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1. Introduction

Hom–algebras were first introduced in the Lie algebra setting [1] with motivation
from physics though the origin can be traced back in earlier literature such as [2], where
the Jacobi identity was twisted by an endomorphism, namely [α(x), [y, z]] + [α(y), [z, x]] +
[α(z), [x, y]] = 0. In [3], Yau extended the notion of Lie bialgebras to Hom–Lie bialgebras
and studied the classical Hom–Yang–Baxter equation using the twisted map, namely

CH(r) = [r12, r13] + [r12, r23] + [r13, r23] = 0.

In [4], Sheng and Bai defined a new kind of Hom–Lie bialgebra which was equivalent
to Manin triples of Hom–Lie algebras and constructed solutions of the classical Hom–Yang–
Baxter equation in terms of O-operators. Later, in [5], Tao, Bai and Guo introduced the
notion of a Hom–Lie bialgebra with emphasis on its compatibility with a Manin triple of
Hom–Lie algebras associated to a nondegenerate symmetric bilinear form satisfying a new
invariance condition.

3-Lie algebras were special types of n-Lie algebras and played an important role in
string theory [6,7]. In [8], Sheng and Tang proved that a 3-Lie algebra has a phase space
if and only if it is sub-adjacent to a 3-pre-Lie algebra. In [9], Ataguema, Makhlouf and
Silvestrov extended the notion of 3-Lie algebras to 3-Hom–Lie algebras and presented
constructions from 3-Lie algebras. Because of close relation to discrete and conformal
vector fields, 3-Lie algebras and 3-Hom–Lie algebras were widely studied in the following
aspects. In [10], Liu, Chen and Ma described the representations and module-extensions
of 3-Hom–Lie algebras. In [11], Abdaoui, Mabrouk, Makhlouf and Massoud introduced
and studied 3-Hom–Lie bialgebras, which are a ternary version of Hom–Lie bialgebras
introduced by Yau. In [12], Ben Hassine, Chtioui and Mabrouk introduced the notion of
3-Hom–L-dendriform algebras which is the dendriform version of 3-Hom–Lie-algebras
and studied their properties, the authors introduced the classical Yang–Baxter equation and
Manin triples for 3-Lie algebras in [13,14]. Recently, we introduced the notion of 3-Hom–
Lie-Rinehart algebras and systematically described a cohomology complex by considering
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coefficient modules in [15]. Motivated by the work of [4,8], it is natural and meaningful to
study 3-Hom–Lie bialgebras and the phase space on 3-Hom–Lie algebras. This becomes
our first motivation for writing the present paper.

The classical Yang–Baxter equation was investigated by Sklyanin [16] in the context of
quantum inverse scattering method, which has a close connection with many branches of
mathematical physics and pure mathematics. In [3], Yau extended the notion of classical
Yang–Baxter equation to classical Hom–Yang–Baxter equation and presented some solutions
using the twisting method. In [17], Wang, Wu and Cheng studied the 3-Lie classical Hom–
Yang–Baxter equation on coboundary local cocycle 3-Hom–Lie bialgebras. Recently, the
classical Hom–Yang–Baxter equation in Hom–Lie algebras has been studied widely in terms
of Hom–O-operators [18] and quasitriangular structures [3]. Motivated by the recent work
on the classical Hom–Yang–Baxter equation, in this paper, we will study 3-Lie classical
Hom–Yang–Baxter equation in terms of O-operators. This becomes another motivation for
writing the present paper.

In this paper, we continue the study of 3-Hom–Lie algebras and give a new description
of 3-Hom–Lie bialgebras. It needs to be emphasized that there are results on 3-Hom–Lie
algebras in this paper which are not “parallel” to the case of Hom–Lie algebras given in [4].
Because of the complexity of 3-Hom–Lie algebras, we need some technique to complete
this paper. Now given a 3-Hom–Lie bialgebra (L, L∗), L ⊕ L∗ is a 3-Hom–Lie algebra
such that (L⊕ L∗, L, L∗) is a Manin triple of 3-Hom–Lie algebras. We also study the 3-Lie
classical Hom–Yang–Baxter equation in detail, and construct a solution in the semidirect
3-Hom–Lie algebra by introducing a notion of an O-operator for a 3-Hom–Lie algebra.
Finally, we describe symplectic structures and phase spaces of 3-Hom–Lie algebras from
3-Hom–pre-Lie algebra structures.

This paper is organized as follows. In Section 2, we recall some concepts and results,
and introduce the notions of the matched pairs of 3-Hom–Lie algebras, the 3-Hom–Lie
bialgebras and the Manin triples of 3-Hom–Lie algebras. In Section 3, we introduce the
notion of the O-operator and construct solutions of the 3-Lie classical Hom–Yang–Baxter
equation in terms of O-operators and 3-Hom–pre-Lie algebras. In Section 4, we introduce
the notion of the phase space of a 3-Hom–Lie algebra and show that a 3-Hom–Lie algebra
has a phase space if and only if it is sub-adjacent to a 3-Hom–pre-Lie algebra.

2. 3-Hom–Lie Bialgebras

In this section, we will recall some basic notions and facts about 3-Hom–Lie algebras
and present some examples. Then we give an equivalent description of the 3-Hom–Lie
bialgebras, the matched pairs and the Manin triples of 3-Hom–Lie algebras.

Definition 1 ([19]). A 3-Hom–Lie algebra is a triple (L, [·, ·, ·], α) consisting of a vector space L, a
3-ary skew-symmetric operation [·, ·, ·] : ∧3L→ L and an algebra morphism α : L→ L satisfying
the following 3-Hom–Jacobi identity

[α(x), α(y), [u, v, w]] = [[x, y, u], α(v), α(w)] + [α(u), [x, y, v], α(w)]

+[α(u), α(v), [x, y, w]],

for any x, y, u, v, w ∈ L.

A 3-Hom–Lie algebra is called regular if α is an algebra automorphism.

Example 1. Let (L, [·, ·, ·]) be a 3-Lie algebra and α : L→ L an algebra morphism, then the algebra
(L, [·, ·, ·]α, α) is a 3-Hom–Lie algebra, where [·, ·, ·]α is defined by

[x1, x2, x3]α = [α(x1), α(x2), α(x3)].

Example 2. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra and β : L→ L an algebra morphism such
that αβ = βα, then (L, [·, ·, ·]αβ = [·, ·, ·] ◦ (β⊗ β⊗ α), α ◦ β) is a 3-Hom–Lie algebra.
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Example 3. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra over a filed F and t an indeterminate, define
L : {∑(x ⊗ t + y ⊗ tn) ⊂ L ⊗ (F[t]/tn+1)|x, y ∈ L)}, α(L) = {∑(α(x) ⊗ t + α(y) ⊗ tn) :
x, y ∈ L}. Then (L, α) is a 3-Hom–Lie algebra with the operation [x1 ⊗ ti1 , x2 ⊗ ti2 , x3 ⊗ ti3 ] =
[x1, x2, x3]⊗ t∑ ij for all x1, x2, x3 ∈ L and i1, i2, i3 ∈ {1, 2, 3}.

Definition 2 ([10]). A representation of a 3-Hom–Lie algebra (L, [·, ·, ·], α) on the vector space V
with respect to A ∈ gl(V) is a bilinear map ρ : L ∧ L→ gl(V), such that for any x, y, z, u, v ∈ L,
the following equalities are satisfied:

ρ(α(u), α(v)) ◦ A = A ◦ ρ(u, v),

ρ([x, y, z], α(u)) ◦ A = ρ(α(y), α(z))ρ(x, u) + ρ(α(z), α(x))ρ(y, u)

+ρ(α(x), α(y))ρ(z, u),

ρ(α(x), α(y))ρ(z, u) = ρ(α(z), α(u))ρ(x, y) + ρ([x, y, z], α(u)) ◦ A

+ρ(α(z), [x, y, u]) ◦ A.

Then (V, A, ρ) is called a representation of L.

Lemma 1 ([10]). Let (V, A, ρ) be a representation of a 3-Hom–Lie algebra (L, [·, ·, ·], α). Then
there is a 3-Hom–Lie algebra structure on the direct sum of vector spaces L⊕V, defined by

[x1 + v1, x2 + v2, x3 + v3] = [x1, x2, x3] + ρ(x1, x2)v3 + ρ(x2, x3)v1 + ρ(x3, x1)v2,

(α⊕ A)(x1 + v1) = α(x1) + Av1,

for any x1, x2, x3 ∈ L and v1, v2, v3 ∈ V.

Example 4. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra and ad(x, y)z = [x, y, z], for all x, y, z ∈ L.
Then, (L, α, ad) is called a regular representation of L.

Definition 3. Let (L, [·, ·, ·], α) and (L′, [·, ·, ·]′, α′) be two 3-Hom–Lie algebras. A morphism from
(L, [·, ·, ·], α) to (L′, [·, ·, ·]′, α′) is a 3-Lie algebra morphism f : L→ L′ satisfying f ◦ α = α′ ◦ f .

Proposition 1. If f : (L, [·, ·, ·], α) −→ (L′, [·, ·, ·]′, α′) is a 3-Hom–Lie algebras morphism, then
(L′, ρ, α′) becomes a representation of L via f , that is, for all (x, y, z) ∈ L2 × L′, ρ(x, y)z =
[ f (x), f (y), z]′.

Proof. First, for any x, y ∈ L, z ∈ L′ we have

ρ(α(x), α(y))α′(z) = [ f (α(x)), f (α(y)), α′(z)]′

= [α′( f (x)), α′( f (y)), α′(z)]′

= α′[ f (x), f (y), z]′

= α′ρ(x, y)z.
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Next, for all x, y, z, u ∈ L, z ∈ L′ we have

ρ([x, y, z], α(u)) ◦ α′ − ρ(α(y), α(z))ρ(x, u)− ρ(α(z), α(x))ρ(y, x)− ρ(α(x), α(y))ρ(z, u)

= [ f ([x, y, z], f (α(x)), α′(v)]′ − [ f (α(y)), f (α(z)), ρ(x, u)v]′

− [ f (α(z)), f (α(x)), ρ(y, u)v]′ − [ f (α(x)), f (α(y)), ρ(z, u)v]′

= [[ f (x), f (y), f (z)]′α′ f (u)), α′(v)]′ − [α′ f (y)), α′( f (z)), [ f (x), f (u), v]′]′

− [α′ f (z)), α′( f (x)), [ f (y), f (u), v]′]′ − [α′ f (x)), α′( f (y)), [ f (z), f (u), v]′]′

= 0(by3− HomJacobiidentity),

ρ(α(x), α(y))ρ(z, u)− ρ(α(z), α(u))ρ(x, y)− ρ([x, y, z], α(u))α′(v)− ρ(α(z), [x, y, u])α′(v)

= [ f (α(x), f (α(y), ρ(z, u)v]′ − [ f (α(z), f (α(u), ρ(x, y)v]′

− [ f ([x, y, z], f (α(u)), α′(v)]′ − [ f (α(z)), f ([x, y, u]), α′(v)]′

= [α′( f (x)), α′( f (y)), [ f (z), f (u), v]′]′ − [α′( f (u)), [ f (x), f (y), v]′]′

− [[ f (x), f (y), f (z)]′, α′( f (u)), α′(v)]′ − [α′( f (z)), [ f (x), f (y), f (u)]′, α′(v)]′

= 0(by3− HomJacobiidentity).

This finishes the proof.

Proposition 2. Let (L, [·, ·, ·], α) and (L′, [·, ·, ·]′, α′) be two 3-Hom–Lie algebras. Suppose that
there are two skew-symmetric linear maps ρ : L⊗ L→ gl(L′) and µ : L′ ⊗ L′ → gl(L) which are
representations of L and L′ respectively, satisfying the following equations:

µ(α′(a4), α′(a5))[x1, x2, x3]− [µ(a4, a5)x1, α(x2), α(x3)]

−[α(x1), µ(a4, a5)x2, α(x3)]− [α(x1), α(x2), µ(a4, a5)x3] = 0, (1)

µ(ρ(x1, x4)a5, α′(a3))α(x2)− µ(ρ(x2, x4)a5, α′(a3))α(x1)

−µ(ρ(x1, x2)a3, α′(a3))α(x4) + [α(x1), α(x2), µ(a3, a5)x4] = 0, (2)

[µ(a2, a3)x1, α(x4), α(x5)]− µ(α′(a2), α′(a3))[x1, x4, x5]

−µ(ρ(x4, x5)a2, α′(a3))α(x1)− µ(α′(a2), ρ(x4, x5)a3)α(x1) = 0, (3)

ρ(α(x4), α(x5))[a1, a2, a3]
′ − [ρ(x4, x5)a1, α′(a2), α′(a3)]

′

−[α′(a1), ρ(x4, x5)a2, α′(a3)]
′ − [α′(a1), α′(a2), ρ(x4, x5)a3]

′ = 0, (4)

ρ(µ(a1, a4)x5, α(x3))α
′(a2)− ρ(µ(a2, a4)x5, α(x3))α

′(a1)

−ρ(µ(a1, a2)x3, α(x5))α
′(a4) + [α′(a1), α′(a2), ρ(x3, x5)a4]

′ = 0, (5)

[ρ(x2, x3)a1, α′(a4), α′(a5)]− ρ(α(x2), α(x3))[a1, a4, a5]
′

−ρ(µ(a4, a5)x2, α(x3))α
′(a1)− ρ(α(x2), µ(a4, a5)x3)α

′(a1) = 0, (6)

for any xi ∈ L and ai ∈ L′, 1 ≤ i ≤ 5. Then, there is a 3-Hom–Lie algebra structure on L⊕ L′

defined by

(α⊕ α′)(x1 + a1) = α(x1) + α′(a1),

[x1 + a1, x2 + a2, x3 + a3]L⊕L′ = [x1, x2, x3] + ρ(x1, x2)a3 + ρ(x3, x1)a2 + ρ(x2, x3)a1

+[a1, a2, a3]
′ + µ(a1, a2)x3 + µ(a3, a1)x2 + µ(a2, a3)x1.

Moreover, (L, L′, [·, ·, ·], [·, ·, ·]′, ρ, µ, α, α′) satisfying the above conditions is called a matched
pair of 3-Hom–Lie algebras.

Proof. Straightforward.

Definition 4. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra. A bilinear form 〈·, ·〉 on L is called
invariant if it satisfies

〈[x, y, z], α(u)〉+ 〈[x, y, u], α(z)〉 = 0, ∀x, y, z, u ∈ L.
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A 3-Hom–Lie algebra L is called pseudo-metric if there is a non-degenerate symmetric invariant
bilinear form on L.

Definition 5. A Manin triple of 3-Hom–Lie algebras consists of a pseudo-metric 3-Hom–Lie
algebra (L, [·, ·, ·], 〈·, ·〉, α) and 3-Hom–Lie algebras L1 and L2 such that

(1) L1, L2 are isotropic 3-Hom–Lie subalgebras of L;
(2) L = L1 ⊕ L2 as the direct sum of vector spaces;
(3) For all x1, y1 ∈ L1 and x2, y2 ∈ L2, we have pr1[x1, y1, x2] = 0 and pr2[x2, y2, x1] = 0,

where pr1 and pr2 denote the projections from L1 ⊕ L2 to L1, L2, respectively.

Given a representation (V, A, ρ), define ρ∗ : L ∧ L→ gl(V∗) by

〈ρ∗(x, y)( f ), v〉 = −〈 f , ρ(x, y)(v)〉, ∀x, y ∈ L, f ∈ V∗, v ∈ V.

As observed in [4], (V∗, A∗, ρ∗) is not a representation of L on V∗ with respect to A∗

in general. It is easy to obtain the following result by Proposition 2.

Proposition 3. Let (V, A, ρ) be a representation of a 3-Hom–Lie algebra (L, [·, ·, ·], α). Then
(V∗, A∗, ρ∗) is a representation of the 3-Hom–Lie algebra (L, [·, ·, ·], α) if the following conditions hold:

(i) A ◦ ρ(α(u), α(v)) = ρ(u, v) ◦ A,

(ii) A ◦ ρ([x, y, z], α(u)) = ρ(y, z)ρ(α(x), α(u)) + ρ(z, x)ρ(α(y), α(u))

+ρ(x, y)ρ(α(z), α(u)),

(iii) ρ(x, y)ρ(α(z), α(u)) = ρ(z, u)ρ(α(x), α(y)) + A ◦ ρ([x, y, z], α(u))

+A ◦ ρ(α(z), [x, y, u]),

for all x, y, z, u, v ∈ L.

A representation (V, A, ρ) is called admissible if (V∗, A∗, ρ∗) is also a representation,
i.e., conditions (i),(ii) and (iii) in Proposition 3 are satisfied. When we focus on the adjoint
representation, we have the following corollary:

Corollary 1. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra. The adjoint representation (L, α, ad) is
admissible if the following three equations hold:

[(id− α2)(u), (id− α2)(v), α(w)] = 0, (7)

[[α(x), α(y), α(z)], α2(u), α(w)] = [y, z, [α(x), α(u), w]] + [z, x, [α(y), α(u), w]]

+[x, y, [α(z), α(u, w]], (8)

[x, y, [α(z), α(u), w]] = [z, u, [α(x), α(y)]] + [[α(x), α(y), α(z)], α2(u), α(w)]

+[α2(z), [α(x), α(y), α(u)], α(w)], (9)

for all x, y, z, u, v, w ∈ L.

Definition 6. A 3-Hom–Lie algebra (L, [·, ·, ·], α) is called admissible if its adjoint representation
is admissible, i.e., Equations (7)–(9) are satisfied.

In the following, we concentrate on the case that L′ is L∗ , the dual space of L, and
α′ = α∗, ρ = ad∗, µ = a∂∗, where a∂∗ is the dual map of a∂.

Let (L, [·, ·, ·], α) be an admissible 3-Hom–Lie algebra. Then, we have a natural nonde-
generate symmetric bilinear form 〈·, ·〉 on L⊕ L∗ given by

〈x + ξ, y + η〉 = 〈x, η〉+ 〈y, ξ〉, ∀x, y ∈ L, ξ, η ∈ L∗. (10)
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There is also a twist map α⊕ α∗ and a bracket operation [·, ·, ·]L⊕L∗ on L⊕ L∗ given by

(α⊕ α∗)(x + ξ) = α(x) + α∗(ξ),

[x + ξ, y + η, z + γ]L⊕L∗ = [x, y, z] + ad∗x,yγ + ad∗y,zξ + ad∗z,xη

+a∂∗ξ,ηz + a∂∗η,γx + a∂∗γ,ξ y + [ξ, η, γ]∗. (11)

Note that the bracket operation [·, ·, ·]L⊕L∗ is naturally invariant with respect to
the symmetric bilinear form 〈·, ·〉 and satisfies the condition (10). Assume that (L ⊕
L∗, [·, ·, ·]L⊕L∗ , α⊕ α∗) is a 3-Hom–Lie algebra, then obviously L and L∗ are isotropic subal-
gebras. Consequently, ((L⊕ L∗, 〈·, ·〉, α⊕ α∗), L, L∗) is a Manin triple, which is called the
standard Manin triple of 3-Hom–Lie algebras.

Next we will show a close relation between the matched pair and the Manin triple of
admissible 3-Hom–Lie algebras.

Lemma 2. Let (L, [·, ·, ·], α) and (L∗, [·, ·, ·]∗, α∗) be two admissible 3-Hom–Lie algebras. If
Equations (1)–(3) hold. Then, (L, L∗, ad∗, a∂∗, α, α∗) is a matched pair.

Proof. For any x1, x2, x4 ∈ L and a3, a5, a6 ∈ L∗, we have

〈−a∂∗ad∗x1,x2 a3,a5
α(x4) + a∂∗ad∗x1,x4 a5,a3

α(x2)− a∂∗ad∗x2,x4 a5,a3
α(x1)

+[α(x1), α(x2), a∂∗a3,a5
x4], a6〉

= 〈[ad∗x1,x2
a3, a5, a6]

∗, α(x4) > − < [ad∗x1,x4
a5, a3, a6]

∗, α(x2)〉
+〈[ad∗x2,x4

a5, a3, a6]
∗ − ad∗α(x2),a∂∗a3,a5 x4

a6, α(x1)〉

= 〈x1, ad∗x2,a∂∗a5,a6 x4
α∗(a3) + ad∗x4,a∂∗a3,a6 x2

α∗(a5)

+ad∗x2,x4
a5, α∗(a3), α∗(a6)]

∗ − ad∗x2,a∂∗a3,a5 x4
α∗(a6)〉,

which implies the equivalence between Equations (2) and (5). The proofs of Equation (1)
⇐⇒ Equation (4), Equation (3)⇐⇒ Equation (6) are similar.

Proposition 4. Let (L, [·, ·, ·], α) and (L∗, [·, ·, ·]∗, α∗) be two admissible 3-Hom–Lie algebras.
Then (L ⊕ L∗, 〈·, ·〉, α ⊕ α∗, L, L∗) under the nondegenerate symmetric bilinear form (10) and
the bracket operation (11) is a standard Manin triple if and only if (L, L∗, ad∗, a∂∗, α, α∗) is a
matched pair.

Proof. Straightforward from Lemma 2.

Theorem 1. Let (L, [·, ·, ·], α) and (L∗, [·, ·, ·]∗, α∗) be two admissible 3-Hom–Lie algebras, ∆ :
L→ L⊗ L⊗ L a linear map. Suppose that ∆∗ : L∗ ⊗ L∗ ⊗ L∗ → L∗ defines a 3-Hom–Lie algebra
structure [·, ·, ·]∗ on L∗. Then, (L, L∗, ad∗, a∂∗, α, α∗) is a matched pair if and only if the following
equations are satisfied:

∆([x, y, z]) = (α⊗ α⊗ ady,z)∆(x) + (α⊗ α⊗ adz,x)∆(y) + (α⊗ α⊗ adx,y)∆(z) (12)

∆([x, y, z]) = (α⊗ α⊗ ady,z)∆(x) + (α⊗ ady,z ⊗ α)∆(x) + (ady,z ⊗ α⊗ α)∆(x) (13)

(adx,y ⊗ α⊗ α + α⊗ α⊗ adx,y)∆(z) = (α⊗ adz,x ⊗ α)∆(y) + (α⊗ ady,z ⊗ α)∆(x) (14)

for any x, y, z ∈ L.

Proof. Let {e1, e2, ..., en} be a basis of L and {e∗1 , e∗2 , ..., e∗n} the dual basis. Suppose

[ei, ej, ek] =
n

∑
l=1

cl
ijkel , [e∗i , e∗j , e∗k ]

∗ =
n

∑
l=1

dl
ijke∗l .
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Let

α(ei) = ∑
s

fses, α(ej) = ∑
n

gnen, α(ek) = ∑
n

hmem,

α∗(e∗ξ ) = ∑
s

f ∗s e∗s , α∗(e∗η) = ∑
n

g∗ne∗n, α∗(e∗k ) = ∑
m

h∗me∗m.

Then we have

ad∗ei ,ej
e∗k = −

n

∑
l=1

cl
ijke∗l , a∂∗e∗i ,e∗j

ek = −
n

∑
l=1

dl
ijkel , ∆(ek) =

n

∑
i,j,l=1

dk
ijlei ⊗ ej ⊗ ek.

By Equation (1), we have

a∂∗α∗(e∗ξ ),α∗(e
∗
η)
[ei, ej, ek]− [a∂∗e∗ξ ,e∗η ei, α(ej), α(ek)]

−[α(ei), a∂∗e∗ξ ,e∗η ej, α(ek)]− [α(ei), α(ej), a∂∗e∗ξ ,e∗η ek] = 0.

It follows that

n

∑
l=1

(− f ∗s g∗ndl
snmcl

ijk + gnhmdi
ξηlc

m
lnm + fshmdj

ξηlc
m
slm + fsgndk

ξηlc
m
snl) = 0,

as the coefficient of em. On the other hand, the left hand side of the above equation is
also the coefficient of eξ ⊗ eη ⊗ em in Equation (12). Thus, we deduce that Equation (1) is
equivalent to Equation (12). The proofs of the other case are similar.

Definition 7. Let (L, [·, ·, ·], α) and (L∗, [·, ·, ·]∗, α∗) be two admissible 3-Hom–Lie algebras, ∆ :
L → L⊗ L⊗ L be a linear map. Suppose that ∆∗ : L∗ ⊗ L∗ ⊗ L∗ → L∗ defines a 3-Hom–Lie
algebra structure [·, ·, ·]∗ on L∗. If ∆ satisfies Equations (12)–(14), then we call (L, L∗, α, ∆) a
double construction 3-Hom–Lie bialgebra.

Example 5. Consider the 4-dimensional 3-Hom–Lie algebra (L, [·, ·, ·], α) with respect to a basis
{e1, e2, e3, e4} given by

[e2, e3, e4] = e1, α(e1) = −e1, α(e2) = e2, α(e3) = e3, α(e4) = e4.

Define the skew-symmetric linear map ∆ : L→ L⊗ L⊗ L satisfying Equation (12) is given
as follows

∆(e1) = 0, ∆(e2) = e1 ∧ e2 ∧ e3 + e1 ∧ e2 ∧ e4 + e1 ∧ e3 ∧ e4,

∆(e3) = e1 ∧ e2 ∧ e3 − e1 ∧ e3 ∧ e4 + e1 ∧ e2 ∧ e4,

∆(e4) = −e1 ∧ e2 ∧ e4 + e1 ∧ e3 ∧ e4 + e1 ∧ e2 ∧ e3,

then (L, ∆) is a double construction 3-Hom–Lie bialgebra.

Combining Lemma 2, Proposition 6, Theorem 1 and Definition 7, we have

Theorem 2. Let (L, [·, ·, ·], α) and (L∗, [·, ·, ·]∗, α∗) be two admissible 3-Hom–Lie algebras, ∆ :
L → L⊗ L⊗ L be a linear map. Suppose that ∆∗ : L∗ ⊗ L∗ ⊗ L∗ → L∗ defines a 3-Hom–Lie
algebra structure [·, ·, ·]∗ on L∗. Then, the following statements are equivalent:

(1) (L, L∗, α, ∆) is a double construction 3-Hom–Lie bialgebra.
(2) (L⊕ L∗, 〈·, ·〉, α⊕ α∗) is a standard Manin triple of admissible 3-Hom–Lie algebras.
(3) (L, L∗, ad∗, a∂∗, α, α∗) is a matched pair of admissible 3-Hom–Lie algebras.
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Example 6. Consider the 4-dimensional 3-Hom–Lie algebra (L, [·, ·, ·], α) in Example 5 and
{e∗1 , e∗2 , e∗3 , e∗4} is the dual basis. On the vector space L ⊕ L∗ define a bilinear form 〈·, ·〉 by
Equation (10), the non-zero product of 3-Hom–Lie algebra structure on L⊕ L∗ is given by

[e2, e3, e4] = e1, α(e1) = −e1, α(e2) = e2, α(e3) = e3, α(e4) = e4,

[e∗1 , e∗2 , e∗3 ]
∗ = e∗2 + e∗3 + e∗4 , [e∗1 , e∗2 , e∗4 ]

∗ = e∗2 + e∗3 − e∗4 ,

[e∗1 , e∗3 , e∗4 ]
∗ = e∗2 − e∗3 − e∗4 , [e1, e2, e∗1 ] = −e∗3 , [e1, e3, e∗1 ] = e∗2 ,

[e2, e3, e∗1 ] = −e∗1 , [e2, e∗1 , e∗2 ] = −e3 − e4, [e2, e∗2 , e∗3 ] = −e1,

[e2, e∗1 , e∗3 ] = e2 − e4, [e2, e∗2 , e∗4 ] = −e1, [e2, e∗1 , e∗4 ] = e2 + e3,

[e2, e∗3 , e∗4 ] = −e1, [e3, e∗1 , e∗2 ] = −e3 − e4, [e3, e∗2 , e∗3 ] = −e1,

[e3, e∗2 , e∗4 ] = −e1, [e3, e∗1 , e∗4 ] = e2 − e3, [e3, e∗3 , e∗4 ] = e1,

[e3, e∗3 , e∗4 ] = e1, [e4, e∗1 , e∗2 ] = −e3 + e4, [e4, e∗2 , e∗3 ] = −e1,

[e4, e∗1 , e∗3 ] = e2 − e4, [e3, e∗1 , e∗3 ] = e2 + e4.

They correspond to the double construction 3-Hom–Lie bialgebra (L, ∆) given in Example 5.

3. O-Operators and 3-Hom–pre-Lie Algebras

In this section, we mainly study the O-operator of a 3-Hom–Lie algebra and present a
class of solutions of 3-Hom–Lie Yang–Baxter equations.

Definition 8. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra and (V, A, ρ) a representation. A linear
operator T : V → L is called anO-operator associated to (V, A, ρ) if T satisfies: for any u, v, w ∈ L,

α ◦ T = T ◦ A, (15)

[Tu, Tv, Tw] = T(ρ(Tu, Tv)w + ρ(Tv, Tw)u + ρ(Tw, Tu)v). (16)

Example 7. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra. AnO-operator of L associated to the adjoint
representation (L, ad, α) is nothing but the Rota-Baxter operator of weight zero introduced in [17].

Definition 9. A 3-Hom–pre-Lie algebra is a triple (L, {·, ·, ·}, α) consisting of a vector space L,
with a trilinear map {·, ·, ·} : L⊗ L⊗ L→ L and an algebra morphism α : L→ L satisfying

{x, y, z} = −{y, x, z}, (17)

{α(x), α(y), {z, u, v}} = {[x, y, z]C, α(u), α(v)}+ {α(z), [x, y, u]C, α(v)}
+{α(z), α(u), [x, y, v]C}, (18)

{[x, y, z], α(u), α(v)} = {α(x), α(y), [z, u, v]C}+ {α(y), α(z), [x, u, v]C}
+{α(z), α(x), [y, u, v]C}, (19)

for any x, y, z, u, v ∈ L.

Proposition 5. Let (L, {·, ·, ·}, α) be a 3-Hom–pre-Lie algebra. Then, the induced 3-commutator

[x, y, z]C = {x, y, z}+ {y, z, x}+ {z, x, y}, (20)

defines a 3-Hom–Lie algebra (Lc, {·, ·, ·}C, α).

Proof. It is easy to check that [·, ·, ·]C is skew-symmetric. For any x1, x2, x3, x4, x5 ∈ L,
we have
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[α(x1), α(x2), [x3, x4, x5]C]C − [[x1, x2, x3]C, α(x4), α(x5)]C − [α(x3), [x1, x2, x4]C, α(x5)]C

−[α(x3), α(x4), [x1, x2, x5]C, ]C
= {α(x1), α(x2), {x3, x4, x5}}+ {α(x1), α(x2), {x4, x5, x3}}+ {α(x1), α(x2), {x5, x3, x4}}

+{α(x2), [x3, x4, x5]C, α(x1)}+ {[x3, x4, x5], α(x1), α(x2)}
−{α(x4), α(x5), {x1, x2, x3}} − {α(x4), α(x5), {x2, x3, x1}} − {α(x4), α(x5), {x3, x1, x2}}
−{[x1, x2, x3], α(x4), α(x5)} − {α(x5), [x1, x2, x3]C, α(x4)}
−{α(x5), α(x3), {x1, x2, x4}} − {α(x5), α(x3), {x2, x4, x1}} − {α(x5), α(x3), {x2, x4, x1}}
−{[x1, x2, x4], α(x5), α(x3)} − {α(x3), [x1, x2, x4]C, α(x5)}
−{α(x3), α(x4), {x1, x2, x5}} − {α(x3), α(x4), {x2, x5, x1}} − {α(x3), α(x4), {x5, x1, x2}}
−{[x1, x2, x5]C, α(x3), α(x4)} − {α(x4), [x1, x2, x5]C, α(x3)}

= 0.

Thus the proof is finished.

Definition 10. Let (L, {·, ·, ·}, α) be a 3-Hom–pre-Lie algebra. The 3-Hom–Lie algebra (Lc, [·, ·, ·]C, α)
is called the sub-adjacent 3-Hom–Lie algebra of (L, {·, ·, ·}, α) and (L, {·, ·, ·}, α) is called a com-
patible 3-Hom–pre-Lie algebra of the 3-Hom–Lie algebra (Lc, [·, ·, ·]C, α).

Definition 11. Let (L, {·, ·, ·}, α) and (L′, {·, ·, ·}′, α′) be two 3-Hom–pre-Lie algebras. A mor-
phism from (L, {·, ·, ·}, α) to (L′, {·, ·, ·}′, α′) is a 3-pre-Lie algebra morphism f : L→ L′ satisfying
f ◦ α = α′ ◦ f .

Theorem 3. Let L = (L, {·, ·, ·}, α) be a 3-Hom–pre-Lie algebra and α′ : L → L be a 3-pre-Lie
algebras morphism such that α and α′ commute. Define

{·, ·, ·}α′ : L× L→ L, {x, y, z}α′ = α′({x, y, z}), ∀x, y, z ∈ L.

Then L′α = (L′α = L, {x, y, z}α′ , α′) is a 3-Hom–pre-Lie algebra, called α′-twist or Yau twist of L.
Moreover, assume that L′ = (L′, {·, ·, ·}′, β) is another 3-Hom–pre-Lie algebra, and β′ : L′ → L′
is a 3-Hom–pre-pre-Lie algebras morphism such that α and α′ commute. Let f : L → L′ be a 3-Hom–
pre-Lie algebras morphism satisfying f ◦ α′ = β′ ◦ f . Then, f : Lα′ → L′β′ is a 3-Hom–pre-Lie
algebras morphism.
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Proof. Let x, y, z ∈ L,

{x, y, z}α′ = α′({x, y, z})
= {α′(x), α′(y), α′(z)}
= −{α′(y), α′(x), α′(z)}
= −α′({y, x, z})
= −{y, x, z}α′ ,

{αα′(x), αα′(y), {z, u, v}α′}α′ = {αα′2(x), αα′2(y), α′{α′(z), α′(u), α′(v)}}
= {αα′2(x), αα′2(y), {α′2(z), α′2(u), α′2(v)}}
= {[α′2(x), α′2(y), α′2(z)]C, αα′2(u), αα′2(v)}
+ {αα′2(z), [α′2(x), α′2(y), α′2(u)], αα′2(v)}
+ {αα′2(z), αα′2(u), [α′2(x), α′2(y), α′2(v)]}

= {([x, y, z]α′)C, αα′(u), αα′(v)}α′

+ {αα′(z), ([x, y, u]α′)C, αα′(v)}α′

+ {αα′(z), αα′(u)}α′ , ([x, y, v]α′)C.

Similarly, we have

{[x, y, z], αα′(u), αα′(v)} = {αα′(x), αα′(y), [z, u, v]}
+ {αα′(y), αα′(z), [x, u, v]C}
+ {αα′(z), αα′(x), [y, u, v]C}.

For the second assertion, we have

f ({x, y, z}α′) = f ({α′(x), α′(y), α′(z)})
= { f (α′(x)), f (α′(y)), f (α′(z))}′)
= {β′( f (x)), β′( f (y)), β′( f (z))}′).

Corollary 2. If A = (A, {·, ·, ·}, α) is a 3-Hom–pre-Lie algebra, for any n ∈ N∗, the following
results hold:

1. The nth derived 3-Hom–pre-Lie algebra of type 1 of A is defined by An
1 = (A, {·, ·, ·}(n) =

αn ◦ {·, ·, ·}, αn+1).
2. The nth derived 3-Hom–pre-Lie algebra of type 2 of A is defined byAn

2 = (A, {·, ·, ·}(2n−1) =

α2n−1 ◦ {·, ·, ·}, α2n
).

Proof. Apply Theorem 3 with α′ = αn and α′ = α2n−1 respectively.

Define the left multiplication L : ∧2L→ gl(L) by L(x, y)z = {x, y, z} for all x, y, z ∈ L.
Then (L,L, α) is a representation of the 3-Hom–Lie algebra L. Similarly, we define the
right multiplication R : ∧2L → gl(L) by R(x, y)z = {z, x, y}. If there is an admissible
3-Hom–pre-Lie algebra structure on its dual space L∗, we denote the left multiplication and
right multiplication by L∗ andR∗ respectively.

Proposition 6. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra and (V, A, ρ) a representation. Suppose
that the linear map T : V → L is an O-operator associated to (V, A, ρ). Then, there exists a
3-Hom–pre-Lie algebra structure on V given by

{u, v, w} = ρ(Tu, Tv)w, ∀u, v, w ∈ V.
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Proof. For any u, v, w ∈ V, we have

{u, v, w} = ρ(Tu, Tv)w = −ρ(Tv, Tu)w = −{v, u, w}.

Since [u, v, w]C = {u, v, w}+ {v, w, u}+ {w, u, v}, we have

[u, v, w]C = ρ(Tu, Tv)w + ρ(Tv, Tw)u + ρ(Tw, Tu)v.

Because T is an O-operator, we have

T[u, v, w]C = [Tu, Tv, Tw].

For any v1, v2, v3, v4, v5 ∈ V, we have

{β(v1), β(v2), {v3, v4, v5}} = ρ(T ◦ A(v1), T ◦ A(v2))ρ(Tv3, Tv4)v5,

{[v1, v2, v3], β(v4), β(v5)}
= ρ(T[v1, v2, v3], TA(v4))A(v5) = ρ([Tv1, Tv2, Tv3], T ◦ A(v4))A(v5),

{β(v3), [v1, v2, v4], β(v5)}
= ρ(T ◦ A(v3), T[v1, v2, v4])A(v5) = ρ(T ◦ A(v3), [Tv1, Tv2, Tv4])A(v5),

{β(v3), β(v4), {v1, v2, v5}} = ρ(T ◦ A(v3), T ◦ A(v4))ρ(Tv1, Tv2)v5.

Since (V, A, ρ) is a representation, we can check that Equations (18) and (19) hold. This
finishes the proof.

Corollary 3. Let T : V → L be an O-operator on a 3-Hom–Lie algebra (L, [·, ·, ·], α) associated to
the representation (V, A, ρ). Then, T is a morphism from the 3-Hom–Lie algebra (V, [·, ·]C, A) to
(A, [·, ·], α).

Proof. For all u, v, w ∈ V, we have

T([u, v, w]C) = T({u, v, w}+ {w, u, v}+ {v, w, u})
= T(ρ(Tu, Tv)w + ρ(Tw, Tu)v + ρ(Tv, Tw)u)

= [Tu, Tv, Tw],

as desired.

Example 8. Let (A, [·, ·, ·], α) be a 3-Hom–Lie algebra and R : A −→ A a Rota-Baxter operator.
Define a new operation on A by {x, y, z} = [R(x), R(y), z]. Then, (A, {·, ·, ·}, α) is a 3-Hom–pre-
Lie algebra and R is a homomorphism from the sub-adjacent 3-Hom–Lie algebra (A, [·, ·, ·]C, α) to
(A, [·, ·, ·], α).

Proposition 7. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra. Then there exists a compatible 3-Hom–
pre-Lie algebra if and only if there exists an invertible O-operator of L.

Proof. Let T be an invertible O-operator of L associated to a representation (V, A, ρ). Then
there exists a 3-Hom–pre-Lie algebra structure on (V, A, ρ) defined by

{u, v, w} = ρ(Tu, Tv)(w), ∀u, v, w ∈ V.

Moreover, there is an induced 3-Hom–pre-Lie algebra structure {·, ·, ·} on L = T(V)
given by

{x, y, z} = T{T−1x, T−1y, T−1z} = Tρ(x, y)T−1z.
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Since T is an O-operator, we have

[x, y, z] = Tρ(y, z)T−1x + Tρ(z, x)T−1y + Tρ(x, y)T−1z

= {x, y, z}+ {y, z, x}+ {z, x, y}.

Therefore, (L, {·, ·, ·}, α) is a compatible 3-Hom–pre-Lie algebra.
Conversely, the identity map id is an O-operator of L.

Definition 12 ([17]). Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra and r ∈ L⊗ L. The equation

[[r, r, r]]α = 0

is called the 3-Hom–Lie Yang–Baxter equation.

Let (L, [·, ·, ·], α) be an admissible 3-Hom–Lie algebra. For any r ∈ L⊗ L, the induced
skew-symmetric linear map r : L∗ → L is defined by

〈r(ξ), η〉 = 〈r, ξ ∧ η〉.

We denote the ternary operation ∆∗ : L∗ ⊗ L∗ ⊗ L∗ → L∗ by [·, ·, ·]∗. According to [17],
for any r = ∑i xi ⊗ yi ∈ L⊗ L and x ∈ L, one can define

∆1(x) = ∑
i,j
[x, xi, xj]⊗ α(yj)⊗ α(yi),

∆2(x) = ∑
i,j

α(yi)⊗ [x, xi, xj]⊗ α(yj),

∆3(x) = ∑
i,j

α(yj)⊗ α(yi)⊗ [x, xi, xj].

Proposition 8. Let (L, [·, ·, ·], α) be an admissible 3-Hom–Lie algebra and r ∈ L⊗ L such that
α⊗

2
(r) = r. Suppose that r is skew-symmetric and ∆ = ∆1 + ∆2 + ∆3 : L→ L⊗ L⊗ L. Then

[ξ, η, γ]∗ = ad∗r(ξ),r(η)γ + ad∗r(η),r(γ)ξ + ad∗r(γ),r(ξ)η. (21)

Furthermore, we have

[r(ξ), r(η), r(γ)]− r([ξ, η, γ]∗) = [[r, r, r]](ξ, η, γ), (22)

for any ξ, η, γ ∈ L∗.

Proof. Let r = ∑i xi ⊗ yi, then for any x, y ∈ L and ξ, η, γ ∈ L∗, we have

〈x, ad∗r◦α∗(ξ),r◦α∗(η)γ〉 = 〈−[r ◦ α∗(ξ), r ◦ α∗(η), x], γ〉
= −〈r, α∗(η)⊗ ad∗r◦α∗(ξ),xγ〉

= ∑
i
〈yi, α∗(η)〉〈r, α∗(ξ)⊗ ad∗x,xi

γ〉

= ∑
i
〈yi, α∗(η)〉〈yj, α∗(ξ)〉〈[x, xi, xj], γ〉

= ∑
i,j
〈α(yi), η〉〈α(yj), ξ〉〈[x, xi, xj], γ〉

= 〈∑
i,j

α(yj)⊗ α(yi)⊗ [x, xi, xj], ξ ⊗ η ⊗ γ〉

= 〈∆3(x), ξ ⊗ η ⊗ γ〉.
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Similarly, we have

〈x, ad∗r◦α∗(η),r◦α∗(γ)(ξ)〉 = 〈∆1(x), ξ ⊗ η ⊗ γ〉, 〈x, ad∗r◦α∗(γ),r◦α∗(ξ)(η)〉
= 〈∆1(x), ξ ⊗ η ⊗ γ〉.

It follows that

〈∆(x), ξ ⊗ η ⊗ γ〉
= 〈∆1(x) + ∆2(x) + ∆3(x), ξ ⊗ η ⊗ γ〉
= 〈x, ad∗r◦α∗(η),r◦α∗(γ)ξ〉+ 〈x, ad∗r◦α∗(γ),r◦α∗(ξ)η〉+ 〈x, ad∗r◦α∗(ξ),r◦α∗(η)γ〉
= 〈x, [ξ, η, γ]∗〉.

So Equation (21) holds as required. For Equation (22) we take any κ ∈ L∗ and compute

[[r, r, r]](ξ, η, γ, κ)

= ∑
i,j,k

([xi, xj, xk]⊗ α(yi)⊗ α(yj)⊗ α(yk)(ξ, η, γ, κ)

+α(xi)⊗ [yi, xj, xk]⊗ α(yj)⊗ α(yk)(ξ, η, γ, κ)

α(xi)⊗ α(xj)⊗ [yi, yj, xk]⊗ α(yk)(ξ, η, γ, κ) +

α(xi)⊗ α(xj)⊗ α(xk)⊗ [yi, yj, yk](ξ, η, γ, κ))

= ∑
i,j,k
〈ξ, [xi, xj, xk]〉〈η, α(yi)〉〈γ, α(yj)〉〈κ, α(yk)〉+ 〈η, [yi, xj, xk]〉〈ξ, α(xi)〉

〈γ, α(yj)〉〈κ, α(yk)〉〈γ, [yi, yj, xk]〉〈ξ, α(xi)〉〈η, α(xj)〉〈κ, α(yk)〉+

〈κ, [yi, yj, yk]〉〈ξ, α(xi)〉〈η, α(xj)〉〈γ, α(xk)〉
= −〈ξ, [r ◦ α∗(η), r ◦ α∗(γ), r ◦ α∗(κ)〉 − 〈η, [r ◦ α∗(γ), r ◦ α∗(ξ), r ◦ α∗(κ)〉
−〈γ, [r ◦ α∗(ξ), r ◦ α∗(η), r ◦ α∗(κ)〉+ 〈κ, [r ◦ α∗(ξ), r ◦ α∗(η), r ◦ α∗(γ)〉

= 〈[r ◦ α∗(ξ), r ◦ α∗(η), r ◦ α∗(γ)]− r ◦ α∗([ξ, η, γ]∗), κ〉.

So Equation (22) holds and this finishes the proof.

Proposition 9. Let (L, [·, ·, ·], α) be a regular 3-Hom–Lie algebra and r ∈ L ⊗ L such that
α⊗

2
(r) = r. Suppose r is skew-symmetric and nondegenerate. Then, r is a solution of the 3-

Hom–Lie Yang–Baxter equation if and only if the nondegenerate skew-symmetric bilinear form B on
L defined by B(x, y) = 〈r−1(x), y〉 satisfies

B(α[x, y, z], w)− B(α[x, y, w], z) + B(α[x, z, w], y)− B(α[y, z, w], x) = 0,

for any x, y, z, w ∈ L.

Proof. For any x, y, z, w ∈ L, there exists ξ, η, γ, κ ∈ L∗ such that r(ξ) = x, r(η) = y,
r(γ) = z, r(κ) = w. If [[r, r, r]]α = 0, we have

B(α[x, y, z], w)

= 〈α[r(ξ), r(η), r(γ)], κ〉
= 〈r ◦ α∗(ad∗r◦α∗(ξ),r◦α∗(η)γ + ad∗r◦α∗(η),r◦α∗(γ)ξ + ad∗r◦α∗(γ),r◦α∗(ξ)η), κ〉
= 〈ad∗r◦α∗(ξ),r◦α∗(η)γ + ad∗r◦α∗(η),r◦α∗(γ)ξ + ad∗r◦α∗(γ),r◦α∗(ξ)η,−α ◦ r(κ)〉
= 〈γ, α[x, y, w]〉 − 〈−ξ, α[y, z, w]〉 − 〈−η, α[z, x, w]〉
= B(α[x, y, w], z)− B(α[x, z, w], y) + B(α[y, z, w], x).

Thus the proof is finished.
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4. Symplectic Structures and Phase Spaces of 3-Hom–Lie Algebras

In this section, we introduce the notions of symplectic structures and phase spaces of
3-Hom–Lie algebras, and prove that a 3-Hom–Lie algebra has a phase space if and only if it
is sub-adjacent to a 3-Hom–pre-Lie algebra.

Definition 13. A symplectic structure on a regular 3-Hom–Lie algebra (L, [·, ·, ·], α) is a nonde-
generate skew-symmetric bilinear form ω ∈ L∗ ∧ L∗ satisfying the following equality

ω([x, y, z], α(w))−ω([y, z, w], α(x)) + ω([z, w, x], α(y))−ω([w, x, y], α(z)) = 0, (23)

for any x, y, z, w ∈ L.

Definition 14 ([20]). Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra and B : L × L → F be a non-
degenerate symmetric bilinear form on L. If B satisfies

B([x, y, z], w) + B(z, [x, y, w]) = 0, ∀x, y, z, w ∈ L. (24)

Then B is called a metric on 3-Hom–Lie algebra (L, [·, ·, ·], α) and (L, [·, ·, ·], α, B) is a metric
3-Hom–Lie algebra.

If there exists a metric B and a symplectic structure ω on the 3-Hom–Lie algebra
(L, [·, ·, ·], α), then (L, [·, ·, ·], α, B, ω) is called a metric symplectic 3-Hom–Lie algebra.

Let (L, [·, ·, ·], α, B) be a metric 3-Hom–Lie algebra, we denote

DerB(L) = {D ∈ Der(L)|B(Dx, y) + B(x, Dy) = 0, ∀x, y ∈ L}.

Theorem 4. Let (L, [·, ·, ·], α, B) be a metric 3-Hom–Lie algebra. Then, there exists a symplectic
structure on L if and only if there exists a skew-symmetric invertible derivation D ∈ DerB(L).

Proof. Suppose that (L, [·, ·, ·], α, B) is a metric 3-Hom–Lie algebra, then for any x, y ∈ L,
define D : L→ L by

B(Dx, y) = ω(α(x), y). (25)

It is clear that D is invertible. Next we will check that D is a skew-symmetric invertible
derivation of (L, [·, ·, ·], α, B). In fact, for any x, y, z, w ∈ L, we have

B([Dx, y, z], w) + B([x, Dy, z], w) + B([x, y, Dz], w) + B(D[x, y, z], w)

= −B([y, z, w], Dx) + B([x, z, w], Dy)− B([x, y, w], Dz) + B([x, y, z], Dw)

= ω([x, y, z], α(w))−ω([y, z, w], α(x)) + ω([z, w, x], α(y))−ω([w, x, y], α(z)) = 0,

that is, D ∈ DerB(L).
Conversely, assume that D ∈ DerB(L) is a skew-symmetric invertible derivation.

Define ω by Equation (25), then there exists a symplectic structure on L satisfies
Equation (23).

Example 9. Let (L, [·, ·, ·], α) be a 3-Hom–Lie algebra and

F[t] = { f (t) =
m

∑
i=0

aiti|ai ∈ F, m ∈ N}

be the algebra of polynomials over F. We consider

Ln = L⊗ (tF[t]/tnF[t]),
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where tF[t]/tnF[t] is the quotient space of tF[t] module tnF[t]. Then, Ln is a nilpotent 3-Hom–Lie
algebra, with a linear map α′ : Ln → Ln and the following multiplication:

α′(x⊗ tp) = α(x)⊗ tp, [x⊗ tp, y⊗ tq, z⊗ tr]′ = [x, y, z]⊗ tp+q+r,

for any x, y, z ∈ L and p, q, r ∈ N \ {0}. Define an endomorphism D of Ln by

D(x⊗ tp) = p(x⊗ tp), ∀x ∈ L, p = 1, ..., n− 1.

Then D is an invertible derivation of the 3-Hom–Lie algebra Ln.
Let L̃n = Ln ⊕ L∗n, where L∗n is the dual space of Ln. Then, (L̃n, B) ia a metric 3-Hom–Lie

algebra with the multiplication

[x + f , y + g, z + h] = [x, y, z] + ad∗(y, z) f − ad∗(x, z)g + ad∗(x, y)h,

B(x + f , y + g) = f (y) + g(x),

for any x, y, z ∈ Ln and f , g, h ∈ L∗n. And define linear maps D̂, α̃ : L̃n → L̃n by

D̂(x + f ) = Dx + D∗ f , α̃(x + f ) = α(x) + f ◦ α,

where D∗ f = − f D. Then, D̂ is invertible. Hence (L̃n, α̃, B, ω) is a metric symplectic 3-Hom–Lie
algebra, where ω is defined as follows:

ω(α̃(x + f ), y + g) = B(D̂(x + f ), y + g) = − f (Dy) + g(Dx).

Proposition 10. Let (L, [·, ·, ·], α, ω) be a symplectic 3-Hom–Lie algebra. Then, there exists a
compatible 3-Hom–pre-Lie algebra structure {·, ·, ·} on L given by

ω({x, y, z}, α(w)) = −ω(α(z), [x, y, w]), ∀x, y, z, w ∈ L. (26)

Proof. For any x, y ∈ L, define the map T : L∗ → L by 〈T−1x, y〉 = ω(x, y). By Equation
(23), we obtain that T is an invertible O-operator associated to the coadjoint representation
(L∗, ad∗, α∗), and there exists a compatible 3-Hom–pre-Lie algebra on L given by {x, y, z} =
T(ad∗x,yT−1z). For any x, y, z, w ∈ L, we have

ω({x, y, z}, α(w)) = ω(T(ad∗x,yT−1z), α(w)) = 〈ad∗x,yT−1z, α(w)〉

= 〈T−1(α(z)),−[x, y, w]〉 = −ω(α(z), [x, y, w]),

as desired. The proof is finished.

Let V be a vector space and V∗ its dual space. Then, there is a natural nondegenerate
skew-symmetric bilinear form ω on T∗V = V ⊕V∗ given by:

ω(x + f , y + g) = 〈 f , y〉 − 〈g, x〉, ∀x, y ∈ V, f , g ∈ V∗. (27)

Definition 15. Let (L, [·, ·, ·], α) and (L∗, [·, ·, ·]∗, α∗) be two admissible 3-Hom–Lie algebras. If
there is a 3-Hom–Lie algebra structure [·, ·, ·] on the direct sum vector space T∗L = L⊕ L∗ such
that (L⊕ L∗, [·, ·, ·], α⊕ α∗, ω) is a symplectic 3-Hom–Lie algebra, where ω given by Equation
(27), (L, [·, ·, ·], α) and (L∗, [·, ·, ·]∗, α∗) are two 3-Hom–Lie subalgebras of (L⊕ L∗, [·, ·, ·], α⊕ α∗).
Then the symplectic 3-Hom–Lie algebra (L⊕ L∗, [·, ·, ·], α⊕ α∗, ω) is called a phase space of the
3-Hom–Lie algebra (L, [·, ·, ·], α).

Next, we will study the relation between 3-Hom–pre-Lie algebras and phase spaces of
3-Hom–Lie algebras.
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Theorem 5. A 3-Hom–Lie algebra has a phase space if and only if it is sub-adjacent to a 3-Hom–
pre-Lie algebra.

Proof. ⇐ Assume (L, {·, ·, ·}, α) is a 3-Hom–pre-Lie algebra. By Proposition 5, the left
multiplication L is a representation of the sub-adjacent 3-Lie algebra LC on L, L∗ is a
representation of the sub-adjacent 3-Lie algebra Lc on L∗, then we have a 3-Hom–Lie
algebra (Lc ⊕ L∗, [·, ·, ·]L∗ , α⊕ α∗). For any x1, x2, x3, x4 ∈ L and f1, f2, f3, f4 ∈ L∗, we have

ω([x1 + f1, x2 + f2, x3 + f3]L∗ , α(x4) + α∗( f4))

= ω([x1, x2, x3]C + L∗(x1, x3) f3 + L∗(x2, x3) f1 + L∗(x3, x1) f2, α(x4) + α∗( f4))

= 〈L∗(x1, x3) f3 + L∗(x2, x3) f1 + L∗(x3, x1) f2, α(x4)〉 − 〈α∗( f4), [x1, x2, x3]C〉
= −〈α∗( f3), {x1, x2, x3}〉 − 〈α∗( f1), {x2, x3, x4}〉 − 〈α∗( f2), {x3, x1, x4}〉
−〈α∗( f4), {x1, x2, x3}〉 − 〈α∗( f4), {x2, x3, x1}〉 − 〈α∗( f4), {x3, x1, x2}〉.

Similarly, we have

ω([x2 + f2, x3 + f3, x4 + f4]L∗ , α(x1) + α∗( f1))

= −〈α∗( f4), {x2, x3, x1}〉 − 〈α∗( f2), {x3, x4, x1}〉 − 〈α∗( f3), {x4, x2, x1}〉
−〈α∗( f1), {x2, x3, x4}〉 − 〈α∗( f1), {x3, x4, x2}〉 − 〈α∗( f1), {x4, x2, x3}〉,
ω([x3 + f3, x4 + f4, x1 + f1, ]L∗ , α(x2) + α∗( f2))

= −〈α∗( f1), {x3, x4, x2}〉 − 〈α∗( f3), {x4, x1, x2}〉 − 〈α∗( f4), {x1, x3, x2}〉
−〈α∗( f2), {x3, x4, x1}〉 − 〈α∗( f2), {x4, x1, x3}〉 − 〈α∗( f2), {x1, x3, x4}〉,
ω([x4 + f4, x1 + f1, x2 + f3, ]L∗ , α(x3) + α∗( f3))

= −〈α∗( f2), {x4, x1, x3}〉 − 〈α∗( f4), {x1, x2, x3}〉 − 〈α∗( f1), {x2, x4, x3}〉
−〈α∗( f3), {x4, x1, x2}〉 − 〈α∗( f3), {x1, x2, x4}〉 − 〈α∗( f3), {x2, x4, x1}〉.

So ω is a symplectic structure on the semidirect product 3-Hom–Lie algebra (Lc ⊕ L∗,
[·, ·, ·]L∗ , α⊕ α∗). Thus the symplectic 3-Hom–Lie algebra (Lc ⊕ L∗, [·, ·, ·]L∗ , α⊕ α∗, ω) is a
phase space of the sub-adjacent 3-Hom–Lie algebra (Lc, [·, ·, ·]C, α).

⇒ Clearly.
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