An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials
Abstract
:1. Definitions and Preliminaries
- i
- When we obtain the Chebyshev Polynomials.
- ii
- When we obtain the Legendre Polynomials.
2. Coefficient Bounds of the Class
3. Corollaries and Consequences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ + iδ associated with (p,q)-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclass of bi-univalent functons. Appl. Math. Lett. 2022, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Some properties of a linear operator involving generalized Mittag-Leffler function. Stud. Univ. Babeş-Bolyai Math. 2020, 65, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified sigmoid activated function. Afr. Mat. 2021, 32, 631–643. [Google Scholar] [CrossRef]
- Garg, M.; Manohar, P.; Kalla, S.L. A Mittag-Leffler-type function of two variables. Integral Transform. Spec. Funct. 2013, 24, 934–944. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboaca, T. Subclasses of yamakawa-type Bi-starlike functions associated with gegenbauer polynomials. Axioms 2022, 11, 92. [Google Scholar] [CrossRef]
- Kazimoğlu, S. Partial Sums of The Miller–Ross Function. Turkish J. Sci. Vol. 2021, 6, 167–173. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Long, P.; Liu, J.; Gangadharan, M.; Wang, W. Certain subclass of analytic functions based on q-derivative operator associated with the generalized Pascal snail and its applications. AIMS Math. 2022, 7, 13423–13441. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Swamy, S.R. Coefficient bounds for Al-Oboudi type bi-univalent functions based on a modified sigmoid activation function and Horadam polynimials. Earthline J. Math. Sci. 2021, 7, 251–270. [Google Scholar] [CrossRef]
- Swamy, S.R.; Bulut, S.; Sailaja, Y. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving modified sigmoid activation function. Hacet. J. Math. Stat. 2021, 50, 710–720. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef] [Green Version]
- Wiman, A. Über die Nullstellun der Funcktionen E(x). Acta Math. 1905, 29, 217-134. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Boletín Soc. Matemática Mex. 2019, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboaca, T. An Avant-Garde Construction for Subclasses of Analytic Bi-Univalent Functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Anal. Math. Phys. 2021, 11, 58. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Math. Anal. Appl. 1985, 3, 18–21. [Google Scholar]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Ana. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Shammaky, A.E.; Frasin, B.A.; Swamy, S.R. Fekete-Szegö inequality for bi-univalent functions subordinate to Horadam polynomials. J. Funct. Spaces 2022, 2022, 9422945. [Google Scholar] [CrossRef]
- Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Cerutti, R.A. The Generalized k-α-Miller–Ross Function. Nonlinear Anal. Differ. Equ. 2016, 4, 455–465. [Google Scholar] [CrossRef]
- Eker, S.S.; Ece, S. Geometric Properties of the Miller–Ross Functions. Iran. J. Sci. Technol. Trans. Sci. 2022, 46, 631–636. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Şeker, B.; Eker, S.S.; Çekiç, B. On a subclass of analytic functions associated with Miller–Ross-type Poisson distribution series. 2022, submitted. 2022; submitted. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. https://doi.org/10.3390/math10142462
Amourah A, Frasin BA, Seoudy TM. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics. 2022; 10(14):2462. https://doi.org/10.3390/math10142462
Chicago/Turabian StyleAmourah, Ala, Basem Aref Frasin, and Tamer M. Seoudy. 2022. "An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials" Mathematics 10, no. 14: 2462. https://doi.org/10.3390/math10142462
APA StyleAmourah, A., Frasin, B. A., & Seoudy, T. M. (2022). An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics, 10(14), 2462. https://doi.org/10.3390/math10142462