X ≤ cω

(
1

2|n|−1
, f
)

X

∫
I

∣∣∣∣∣∣
2|n|−1

∑
k=2|n|−1

tk,nDk(t)

∣∣∣∣∣∣dt.

Now, we discuss the integral I :=
∫
I

∣∣∣∑2|n|−1
k=2|n|−1 tk,nDk(t)

∣∣∣dt. We apply equality (23),
Abel’s transformation and inequality (7). We have that

I ≤
∫
I

∣∣∣∣∣∣
2|n|−1

∑
k=1

t2|n|−k,nD2|n|−k(t)

∣∣∣∣∣∣dt

≤
2|n|−1

∑
k=1

t2|n|−k,n +
∫
I

∣∣∣∣∣∣
2|n|−1

∑
k=1

t2|n|−k,nDk(t)

∣∣∣∣∣∣dt

≤ c +
∫
I

∣∣∣∣∣∣
2|n|−1−1

∑
k=1

(t2|n|−k,n − t2|n|−k−1,n)kKk(t)

∣∣∣∣∣∣dt

+
∫
I

t2|n|−1,n2|n|−1∣∣K2|n|−1(t)
∣∣dt

≤ c + c

2|n|−1−1

∑
k=1

∣∣∣t2|n|−k,n − t2|n|−k−1,n

∣∣∣k + t2|n|−1,n2|n|−1.


For sequence tk,n ↑, we learn that

I ≤ c + c
2|n|−1

∑
l=1

t2|n|−l ≤ c.

For sequence tk,n ↓, we write

I ≤ c + ct2|n|−1,n2|n|−1 ≤ c + c
2|n|−1−1

∑
k=0

t2|n|−1−k,n ≤ c.

That is, we have that

‖I2‖X ≤ cω

(
1

2|n|−1
, f
)

X
(36)

in both cases (a) and (b).
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At last, we discuss the expression I3.

I3 =
|n|−2

∑
r=0

2r+1−1

∑
j=2r

tj,n

∫
I
( f (x u t)− f (x))Dj(t)dt

=
|n|−2

∑
r=0

∫
I
( f (x u t)− S2r ( f , x u t))

2r+1−1

∑
j=2r

tj,nDj(t)dt

+
|n|−2

∑
r=0

∫
I
(S2r ( f , x u t)− S2r ( f , x))

2r+1−1

∑
j=2r

tj,nDj(t)dt

+
|n|−2

∑
r=0

∫
I
(S2r ( f , x)− f (x))

2r+1−1

∑
j=2r

tj,nDj(t)dt

=: I3,1 + I3,2 + I3,3.

It can be proved that I3,2 = 0. By generalized Minkowski’s inequality, we have that

‖I3,i‖1 ≤
|n|−2

∑
r=0

ω

(
1
2r , f

)
X

∫
I

∣∣∣∣∣2
r+1−1

∑
j=2r

tj,nDj(t)

∣∣∣∣∣dt (i = 1, 3).

Equality (5) and Abel’s transformation yield that

2r+1−1

∑
j=2r

tj,nDj =
2r−1

∑
j=0

t2r+j,nD2r + w2r

2r−1

∑
j=1

t2r+j,nDj

=
2r−1

∑
j=0

t2r+j,nD2r

+ w2r

(
2r−2

∑
j=1

(t2r+j,n − t2r+j+1,n)jKj + t2r+1−1,n(2
r+1 − 1)K2r+1−1

)
.

Inequality (7) gives

‖
2r+1−1

∑
j=2r

tj,nDj‖1 ≤
2r−1

∑
j=0

t2r+j,n + c

(
2r−2

∑
j=1
|t2r+j,n − t2r+j+1,n|j + t2r+1−1,n(2

r+1 − 1)

)
.

For sequence tk,n ↓, we write

‖
2r+1−1

∑
j=2r

tj,nDj‖1 ≤ c
2r−1

∑
j=0

t2r+j,n ≤ c2rt2r ,n.

For sequence tk,n ↑, we have

‖
2r+1−1

∑
j=2r

tj,nDj‖1 ≤ c2rt2r+1−1,n.

That is, for a monotone non-increasing sequence (in sign tk,n ↓), we have

‖I3,i‖X ≤ c
|n|−2

∑
r=0

2rt2r ,nω

(
1
2r , f

)
X

(i = 1, 3) (37)
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and for a monotone non-decreasing sequence (in sign tk,n ↑),

‖I3,i‖X ≤ c
|n|−2

∑
r=0

2rt2r+1−1,nω

(
1
2r , f

)
X

(i = 1, 3). (38)

For a monotone non-increasing sequence (in sign tk,n ↓), we proved that

‖I3‖X ≤ c
|n|−2

∑
r=0

2rt2r ,nω

(
1
2r , f

)
X

. (39)

For a monotone non-decreasing sequence (in sign tk,n ↑), we reached that

‖I3‖X ≤ c
|n|−2

∑
r=0

2rt2r+1−1,nω

(
1
2r , f

)
X

. (40)

Combining (31), (34)–(36), (39) and (40), we complete the proof.

Corollary 2. Let f ∈ X(I) and {mn : n ∈ P} be a strictly monotone increasing sequence. Let
{tl,mn : 1 ≤ l ≤ mn} be a monotone non-decreasing sequence of non-negative numbers (in sign
tl,mn ↑). Let the condition

ω

(
1

2|mn |
, f
)

X
= o

(
1

V(mn, {tl,mn})

)
(41)

be satisfied. Then, the subsequence tmn( f ) converges in the norm of the space X(I).

Corollary 3. Let f ∈ X(I) and {tl,mn : 1 ≤ l ≤ mn} be a monotone non-decreasing sequence
of non-negative numbers (in sign tl,mn ↑). Let the sequence {mn : n ∈ P} be such that the next
condition holds

sup
n

V(mn, {tl,mn}) < ∞.

Then, the subsequence tmn( f ) converges in the norm of the space X(I).

The next theorem proofs the sharpness of condition (41).

Theorem 4. Let the sequences {tl,n : 1 ≤ l ≤ n} be monotone non-decreasing (in sign tl,n ↑) for
all n ∈ P. Let {mA : A ∈ N} be a sequence of natural numbers such that

sup
A

V(mA, {tl,mA}) = ∞.

Then, there exists a sequence {pj : j ∈ N} and a function f ∈ X(I) such that

ω

(
1

2|mpj |
, f

)
X

= O

(
1

V(mpj , {tl,mpj
})

)

and
‖tmpl

( f )− f ‖X 6→ 0 as l → ∞.

Proof of Theorem 4. Let the sequence {tk,n : 1 ≤ k ≤ n} be monotone non-decreasing (in
sign tk,n ↑) for all n ∈ P. Then, condition

sup
n

V(mn, {tk,mn}) = ∞
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yields that there exists a sequence {pl : l ∈ N} such that the following two conditions hold∣∣mpl

∣∣ > ∣∣mpl−1

∣∣+ 2 log(l + 1) (42)

and
V
(

mpl , {ts,mpl
}
)
≥ 2lV

(
mpl−1 , {ts,mpl−1

}
)

. (43)

First, let us discuss X(I) = L1(I). Now, we set

g(x) :=
∞

∑
j=1

gj(x), gj(x) :=
D

2
|mpj |+1(x)

V
(

mpj , {ts,mpj
}
) .

It is easy to check that g ∈ L1(I). Let us calculate ω
(

1
mpk

, g
)

L1
. We set y ∈ I|mpk |

, and

we learn that
D

2|mpl |
(x u y)− D

2|mpl |
(x) = 0 for l = 1, 2, . . . , k− 1. (44)

Inequalities (43) and (44) yield that∫
I

|g(x u y)− g(x)|dx

≤
∞

∑
j=k

1

V
(

mpj , {ts,mpj
}
) ∫

I

∣∣∣D
2
|mpj |+1(x u y)− D

2
|mpj |+1(x)

∣∣∣dx

≤ c

V
(

mpk , {ts,mpk
}
) .

Consequently, taking the supremum for all y ∈ I|mpk |
, we have that

ω

(
1

mpk

, g
)

L1

= O

 1

V
(

mpk , {ts,mpk
}
)
.

We can write ∥∥∥tmpk
(g)− g

∥∥∥
1
≥

∥∥∥∥∥tmpk

(
∞

∑
j=k

gj

)∥∥∥∥∥
1

−
∞

∑
j=k

∥∥gj
∥∥

1

−
∥∥∥∥∥tmpk

(
k−1

∑
j=1

gj

)
−

k−1

∑
j=1

gj

∥∥∥∥∥
1

. (45)

For j ≥ k

tmpk

(
gj
)

= gj ∗ Fmpk
= Fmpk

∗ gj =
1

V
(

mpj , {ts,mpj
}
)S

2
|mpj |+1

(
Fmpk

)
=

1

V
(

mpj , {ts,mpj
}
) Fmpk

.

From inequality (19), we have that

∥∥∥∥∥tmpk

(
∞

∑
j=k

gj

)∥∥∥∥∥
1

=
∞

∑
j=k

∥∥∥Fmpk

∥∥∥
1

V
(

mpj , {ts,mpj
}
) ≥

∥∥∥Fmpk

∥∥∥
1

V
(

mpk , {ts,mpk
}
) ≥ 1 > 0. (46)
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Equality (3) and condition (43) yield that

∞

∑
j=k

∥∥gj
∥∥

1 ≤
∞

∑
j=k

1

V
(

mpj , {ts,mpj
}
) ≤ 2

V
(

mpk , {ts,mpk
}
) . (47)

By Theorem 3 and (44), we obtain the following inequality (j < k)

∥∥∥tmpk

(
gj
)
− gj

∥∥∥
1
≤ c

|mpk |−2

∑
r=0

2rt2r+1−1,mpk
ω

(
1
2r , gj

)
L1

≤ c
|mpj |−1

∑
r=0

2rt2r+1−1,mpk
ω

(
1
2r , gj

)
L1

≤ c
|mpj |−1

∑
r=0

2rt2r+1−1,mpk

≤ ct
2|mpk |−1,mpk

|mpj |−1

∑
r=0

2r.

Since the sequence {ts,mpk
} is non-decreasing, we write

2|mpk |−1t
2|mpk |−1,mpk

≤
2|mpk |−1

∑
s=2|mpk |−1

ts,mpk
≤

mpk

∑
s=1

ts,mpk
= 1

and
t
2|mpk |−1,mpk

≤ 1

2|mpk |−1
. (48)

By inequality (42), we obtain

∥∥∥tmpk

(
gj
)
− gj

∥∥∥
1
≤ c

2|mpk |−1

|mpj |−1

∑
r=0

2r ≤ c
k2

and
k−1

∑
j=1

∥∥∥tmpk

(
gj
)
− gj

∥∥∥
1
≤ c

k
. (49)

Combining (45)–(49), we have that

lim
k→∞

∥∥∥tmpk
(g)− g

∥∥∥
1
> 0.

Second, we discuss the case X(I) = CW(I). Let the condition (42) and (43) hold as
well. We define the function h by

h(x) :=
∞

∑
j=1

hj(x)

V
(

mpj , {tl,mpj
}
) ,

where
hj(x) := sgn

(
Fmpj

)
.

It is easily seen that h ∈ Cw(I). Now, we calculate the modulus of continuity in CW .
Let y ∈ I|mpk |

, then for j = 1, 2, . . . , k− 1, we obtain

hj(x u y)− hj(x) = 0.
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Applying condition (43), we obtain

|h(x u y)− h(x)| ≤ 2
∞

∑
j=k

1

V
(

mpj , {tl,mpj
}
)

= O

 1

V
(

mpk , {tl,mpk
}
)
.

That is,

ω

(
1

mpk

, h
)

CW

= O

 1

V
(

mpk , {tl,mpk
}
)
.

It is easily seen that

∣∣∣tmpk
(h, 0)− h(0)

∣∣∣ ≥
∣∣∣tmpk

(hk, 0)
∣∣∣

V
(

mpk , {tl,mpk
}
) − ∞

∑
j=k

∣∣hj(0)
∣∣

V
(

mpj , {tl,mpj
}
)

−
∞

∑
j=k+1

∣∣∣tmpk

(
hj, 0

)∣∣∣
V
(

mpj , {tl,mpj
}
) − k−1

∑
j=1

∣∣∣tmpk

(
hj, 0

)
− hj(0)

∣∣∣
V
(

mpj , {tl,mpj
}
)

=: Q1 −Q2 −Q3 −Q4. (50)

Theorem 1, conditions (42) and (43) yield that

Q1 ≥

∥∥∥Fmpk

∥∥∥
1

V
(

mpk , {tl,mpk
}
) ≥ c > 0, (51)

Q2 ≤
c

V
(

mpk , {tl,mpk
}
) , (52)

Q3 ≤
∞

∑
j=k+1

∥∥∥Fmpk

∥∥∥
1

V
(

mpj , {tl,mpj
}
) ≤ cV

(
mpk , {tl,mpk

}
)

V
(

mpk+1 , {tl,mpk+1
}
) ≤ c

k
. (53)

We apply Theorem 3, inequality (48), conditions (42) and (43); we have that

Q4 ≤ c
k−1

∑
j=1

|mpk |−2

∑
r=0

2rt2r+1−1,mpk
ω

(
1
2r , hj

)
CW

(54)

≤ c
k−1

∑
j=1

|mpj |−1

∑
r=0

2rt2r+1−1,mpk
ω

(
1
2r , hj

)
CW

≤ c
k−1

∑
j=1

t
2|mpk |−1,mpk

|mpj |−1

∑
r=0

2r

≤ c
k−1

∑
j=1

1

2|mpk |−1

|mpj |−1

∑
r=0

2r

≤ ck2|mpk−1 |

2|mpk |
≤ c

k
.

Combining (50)–(54), we complete the proof of Theorem 4.
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8. Almost Everywhere Convergence of Matrix Transforms of Walsh–Fourier Series

Let us set En( f ; x) = S2n( f ; x). The maximal function is defined by

E∗( f ; x) = sup
n∈N
|En( f ; x)|.

It is known that ([1], p. 81) there exists a positive constant c such that

y|{x ∈ I : E∗( f ; x) > y}| ≤ c‖ f ‖1 (55)

holds for all f ∈ L1(I) and y > 0.
We define the maximal operator t∗ of the linear transforms tn generated by the se-

quences {tk,n : 1 ≤ k ≤ n}
t∗( f ) := sup

n
|tn( f )|.

In this section, we discuss some properties of the maximal operator t∗( f ). As a
consequence, we learn that the matrix transforms tn( f ) of the Walsh–Fourier series converge
almost everywhere to the function f for all integrable functions. This result is reached with
different monotonity conditions.

First, we state the boundedness of the maximal operator of the linear transforms
defined by monotone non-increasing sequences.

Theorem 5. Let {tk,n : 1 ≤ k ≤ n} be monotone non-increasing sequences of non-negative
numbers (in sign tk,n ↓) for all n ∈ P. Then, the maximal operator t∗ is bounded from the Lebesque
space Lp to the Lebesque space Lp for all 1 < p ≤ ∞. That is, there exists a positive constant Cp
which depends only on p such that

‖t∗( f )‖p ≤ Cp‖ f ‖p

holds for all f ∈ Lp(I). Moreover, the maximal operator t∗ is of weak type (1, 1). That is, there
exists a positive constant c such that

sup
λ>0

λ|{t∗( f ) > λ}| := ‖t∗( f )‖weak−L1(I) ≤ c‖ f ‖1

holds for all f ∈ L1(I), λ > 0.

Proof of Theorem 5. Since (see (20))

f ∗ Fn =
n−1

∑
k=1

(tk,n − tk+1,n)k( f ∗ Kk) + tn,nn( f ∗ Kn),

sup
λ>0

λ

∣∣∣∣∣{sup
k
| f ∗ Kk| > λ}

∣∣∣∣∣ ≤ c‖ f ‖1, f ∈ L1(I)∥∥∥∥∥sup
k
| f ∗ Kk|

∥∥∥∥∥
p

≤ c‖ f ‖p, p ≥ 1, f ∈ Lp(I)

and

sup
n
| f ∗ Fn| ≤ c sup

k
| f ∗ Kk|

(
n−1

∑
k=1

(tk,n − tk+1,n)k + tn,nn

)
≤ c sup

k
| f ∗ Kk|,

we complete the proof of Theorem 5.
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By the well-known density argument due to Marcinkiewicz and Zygmund [9], the
next corollary holds.

Corollary 4. Let {tk,n : 1 ≤ k ≤ n} be a monotone non-increasing sequence of non-negative
numbers (in sign tk,n ↓) for all n ∈ P and f ∈ L1(I). Then

lim
n→∞

tn( f ; x) = f (x) for a. e. x ∈ I.

Now, we consider the following maximal operator

sup
n
| f ∗ |Kn||.

We prove that the maximal operator is of weak (1,1) type. That is, there exists a positive
constant c such that

sup
λ>0

λ

∣∣∣∣{sup
n
| f ∗ |Kn|| > λ}

∣∣∣∣ ≤ c‖ f ‖1 (56)

holds for all f ∈ L1(I), λ > 0. For this, it is enough to prove that the operator sup
n
| f ∗ |Kn||

is quasi-local and bounded from the space L∞(I) to the space L∞(I) (see [1]). The bound-
edness immediately follows from (7). Now, we prove the quasi-locality. In particular, let
f ∈ L1(I) such that supp( f ) ⊂ IN(u′),

∫
IN(u′)

f = 0 for some dyadic interval IN(u′). Then,

we show that there exists a positive constant c such that the next inequality∫
IN(u′)

sup
n
| f ∗ |Kn|| ≤ c‖ f ‖1

holds. It can be supposed that u′ = 0. If n ≤ 2N , then

| f ∗ |Kn|| = 0.

Consequently, n > 2N can be supposed.
It is known that (see Gát [10]) ∫

IN

sup
n≥2N
|Kn| < ∞, (57)

Then, we have ∫
IN

sup
n≥2N
|( f ∗ |Kn|)(x)|dx

=
∫
IN

sup
n≥2N

∣∣∣∣∣∣
∫
I

f (t)|Kn(x u t)|dt

∣∣∣∣∣∣dx

≤
∫
I

| f (t)|
∫
IN

sup
n≥2N
|Kn(x u t)|dxdt

≤ c‖ f ‖1.

Hence, (56) is proved.
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From (24), we can write

Fn,2 = wn

|n|

∑
s=0

εs(n)wn(s)D2s

2s−1

∑
l=1

tn(s)−l,n

−wn

|n|

∑
s=0

εs(n)wn(s)w2s−1

×
(

2s−2

∑
l=1

(tn(s)−l,n − tn(s)−l−1,n)lKl + tn(s)−2s+1,n(2
s − 1)K2s−1

)
.

Let us set

F̃n,2 : =
|n|

∑
s=0

εs(n)D2s

2s−1

∑
l=1

tn(s)−l,n

+
|n|

∑
s=0

εs(n)
2s−2

∑
l=1

(tn(s)−l,n − tn(s)−l−1,n)l|Kl |

+
|n|

∑
s=0

εs(n)tn(s)−2s+1,n(2
s − 1)|K2s−1|.

It is easy to see that
|Fn,2| ≤ F̃n,2.

In order to prove Theorem 6, we need the following lemmas.

Lemma 4. Let {tk,n : k = 1, . . . , n} be a monotone non-decreasing sequence of non-negative

numbers for every fixed n ∈ N. The operator sup
n∈N

∣∣∣ f ∗ F̃n,2

∣∣∣ is of weak type (1, 1). That is, there

exists a positive constant c such that

sup
λ>0

λ

∣∣∣∣∣{sup
n∈N

∣∣∣ f ∗ F̃n,2

∣∣∣ > λ}
∣∣∣∣∣ ≤ c‖ f ‖1

holds for all f ∈ L1(I), λ > 0.

Proof of Lemma 4. We can write∣∣∣ f ∗ F̃n,2

∣∣∣ (58)

≤
|n|

∑
s=0

εs(n)
2s−1

∑
l=1

tn(s)−l,n| f ∗ D2s |

+
|n|

∑
s=0

εs(n)
2s−2

∑
l=1

(tn(s)−l,n − tn(s)−l−1,n)l| f ∗ |Kl ||

+
|n|

∑
s=0

εs(n)tn(s)−2s+1,n(2
s − 1)| f ∗ |K2s−1||

Since

|n|

∑
s=0

εs(n)
2s−1

∑
l=1

tn(s)−l,n =
|n|

∑
s=0

εs(n)
n(s)−1

∑
l=n(s+1)+1

tl,n ≤
n

∑
k=1

tk,n ≤ c < ∞
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and

|n|

∑
s=0

εs(n)
2s−2

∑
l=1

(tn(s)−l,n − tn(s)−l−1,n)l

+
|n|

∑
s=0

εs(n)tn(s)−2s+1,n(2
s − 1)

=
|n|

∑
s=0

εs(n)
2s−2

∑
l=1

[
(ltn(s)−l,n − (l + 1)tn(s)−l−1,n) + tn(s)−l−1,n

]
+
|n|

∑
s=0

εs(n)tn(s)−2s+1,n(2
s − 1)

=
|n|

∑
s=0

εs(n)

[
(tn(s)−1,n − (2s − 1)tn(s+1)+1,n) +

2s−2

∑
l=1

tn(s)−l−1,n

]

+
|n|

∑
s=0

εs(n)tn(s+1)+1,n(2
s − 1)

=
|n|

∑
s=0

εs(n)
2s−2

∑
l=0

tn(s)−l−1,n

≤
|n|

∑
s=0

εs(n)
n(s+1)

∑
l=n(s)−1

tl,n ≤
n

∑
k=1

tk,n ≤ c < ∞,

from (58), we have

sup
n∈N

∣∣∣ f ∗ F̃n,2

∣∣∣ ≤ c

(
sup
k∈N
| f ∗ |Kk||+ E∗( f )

)
and consequently, by (56) and (55), we complete the proof of Lemma 4.

Theorem 6. Let {mA : A ∈ P} be a strictly monotone increasing sequence. Let {tk,n : k =
1, . . . , n} be a monotone non-decreasing sequence of non-negative numbers for every fixed n ∈ N. If

sup
A∈P

V
(
mA,

{
tk,mA

})
< ∞ (59)

holds, then there exists a positive constant c such that

sup
λ>0

λ

∣∣∣∣∣{sup
A
|tmA( f )| > λ}

∣∣∣∣∣ ≤ c‖ f ‖1

holds for all f ∈ L1(I), λ > 0.

Proof of Theorem 6. We have (see (9))

tn( f ) = f ∗ wnF∗n (60)

= f ∗ wnF∗n,1 + f ∗ wnF∗n,2.



Mathematics 2022, 10, 2458 23 of 25

We obtain ∣∣ f ∗ wnF∗n,1
∣∣

=

∣∣∣∣∣ ∞

∑
k=0

αk(n)(S2k+1( f wn)− S2k ( f wn))

∣∣∣∣∣
≤

∣∣∣∣∣ ∞

∑
k=0

(αk(n)− αk+1(n))S2k+1( f wn)

∣∣∣∣∣+ |α0(n)S20( f wn)|

≤ E∗(| f |)
∞

∑
k=0
|αk(n)− αk+1(n)|+ |α0(n)|

where αk(n) = εk(n)T
(n(k))
n . Since

sup
n∈N

(
∞

∑
k=0
|αk(n)− αk+1(n)|+ |α0(n)|

)

≤ sup
n∈N

(
∞

∑
k=0
|εk(n)− εk+1(n)|T

(n(k))
n

)
+ c < ∞,

we conclude that
sup
n∈N

∣∣ f ∗ wnF∗n,1
∣∣ ≤ cE∗(| f |, x).

Consequently, we can write∥∥∥∥∥sup
n∈N

∣∣ f ∗ wnF∗n,1
∣∣∥∥∥∥∥

weak−L1(I)
≤ c‖ f ‖1. (61)

By Lemma 4, we obtain∥∥∥∥∥sup
n∈N

∣∣ f ∗ wnF∗n,2
∣∣∥∥∥∥∥

weak−L1(I)
≤ c‖ f ‖1. (62)

We combine (60), (61) and (62) in order to obtain∥∥∥∥∥sup
n∈N
|tn( f )|

∥∥∥∥∥
weak−L1(I)

≤ c‖ f ‖1.

Theorem 6 is proved.

Let us define for positive real numbers K the subset LK
({

tk,n
})

of natural numbers by

LK
({

tk,n
})

:=

{
n ∈ N :

|n|

∑
k=1
|εk(n)− εk+1(n)|T(n(k)) ≤ K

}
.

The next corollary follows from Theorem 6 by the well-known density argument due
to Marcinkiewicz and Zygmund [9].

Corollary 5. Let {tk,n : k = 1, . . . , n} be a monotone non-decreasing sequence of non-negative
numbers for every fixed n ∈ N and f ∈ L1(I). Then, tn( f ; x) → f almost everywhere provided
that n→ ∞ and n ∈ LK

({
tk,n
})

.
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9. Application: Cesàro Means With Varying Parameters of Walsh–Fourier Series

The theorems can be used for various methods of summability. In this section, the
application of the theorems proved above to Cesàro means with varying parameters will
be presented.

The (C, αn) means of the Walsh–Fourier series of the function f is given by

σαn
n ( f , x) =

1
Aαn

n−1

n

∑
j=1

Aαn−1
n−j Sj( f , x),

where

Aαn
n :=

(1 + αn) . . . (n + αn)

n!
for any n ∈ N, αn 6= −1,−2, . . .. The (C, αn) kernel is defined by

Kαn
n =

1
Aαn

n−1

n

∑
j=1

Aαn−1
n−j Dj.

We shall need the following Lemma (see [11]).

Lemma 5. Let k, n ∈ N. Then

c1(d)kαn < Aαn
k < c2(d)kαn , 0 < αn ≤ d. (63)

The idea of Cesàro means with variable parameters of numerical sequences is due
to Kaplan [12], and the introduction of these (C, αn) means of Fourier series is due to
Akhobadze [11].

The almost everywhere convergence of the subsequence of Cesàro means with variable
parameters has been studied by the following authors: Abu Joudeh and Gát [6], Gát and
Goginava [13,14], Weisz [15].

Let tk,n = Aαn−1
n−k /Aαn

n−1, 0 ≤ k ≤ n. Then, from (63), we have

T(
n(s))

n =
n

∑
l=n(s)

Aαn−1
n−l

Aαn
n−1

=

n(s−1)

∑
l=0

Aαn−1
l

Aαn
n−1

=
Aαn

n(s−1)

Aαn
n−1

≤ c2sαn

2|n|αn
.

Hence, from Corollary 5, we obtain

Theorem 7 (see [14]). Suppose that αn ∈ (0, 1). Let f ∈ L1(I). Then, σαn
n ( f ) → f almost

everywhere provided that n→ ∞ and n ∈ LK

({
Aαn−1

n−k /Aαn
n−1

})
.

Now, we consider the rate of convergence of the Cesàro means with varying parame-
ters of Walsh–Fourier series. Since

V(n, {tk,n}) ≤
c

2|n|αn

|n|

∑
k=1
|εk(n)− εk+1(n)|2kαn ≤ c

αn

and (see Lemma 5)

t2r+1−1,n =
Aαn−1

n−2r+1+1

Aαn
n

∼ αn

(
n− 2r+1 + 1

)αn−1

nαn
∼ αn2−|n|

from Theorem 3, we have
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Theorem 8. Let f ∈ X(I) and αn ∈ (0, 1). Then,

‖σαn
n ( f )− f ‖X ≤ c1

αn
ω

(
1

2|n|
, f
)

X
+ c2ω

(
1

2|n|−1
, f
)

X

+c3αn

|n|−2

∑
r=0

2r−|n|ω

(
1
2r , f

)
X

.
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