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Abstract

:

For a given integer n, we provide some families of imaginary quadratic number fields of the form   Q (   4  q 2  −  p n    )  , whose ideal class group has a subgroup isomorphic to   Z / n Z  .
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1. Introduction


The class number of a number field is by definition the order of the ideal class group of its ring of integers. Thus, a number field has class number one if and only if its ring of integers is a principal ideal domain. In this sense, the ideal class group measures how far R is from being a principal ideal domain, and hence from satisfying unique prime factorization. The divisibility properties of class numbers are very important to know the structure of ideal class groups of number fields. Numerous results about the divisibility of the class numbers of quadratic fields have been introduced by many authors ([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]). By their works, it was shown that there exist infinitely many imaginary quadratic number fields whose ideal class numbers are multiples of n. They proved that there exist infinitely many imaginary quadratic number fields such that the ideal class group has a cyclic subgroup of order n. Most of such families are of the type   Q (    x 2  −  t n    )   or of the type   Q (    x 2  − 4  t n    )  , where x and t are positive integers with some restrictions. (For the case of   Q (    x 2  −  t n    )  , see [1,2,6,7,9,11,12,13,15] and for the case of   Q (    x 2  − 4  t n    )   see [3,4,5,8,10,14]).



Recently, K. Chakraborty, A. Hoque, Y. Kishi and P.P. Pandey considered the family    K  p , q   = Q  (    q 2  −  p n    )    when p and q were distinct odd prime numbers and   n ≥ 3   was an odd integer (see Theorem 1.2 of [2]). However, they just dealt with the case when n was an odd integer. We want to deal with the case when n is an even integer. In this article, we treat the family    K  p , 2 q   = Q  (   4  q 2  −  p n    )    when p and q are distinct odd prime numbers.




2. Preliminaries


In this section, we review some previous results which we will use.



2.1. Being a pth Power


Proposition 1.

(Proposition 2.2 in [2]). Let   d ≡ 5     ( mod 8 )   be an integer and ℓ be a prime. For odd integers a, b, we have


       a + b  d   2   ℓ  ∈ Z  [ d ]   if   and   only   if  ℓ = 3 .   













Definition 1.

If   L / K   is a Galois extension and α is in L, then the trace of α is the sum of all the Galois conjugates of α, i.e.,


     T r   ( α )  =  ∑  σ ∈ Gal ( L / K )   σ  ( α )  ,    








where   Gal ( L / K )   denotes the Galois group of   L / K  .





Lemma 1.

(Lemma 4 in [10]). Let K be a quadratic number field and   O K   be its ring of algebraic integers. If   α ∈  O K   , then α is a square in   O K   if and only if there exists   A ∈ Z   such that   N  ( α )  =  A 2    and such that   T r ( α ) + 2 A   is a square in  Z . If K is imaginary, we may assume that   A ≥ 0  .






2.2. Result of Y. Bugeaud and T. N. Shorey


In this section, we review a result of Y. Bugeaud and T.N. Shorey (see [16]). Let   F n   be the nth Fibonacci sequence and   L n   be the nth Lucas sequence. Let us define the sets  F  and   G ⊂ N × N × N   by


  F : = {  (  F   h 1  − 2 ϵ   ,  L   h 1  + ϵ   ,  F  h 1   )  |  h 1  ∈ N    s . t .   h 1  ≥ 2 and ϵ ∈  { ± 1 }  }  








and


  G : = {  ( 1 , 4  p 1  h 2   − 1 ,  p 1  )  |  p 1   is a prime number and   h 2  ∈ N } .  








For   λ ∈ { 1 ,  2  , 2 }  , we define the set    H λ  ⊂ N × N × N   by


   H λ  : =   (  D 1  ,  D 2  , p )    |        D 1  ,  D 2  and p are mutually coprime positive integers with       p an odd prime and there exist positive integers r , s such       that  D 1   s 2  +  D 2  =  λ 2   p r  and 3  D 1   s 2  −  D 2  = ±  λ 2        











Theorem 1.

(Theorem 1 in [16]). Let   D 1  ,   D 2   and p be mutually coprime positive integers with p a prime number. Let   λ ∈ { 1 ,  2  , 2 }   be such that   λ = 2   if   p = 2  . We assume that   D 2   is odd if   λ ∈ {  2  , 2 }  . Then, the number of positive integer solutions   ( x , y )   of the equation


    D 1   x 2  +  D 2  =  λ 2   p y    



(1)




is at most one except for


    ( λ ,  D 1  ,  D 2  , p )  ∈ E : =        ( 2 , 13 , 3 , 2 )  ,  (  2  , 7 , 11 , 3 )  ,  ( 1 , 2 , 1 , 3 )  ,  ( 2 , 7 , 1 , 2 )  ,        (  2  , 1 , 1 , 5 )  ,  (  2  , 1 , 1 , 13 )  ,  ( 2 , 1 , 3 , 7 )  .        








or


    (  D 1  ,  D 2  , p )  ∈ F ∪ G ∪  H λ  .   













We recall the result of J.H.E Cohn [17] about the appearance of squares in the Lucas sequence.



Theorem 2.

Let   L n   be the nth Lucas sequence. Then, the only perfect square appearing in the Lucas sequences are    L 1  = 1   and    L 3  = 4  .







3. Main Result


In this section, we will describe the main result. Here is the crucial theorem.



Theorem 3.

Suppose that   n ≥ 3   is an integer and q is an odd prime number such that   ( q , n ) = 1   and   q ≢ ± 1     ( mod ℓ )   for all odd prime number   ℓ ≠ 3   dividing n. Let p be an odd prime number with   4  q 2  <  p n    and   ( q , p ) = 1  . Let d be the square-free part of   4  q 2  −  p n   , i.e.,   4  q 2  −  p n  =  m 2  d   for some positive integer m. Assume that   2 q ≢ ± 1     ( mod     | d | ) )  . Moreover, we assume   q ≢ 2     ( mod     3 )   when   3 | n  . Then, we have the following:



(i) Assume that n is an even integer or   p ≡ 1     ( mod 4 )  . Then, the class number of    K  p , 2 q   = Q  (  d  )    is divisible by n.



(ii) Assume that n is an odd integer and   p ≡ 3     ( mod 4 )  . Moreover, we assume    p  n / 3   ≠  ( 4 q + 1 )  / 3   when   3 | n  . Then, the class number of    K  p , 2 q   = Q  (  d  )    is divisible by n.





Remark 1.

By Dirichlet’s theorem on arithmetic progressions, we know that there exist infinitely many q such that   q ≢ ± 1     ( mod ℓ )   for all odd prime number   ℓ ≠ 3   dividing n.





Theorem 4.

Let n, q be as in Theorem 3. For each q, the class number of   K  p , 2 q    is divisible by n for all but finitely many    p ′  s  . Furthermore, for each q there are infinitely many fields   K  p , 2 q   .






4. Proof of Main Theorem


4.1. Crucial Proposition


Lemma 2.

Let   p , d   and m be as in Theorem 3 (i) or (ii). Let ℓ be an odd prime such that


   α = 2 q + m  d  =   ( a + b  d  )  ℓ    








for some integer a and b. Then,   a | 2 q   if and only if   − a | 2 q  .





Proof. 

Suppose that


  α = 2 q + m  d  =   ( a + b  d  )  ℓ  .  








If we compare the real parts, we know that


  2 q =  a ℓ  +  ∑  i = 1   ( ℓ − 1 ) / 2     ℓ  2 i     a  ℓ − 2 i    b  2 i    d i  .  








This implies that   a | 2 q  . Since   a | 2 q  , we also know that   − a | 2 q  . Similarly,   − a | 2 q   implies that   a | 2 q  . □





Proposition 2.

Let   n , q , p , d   and m be as in Theorem 3 (i) or (ii). Then, the element   α = 2 q + m  d    is not an ℓth power of an element in the ring of integers of   K  p , 2 q    for any odd prime divisor ℓ of n. In addition, α and   − α   are not a square in   O  K  p , 2 q    .





Proof.  

(i) Assume that n is an even integer or   p ≡ 1     ( mod   4). Moreover, we assume    p  n / 3   ≠  ( q + 16 )  / 3   when   3 | n  . Since n is an even integer or   p ≡ 1     ( mod   4), we know that   d ≡ 3     ( mod   4). Let ℓ be an odd prime divisor of n. If   α = 2 q + m  d    is an ℓth power, then


  α = 2 q + m  d  =   ( a + b  d  )  ℓ   








for some integer a and b. If we compare the real parts, we know that


  2 q =  a ℓ  +  ∑  i = 1   ( ℓ − 1 ) / 2     ℓ  2 i     a  ℓ − 2 i    b  2 i    d i  .  








This implies that   a | 2 q  . By Lemma 2, we can assume that   a = 2 q  ,   a = q  ,   a = 2   or   a = 1  .



Case (i-A1):   a = 2  ,   ℓ ≠ 3  



Comparing the real parts, we have


  2 q =   ( ± 2 )  ℓ  +  ∑  i = 1   ( ℓ − 1 ) / 2     ℓ  2 i      ( ± 2 )   ℓ − 2 i    b  2 i    d i   ≡ ± 2    ( mod  ℓ ) .   








From these, we have   q ≡ ± 1    ( mod  ℓ )  , which violates our assumption.



Case (i-A2):   a = 2  ,   ℓ = 3  



Suppose that


  α = 2 q + m  d  =   ( 2 + b  d  )  3  .  








Comparing the real parts, we have


  2 q = 8 + 6  b 2  d .  



(2)




Since   d < 0  , we have   q = 4 + 3  b 2  d < 0  . This is impossible.



Case (i-B1):   a = q  ,   ℓ ≠ 3  



Comparing the real parts, we have


  2 q =   ( ± q )  ℓ  +  ∑  i = 1   ( ℓ − 1 ) / 2     ℓ  2 i      ( ± q )   ℓ − 2 i    b  2 i    d i   ≡ ± q  ( mod  ℓ ) .   








Thus, we get   3 q ≡ 0  ( mod  ℓ )   or   q ≡ 0  ( mod  ℓ )  , which contradicts the assumption “  ( q , n ) = 1  ” and “  ℓ ≠ 3  ”.



Case (i-B2):   a = q  ,   ℓ = 3  



Suppose that


  α = 2 q + m  d  =   ( q + b  d  )  3  .  








Comparing the real parts, we have


  2 q =  q 3  + 3 q  b 2  d .  



(3)




By (3), we have   2 =  q 2  + 3  b 2  d  , and hence   2 ≡  q 2    ( mod  3 ) .    This is impossible.



Case (i-C):   a = 2 q  



We have   2 q + m  d  =   ( 2 q + b  d  )  ℓ   . Taking the norm on both sides, we obtain


   p n  =   ( 4  q 2  −  b 2  d )  ℓ  .  








If we write    D 1  = − d > 0  , we have


   D 1   b 2  + 4  q 2  =  p  n / ℓ   .  








We also obtain


   D 1   m 2  + 4  q 2  =  p n  .  








Then, we easily know that   ( | b | , n / ℓ )   and   ( m , n )   are distinct solutions of (1) for    D 1  = − d > 0  ,    D 2  = 4  q 2   ,   λ = 1  . The next thing we have to do is to show that   ( 1 ,  D 1  ,  D 2  , p ) ∉ E   and    (  D 1  ,  D 2  , p )  ∉ F ∪ G ∪  H λ   . Clearly,   ( 1 ,  D 1  ,  D 2  , p ) ∉ E   and   (  D 1  ,  D 2  , p ) ∉ G  . By Theorem 2, we know that   (  D 1  ,  D 2  , p ) ∉ F  . Finally suppose that    (  D 1  ,  D 2  , p )  ∈  H λ   . Then, there exist positive integers   r , s   such that


  3  D 1   s 2  − 4  q 2  = ± 1  



(4)




and


   D 1   s 2  + 4  q 2  =  p r  .  



(5)




By (4), we have   q ≠ 3  , and hence we have   3  D 1   s 2  − 4  q 2  = − 1  . From this together with (5), we obtain


  16  q 2  = 3  p r  + 1 ,  








that is,


   ( 4 q − 1 )   ( 4 q + 1 )  = 3  p r  .  








This implies that   4 q − 1 = 1   or   4 q − 1 = 3  . It contradicts the fact that q is an odd prime number. Hence,    (  D 1  .  D 2  , p )  ∉  H 1   . By Theorem 1, the equation


  − d  x 2  + 4  q 2  =  p y   








has at most one integer solutions   ( x , y )  . Thus,   a ≠ 2 q  



Case (i-D):   a = 1  



Comparing the real parts, we have


  2 q =   ( 1 )  ℓ  +  ∑  i = 1   ( ℓ − 1 ) / 2     ℓ  2 i      ( 1 )   ℓ − 2 i    b  2 i    d i  ≡  1  ( mod  | d | ) .   








It contradicts our assumption “  2 q ≡ 1  ( mod  | d | )  ”.



(ii) Assume that n is an odd integer and   p ≡ 3     ( mod   4). Then, we know that   d ≡ 1     ( mod   4). Moreover, we assume    p  n / 3   ≠  ( 4 q + 1 )  / 3   when   3 | n  . Let ℓ be an odd prime divisor of n. If   α = 2 q + m  d    is an ℓth power, then


  α = 2 q + m  d  =     a + b  d   2   ℓ   ,  a ≡ b  ( mod 2 ) .   








for some integer a and b. In case both a and b are even, then we can proceed as in the above and obtain a contradiction. Thus, we can assume that both a and b are odd. If we take the norm on both sides we obtain


  4  p  n / ℓ   =  a 2  −  b 2  d .  



(6)




Since a and b are odd integers and   p ≠ 2  , we can get   d ≡ 5     ( mod   8). By Proposition 1, we know that   ℓ = 3  . Thus, we have


  α = 2 q + m  d  =     a + b  d   2   3  .  








Comparing the real parts, we have


  16 q = a (  a 2  + 3  b 2  d ) .  



(7)




Since a is an odd integer, we have   a = 1   or   a = q  .



Case (ii-A):   a = 1  



By (7) and   d < 0  , we have   16 q = 1 + 3  b 2  d < 0  . This is not possible.



Case (ii-B):   a = q  



By (6) and (7), we have


  4  p  n / 3   =  q 2  −  b 2  d   and   16 =  q 2  + 3  b 2  d .  








From these, we have   3  p  n / 3   =  q 2  − 4 =  ( q − 2 )   ( q + 2 )   . This implies that   q − 2 = 3   or   q + 2 = 3  . Since q is a prime, we have   q − 2 = 3   and    p  n / 3   = q + 2 = 7  . These violate our assumption    p  n / 3   ≠  ( 4 q + 1 )  / 3  .



□






4.2. Proof of Theorem 3


Next, we prove Theorem 3.



Proof of Theorem 3. 

Let   n , q , p , d   and m be as in Theorem 3 (i) or (ii). Set   α = 2 q + m  d   . We can easily check that  α  and   α ¯   are coprime and   N  ( α )  = α  α ¯  =  p n   . This implies that    ( α )  =  a n    for some integral ideal  a  of   K  p , 2 q   . It suffices to show that the order of   [ a ]   in the ideal class group of   K  p , 2 q    is n. If this is not the case, we have    ( α )  =   ( β )  ℓ    for some integer  β  in   O  K  p , 2 q     and some prime divisor ℓ of n. Since   K  p , 2 q    is an imaginary quadratic field, the only units of   O  K  p , 2 q     are   ± 1  . Thus, we have   α = ±  β ℓ   . If ℓ is an odd prime, we have   α =  γ ℓ    where   γ = ± β  . This contradicts Proposition 2. Next, let us consider the case of   ℓ = 2  . Then, we have   α = ±  β 2   . It means that  α  or   − α   is a square in   O  K  p , 2 q    , which contradicts Proposition 2. Hence, the order of   [ a ]   in the ideal class group of   K  p , 2 q    is n. □






4.3. Proof of Theorem 4


We are now in a position to prove the main theorem



Proof. 

Let n and q be as in Theorem 3. For any positive integer D, the curve


  D  X 2  + 4  q 2  =  Y n   



(8)




is an irreducible algebraic curve of genus > 0 (see [18]). By Siegel’s theorem (see [19]), there are only finitely many integral points   ( X , Y )   on the curve (8). Thus, for each   d < 0  , there are at most finitely many primes p such that


  − d  x 2  + 4  q 2  =  p n  .  








It means that there are infinitely many fields   K  p , 2 q    for the fixed prime q. In addition, we have   | d | > 2 q + 1   for sufficiently large p, so   2 q ≢ ± 1     ( mod     | d | )  . Further, if p is large enough, then    p  n / 3   ≠  ( q + 16 )  / 3   and    p  n / 3   ≠  ( 4 q + 1 )  / 3  . Hence, the class number of   K  p , 2 q    is divisible by n for a sufficiently large p. □







5. Numerical Examples


In this section, we give several examples. All computations in this section are based on the Magma program. For example, Table 1 is the list of imaginary quadratic fields   K  p , 2 q    corresponding to   n = 3   and   p ≤ 19  . In the below Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8, we use * in the column for class number to indicate the failure of condition “   p  n / 3   ≠  ( q + 16 )  / 3  ” or “   p  n / 3   ≠  ( 4 q + 1 )  / 3  ”. Furthermore, the appearance of ** in the column for a class number indicates the failure of condition “  2 q ≢ ± 1     ( mod     | d | )  ”. Finally, the appearance of *** in the column for a class number indicates the failure of condition “  q ≢ ± 1     ( mod  ℓ)” for an odd prime divisor   ℓ ≠ 3   of n.
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Table 1. Numerical examples for   n = 3  .






Table 1. Numerical examples for   n = 3  .





	p
	q
	    4  q 2  −  p 3     
	d
	    h ( d )    
	p
	q
	    4  q 2  −  p 3     
	d
	    h ( d )    





	7
	5
	   − 243   
	   − 3   
	1 *
	11
	5
	   − 1231   
	   − 1231   
	27



	11
	7
	   − 1135   
	   − 1135   
	18
	11
	13
	   − 655   
	   − 655   
	12



	11
	17
	   − 175   
	   − 7   
	1 *
	13
	5
	   − 2097   
	   − 233   
	12



	13
	7
	   − 2001   
	   − 2001   
	48
	13
	11
	   − 1713   
	   − 1713   
	36



	13
	17
	   − 1041   
	   − 1041   
	36
	13
	19
	   − 753   
	   − 753   
	12



	17
	5
	   − 4813   
	   − 4813   
	30
	17
	7
	   − 4717   
	   − 4717   
	24



	17
	11
	   − 4429   
	   − 4429   
	60
	17
	13
	   − 4237   
	   − 4237   
	24



	17
	19
	   − 3469   
	   − 3469   
	30
	17
	23
	   − 2797   
	   − 2797   
	18



	17
	29
	   − 1549   
	   − 1549   
	18
	17
	31
	   − 1069   
	   − 1069   
	30



	19
	5
	   − 6759   
	   − 751   
	15
	19
	7
	   − 6663   
	   − 6663   
	60



	19
	11
	   − 6375   
	   − 255   
	12
	19
	13
	   − 6183   
	   − 687   
	12



	19
	17
	   − 5703   
	   − 5703   
	54
	19
	23
	   − 4743   
	   − 527   
	18



	19
	29
	   − 3495   
	   − 3495   
	36
	19
	31
	   − 3015   
	   − 335   
	18



	19
	37
	   − 1383   
	   − 1383   
	18
	19
	41
	   − 135   
	   − 15   
	2 *
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Table 2. Numerical examples for   n = 4  .






Table 2. Numerical examples for   n = 4  .

















	p
	q
	    4  q 2  −  p 4     
	d
	    h ( d )    
	p
	q
	    4  q 2  −  p 4     
	d
	    h ( d )    





	5
	3
	   − 589   
	   − 589   
	16
	5
	7
	   − 429   
	   − 429   
	16



	5
	11
	   − 141   
	   − 141   
	8
	7
	3
	   − 2365   
	   − 2365   
	32



	7
	5
	   − 2301   
	   − 2301   
	48
	7
	11
	   − 1917   
	   − 213   
	8



	7
	13
	   − 1725   
	   − 69   
	8
	7
	17
	   − 1245   
	   − 1245   
	32



	7
	19
	   − 957   
	   − 957   
	16
	7
	23
	   − 285   
	   − 285   
	16



	11
	3
	−14,605
	   14 , 605   
	80
	11
	5
	−14,541
	−14,541
	64



	11
	7
	−14,445
	1605
	16
	11
	13
	−13,965
	   − 285   
	16



	11
	17
	−13,485
	−13,485
	128
	11
	19
	−13,197
	−13,197
	48



	11
	23
	−12,525
	   − 501   
	16
	11
	29
	−11,277
	−11,277
	32



	11
	31
	−10,797
	−10,797
	64
	11
	37
	   − 9165   
	   − 9165   
	64



	11
	41
	   − 7917   
	   − 7917   
	32
	11
	43
	   − 7245   
	   − 805   
	16



	11
	47
	   − 5805   
	   − 645   
	16
	11
	53
	   − 3405   
	   − 3405   
	48



	11
	59
	   − 717   
	   − 717   
	16
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Table 3. Numerical examples for   n = 5  .






Table 3. Numerical examples for   n = 5  .





	p
	q
	    4  q 2  −  p 5     
	d
	    h ( d )    
	p
	q
	    4  q 2  −  p 5     
	d
	    h ( d )    





	3
	7
	−47
	−47
	5
	5
	3
	−3089
	−3089
	40



	5
	7
	−2929
	−2929
	40
	5
	11
	−2641
	−2641
	20



	5
	13
	−2449
	−2449
	40
	5
	17
	−1969
	−1969
	20



	5
	19
	−1681
	−1
	1 **
	5
	23
	−1009
	−1009
	20



	7
	3
	−16,771
	−16,771
	40
	7
	5
	−16,707
	−16,707
	20



	7
	11
	−16,323
	−16,323
	30
	7
	13
	−16,131
	−16,131
	40



	7
	17
	−15,651
	−1739
	20
	7
	19
	−15,363
	−1707
	10



	7
	23
	−14,691
	−14,691
	40
	7
	29
	−13,443
	−13,443
	30



	7
	31
	−12,963
	−12,963
	20
	7
	37
	−11,331
	−1259
	15



	7
	41
	−10,083
	−10,083
	20
	7
	43
	−9411
	−9411
	30



	7
	47
	−7971
	−7971
	30
	7
	53
	−5571
	−619
	5



	7
	59
	−2883
	−3
	1 **
	7
	61
	−1923
	−1923
	10
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Table 4. Numerical examples for   n = 6  .






Table 4. Numerical examples for   n = 6  .

















	p
	q
	    4  q 2  −  p 6     
	d
	    h ( d )    
	p
	q
	    4  q 2  −  p 6     
	d
	    h ( d )    





	3
	5
	−629
	−629
	36
	3
	7
	−533
	−533
	12



	3
	11
	−245
	−5
	2 *
	3
	13
	−53
	−53
	6



	5
	3
	−15,589
	−15,589
	72
	5
	7
	−15,429
	−15,429
	96



	5
	11
	−15,141
	−309
	12
	5
	13
	−14,949
	−1661
	48



	5
	17
	−14,469
	−14,469
	96
	5
	19
	−14,181
	−14,181
	96



	5
	23
	−13,509
	−1501
	24
	5
	29
	−12,261
	−12,261
	72



	5
	31
	−11,781
	−1309
	24
	5
	37
	−10,149
	−10,149
	120



	5
	41
	−8901
	−989
	36
	5
	43
	−8229
	−8229
	48



	5
	47
	−6789
	−6789
	72
	5
	53
	−4389
	−4389
	48



	5
	59
	−1701
	−21
	4 *
	5
	61
	−741
	−741
	24



	7
	3
	−117,613
	−117,613
	168
	7
	5
	−117,549
	−13,061
	156



	7
	11
	−117,165
	−117,165
	240
	7
	13
	−116,973
	−12,997
	60



	7
	17
	−116,493
	−116,493
	192
	7
	19
	−116,205
	−116,205
	192



	7
	23
	−115,533
	−12,837
	72
	7
	29
	−114,285
	−114,285
	240



	7
	31
	−113,805
	−1405
	24
	7
	37
	−112,173
	−112,173
	240



	7
	41
	−110,925
	−493
	12
	7
	43
	−110,253
	−110,253
	288



	7
	47
	−108,813
	−108,813
	240
	7
	53
	−106,413
	−106,413
	216



	7
	59
	−103,725
	−461
	30
	7
	61
	−102,765
	−102,765
	192



	7
	67
	−99,693
	−11,077
	48
	7
	71
	−97,485
	−97,485
	192



	7
	73
	−96,333
	−96,333
	192
	7
	79
	−92,685
	−92,685
	288



	7
	83
	−90,093
	−90,093
	192
	7
	89
	−85,965
	−85,965
	240



	7
	97
	−80,013
	−80,013
	192
	7
	101
	−76,845
	−76,845
	192



	7
	103
	−75,213
	−8357
	72
	7
	107
	−71,853
	−71,853
	144



	7
	109
	−70,125
	−2805
	48
	7
	113
	−66,573
	−7397
	72



	7
	127
	−53,133
	−53,133
	120
	7
	131
	−49,005
	−5
	2 *



	7
	137
	−42,573
	−42,573
	120
	7
	139
	−40,365
	−4485
	48



	7
	149
	−28,845
	−3205
	24
	7
	151
	−26,445
	−26,445
	96



	7
	157
	−19,053
	−2117
	36
	7
	163
	−11,373
	−11,373
	72



	7
	167
	−6093
	−677
	30
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Table 5. Numerical examples for   n = 7  .






Table 5. Numerical examples for   n = 7  .

















	p
	q
	    4  q 2  −  p 7     
	d
	    h ( d )    
	p
	q
	    4  q 2  −  p 7     
	d
	    h ( d )    





	3
	5
	−2087
	−2087
	35
	3
	11
	−1703
	−1703
	28



	3
	13
	−1511
	−1511
	49
	3
	17
	−1031
	−1031
	35



	3
	19
	−743
	−743
	21
	3
	23
	−71
	−71
	7



	5
	3
	−78,089
	−78,089
	280
	5
	11
	−77,641
	−77,641
	112



	5
	13
	−77,449
	−77,449
	112
	5
	17
	−76,969
	−76,969
	196



	5
	19
	−76,681
	−76,681
	140
	5
	23
	−76,009
	−76,009
	224



	5
	29
	−74,761
	−74,761
	140
	5
	31
	−74,281
	−74,281
	140



	5
	37
	−72,649
	−72,649
	168
	5
	41
	−71,401
	−71,401
	140



	5
	43
	−70,729
	−70,729
	140
	5
	47
	−69,289
	−69,289
	196



	5
	53
	−66,889
	−66,889
	112
	5
	59
	−64,201
	−64,201
	112



	5
	61
	−63,241
	−63,241
	196
	5
	67
	−60,169
	−60,169
	112



	5
	71
	−57,961
	−57,961
	112
	5
	73
	−56,809
	−56,809
	112



	5
	79
	−53,161
	−53,161
	168
	5
	83
	−50,569
	−50,569
	168



	5
	89
	−46,441
	−46,441
	140
	5
	97
	−40,489
	−40,489
	140



	5
	101
	−37,321
	−37,321
	84
	5
	103
	−35,689
	−35,689
	112



	5
	107
	−32,329
	−32,329
	140
	5
	109
	−30,601
	−30,601
	112



	5
	113
	−27,049
	−27,049
	84
	5
	127
	−13,609
	−13,609
	56



	5
	131
	−9481
	−9481
	84
	5
	137
	−3049
	−3049
	28



	5
	139
	−841
	−1
	1 **
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Table 6. Numerical examples for   n = 8  .






Table 6. Numerical examples for   n = 8  .





	p
	q
	    4  q 2  −  p 8     
	d
	    h ( d )    
	p
	q
	    4  q 2  −  p 8     
	d
	    h ( d )    





	3
	5
	−6461
	−6461
	96
	3
	7
	−6365
	−6365
	64



	3
	11
	−6077
	−6077
	48
	3
	13
	−5885
	−5885
	96



	3
	17
	−5405
	−5405
	64
	3
	19
	−5117
	−5117
	64



	3
	23
	−4445
	−4445
	64
	3
	29
	−3197
	−3197
	64



	3
	31
	−2717
	−2717
	32
	3
	37
	−1085
	−1085
	32
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Table 7. Numerical examples for   n = 9  .






Table 7. Numerical examples for   n = 9  .

















	p
	q
	    4  q 2  −  p 9     
	d
	    h ( d )    
	p
	q
	    4  q 2  −  p 9     
	d
	    h ( d )    





	3
	5
	−19,583
	−19,583
	99
	3
	7
	−19,487
	−19,487
	144



	3
	11
	−19,199
	−19,199
	162
	3
	13
	−19,007
	−19,007
	108



	3
	17
	−18,527
	−18,527
	108
	3
	19
	−18,239
	−18,239
	144



	3
	23
	−17,567
	−17,567
	90
	3
	29
	−16,319
	−16,319
	153



	3
	31
	−15,839
	−15,839
	180
	3
	37
	−14,207
	−14,207
	81



	3
	41
	−12,959
	−12,959
	99
	3
	43
	−12,287
	−12,287
	90



	3
	47
	−10,847
	−10,847
	63
	3
	53
	−8447
	−8447
	99



	3
	59
	−5759
	−5759
	108
	3
	61
	−4799
	−4799
	63



	3
	67
	−1727
	−1727
	36
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Table 8. Numerical examples for   n = 10  .






Table 8. Numerical examples for   n = 10  .





	p
	q
	    4  q 2  −  p 10     
	d
	    h ( d )    
	p
	q
	    4  q 2  −  p 10     
	d
	    h ( d )    





	3
	7
	−58,853
	−58,853
	180
	3
	11
	−58,565
	−58,565
	240



	3
	13
	−58,373
	−58,373
	240
	3
	17
	−57,893
	−57,893
	280



	3
	23
	−56,933
	−197
	10
	3
	29
	−55,685
	−55,685
	160



	3
	31
	−55,205
	−55,205
	240
	3
	37
	−53,573
	−317
	10



	3
	41
	−52,325
	−2093
	40
	3
	43
	−51,653
	−51,653
	160



	3
	47
	−50,213
	−50,213
	120
	3
	53
	−47,813
	−47,813
	260



	3
	59
	−45,125
	−5
	2 ***
	3
	61
	−44,165
	−365
	20



	3
	67
	−41,093
	−41,093
	240
	3
	71
	−38,885
	−38,885
	160



	3
	73
	−37,733
	−37,733
	160
	3
	79
	−34,085
	−34,085
	200



	3
	83
	−31,493
	−31,493
	120
	3
	89
	−27,365
	−27,365
	120



	3
	97
	−21,413
	−437
	20
	3
	101
	−18,245
	−18,245
	160



	3
	103
	−16,613
	−16,613
	100
	3
	107
	−13,253
	−13,253
	80



	3
	109
	−11,525
	−461
	30
	3
	113
	−7973
	−7973
	80
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