

Article **Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields**

Kwang-Seob Kim

Department of Mathematics, Chosun University, 309 Pilmundaero, Gwangju 61452, Korea; kwang12@chosun.ac.kr

Abstract: For a given integer *n*, we provide some families of imaginary quadratic number fields of the form $\mathbb{Q}(\sqrt{4q^2-p^n})$, whose ideal class group has a subgroup isomorphic to $\mathbb{Z}/n\mathbb{Z}.$

Keywords: class number; imaginary quadratic fields; divisibility of class number

MSC: 11R29; 11R11

1. Introduction

The class number of a number field is by definition the order of the ideal class group of its ring of integers. Thus, a number field has class number one if and only if its ring of integers is a principal ideal domain. In this sense, the ideal class group measures how far R is from being a principal ideal domain, and hence from satisfying unique prime factorization. The divisibility properties of class numbers are very important to know the structure of ideal class groups of number fields. Numerous results about the divisibility of the class numbers of quadratic fields have been introduced by many authors ($[1-15]$ $[1-15]$). By their works, it was shown that there exist infinitely many imaginary quadratic number fields whose ideal class numbers are multiples of *n*. They proved that there exist infinitely many imaginary quadratic number fields such that the ideal class group has a cyclic subgroup of order *n*. Most of such families are of the type $\mathbb{Q}(\sqrt{x^2-t^n})$ or of the type $\mathbb{Q}(\sqrt{x^2-4t^n})$, where *x* and *t* are positive integers with some restrictions. (For the case of $\mathbb{Q}(\sqrt{x^2 - t^n})$, see [\[1](#page-8-0)[,2](#page-8-1)[,6](#page-8-2)[,7](#page-8-3)[,9](#page-8-4)[,11–](#page-8-5)[13](#page-8-6)[,15\]](#page-9-0) and for the case of $\mathbb{Q}(\sqrt{x^2 - 4t^n})$ see [\[3](#page-8-7)[–5](#page-8-8)[,8](#page-8-9)[,10](#page-8-10)[,14\]](#page-8-11)).

Recently, K. Chakraborty, A. Hoque, Y. Kishi and P.P. Pandey considered the family $K_{p,q} = \mathbb{Q}(\sqrt{q^2 - p^n})$ when *p* and *q* were distinct odd prime numbers and *n* ≥ 3 was an odd integer (see Theorem 1.2 of [\[2\]](#page-8-1)). However, they just dealt with the case when *n* was an odd integer. We want to deal with the case when *n* is an even integer. In this article, we treat the family $K_{p,2q} = \mathbb{Q}(\sqrt{4q^2 - p^n})$ when p and q are distinct odd prime numbers.

2. Preliminaries

In this section, we review some previous results which we will use.

2.1. Being a pth Power

Proposition 1. *(Proposition 2.2 in [\[2\]](#page-8-1)). Let* $d \equiv 5 \pmod{8}$ *be an integer and* ℓ *be a prime. For odd integers a, b, we have*

$$
\left(\frac{a+b\sqrt{d}}{2}\right)^{\ell} \in \mathbb{Z}[d] \text{ if and only if } \ell=3.
$$

Definition 1. *If L*/*K is a Galois extension and α is in L, then the trace of α is the sum of all the Galois conjugates of α, i.e.,*

$$
Tr(\alpha) = \sum_{\sigma \in \mathrm{Gal}(L/K)} \sigma(\alpha),
$$

Citation: Kim, K.-S. Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields. *Mathematics* **2022**, *10*, 2488. [https://doi.org/10.3390/](https://doi.org/10.3390/math10142488) [math10142488](https://doi.org/10.3390/math10142488)

Academic Editors: Diana Savin, Nicusor Minculete and Vincenzo Acciaro

Received: 8 June 2022 Accepted: 10 July 2022 Published: 17 July 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

where Gal(*L*/*K*) *denotes the Galois group of L*/*K.*

Lemma 1. *(Lemma 4 in [\[10\]](#page-8-10)). Let* K *be a quadratic number field and* O_K *be its ring of algebraic* i *integers. If* $\alpha \in O_K$ *, then* α *is a square in* O_K *if and only if there exists* $A \in \mathbb{Z}$ *such that* $N(\alpha) = A^2$ *and such that* $Tr(\alpha) + 2A$ *is a square in* \mathbb{Z} *. If* K *is imaginary, we may assume that* $A \geq 0$ *.*

2.2. Result of Y. Bugeaud and T. N. Shorey

In this section, we review a result of Y. Bugeaud and T.N. Shorey (see [\[16\]](#page-9-1)). Let *Fⁿ* be the *n*th Fibonacci sequence and L_n be the *n*th Lucas sequence. Let us define the sets $\mathcal F$ and $G \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ by

$$
\mathcal{F} := \{ (F_{h_1-2\epsilon}, L_{h_1+\epsilon}, F_{h_1}) | h_1 \in \mathbb{N} \text{ s.t. } h_1 \ge 2 \text{ and } \epsilon \in \{\pm 1\} \}
$$

and

$$
G := \{ (1, 4p_1^{h_2} - 1, p_1) | p_1 \text{ is a prime number and } h_2 \in \mathbb{N} \}.
$$

For $\lambda \in \{1, \sqrt{2}, 2\}$, we define the set $\mathcal{H}_{\lambda} \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ by

$$
\mathcal{H}_{\lambda} := \left\{ (D_1, D_2, p) \middle| \begin{array}{l} D_1, D_2 \text{ and } p \text{ are mutually coprime positive integers with} \\ p \text{ an odd prime and there exist positive integers } r, s \text{ such} \\ \text{that } D_1 s^2 + D_2 = \lambda^2 p^r \text{ and } 3D_1 s^2 - D_2 = \pm \lambda^2 \end{array} \right\}
$$

Theorem 1. *(Theorem 1 in [\[16\]](#page-9-1)). Let D*1*, D*² *and p be mutually coprime positive integers with p* **a** *prime number.* Let $\lambda \in \{1, \sqrt{2}, 2\}$ *be such that* $\lambda = 2$ *if* $p = 2$ *. We assume that* D_2 *is odd if* p *a prime number.* Let $\lambda \in \{1, \sqrt{2}, 2\}$ be such that $\lambda = 2$ if $p = 2$. We assume to $\lambda \in \{\sqrt{2}, 2\}$. Then, the number of positive integer solutions (x, y) of the equation

$$
D_1x^2 + D_2 = \lambda^2 p^y \tag{1}
$$

is at most one except for

$$
(\lambda, D_1, D_2, p) \in \mathcal{E} := \left\{ \begin{array}{l} (2, 13, 3, 2), (\sqrt{2}, 7, 11, 3), (1, 2, 1, 3), (2, 7, 1, 2), \\ (\sqrt{2}, 1, 1, 5), (\sqrt{2}, 1, 1, 13), (2, 1, 3, 7). \end{array} \right\}
$$

or

$$
(D_1, D_2, p) \in \mathcal{F} \cup \mathcal{G} \cup \mathcal{H}_{\lambda}.
$$

We recall the result of J.H.E Cohn [\[17\]](#page-9-2) about the appearance of squares in the Lucas sequence.

Theorem 2. *Let Lⁿ be the nth Lucas sequence. Then, the only perfect square appearing in the Lucas sequences are* $L_1 = 1$ *and* $L_3 = 4$ *.*

3. Main Result

In this section, we will describe the main result. Here is the crucial theorem.

Theorem 3. *Suppose that* $n \geq 3$ *is an integer and q is an odd prime number such that* $(q, n) = 1$ *and* $q \not\equiv \pm 1 \pmod{l}$ *for all odd prime number* $\ell \neq 3$ *dividing n. Let p be an odd prime number* with $4q^2 < p^n$ and $(q,p)=1.$ Let d be the square-free part of $4q^2 - p^n$, i.e., $4q^2 - p^n = m^2d$ for *some positive integer m. Assume that* $2q \not\equiv \pm 1 \pmod{|d|}$ *. Moreover, we assume* $q \not\equiv 2 \pmod{3}$ *when* 3|*n. Then, we have the following:*

(i) Assume that n is an even integer or $p \equiv 1 \pmod{4}$ *. Then, the class number of* $K_{p,2q} = \mathbb{Q}(\sqrt{d})$ *is divisible by n.*

(ii) Assume that *n is an odd integer and* $p \equiv 3 \pmod{4}$ *. Moreover, we assume* $p^{n/3} \neq$ $(4q + 1)/3$ *when* $3|n$. Then, the class number of $K_{p,2q} = \mathbb{Q}(\sqrt{d})$ is divisible by n.

Remark 1. *By Dirichlet's theorem on arithmetic progressions, we know that there exist infinitely many q such that q* $\neq \pm 1$ (mod ℓ) *for all odd prime number* $\ell \neq 3$ *dividing n.*

Theorem 4. Let *n*, *q be as in Theorem [3.](#page-1-0) For each <i>q*, the class number of $K_{p,2q}$ *is divisible by n for all but finitely many p*⁰ *s. Furthermore, for each q there are infinitely many fields Kp*,2*q.*

4. Proof of Main Theorem

4.1. Crucial Proposition

Lemma 2. Let p, *d* and *m* be as in Theorem [3](#page-1-0) (i) or (ii). Let ℓ be an odd prime such that

$$
\alpha = 2q + m\sqrt{d} = (a + b\sqrt{d})^{\ell}
$$

for some integer a and b. Then, a|2*q if and only if* −*a*|2*q.*

Proof. Suppose that

$$
\alpha = 2q + m\sqrt{d} = (a + b\sqrt{d})^{\ell}.
$$

If we compare the real parts, we know that

$$
2q = a^{\ell} + \sum_{i=1}^{(\ell-1)/2} {\ell \choose 2i} a^{\ell-2i} b^{2i} d^{i}.
$$

This implies that *a*|2*q*. Since *a*|2*q*, we also know that −*a*|2*q*. Similarly, −*a*|2*q* implies that $a|2q.$ \square

Proposition 2. *Let n*, *q*, *p*, *d and m be as in Theorem [3](#page-1-0) (i) or (ii). Then, the element α* = 2*q* + *m* √ *d is not an lth power of an element in the ring of integers of* $K_{p,2q}$ *for any odd prime divisor* ℓ *of n.* In *addition, α and* −*α are not a square in* O*Kp*,2*^q .*

Proof. (i) Assume that *n* is an even integer or $p \equiv 1 \pmod{4}$. Moreover, we assume $p^{n/3} \neq (q+16)/3$ when $3|n$. Since *n* is an even integer or $p \equiv 1 \pmod{4}$, we know that $d \equiv 3 \pmod{4}$. Let ℓ be an odd prime divisor of *n*. If $\alpha = 2q + m\sqrt{d}$ is an ℓ th power, then

$$
\alpha = 2q + m\sqrt{d} = (a + b\sqrt{d})^{\ell}
$$

for some integer *a* and *b*. If we compare the real parts, we know that

$$
2q = a^{\ell} + \sum_{i=1}^{(\ell-1)/2} {\ell \choose 2i} a^{\ell-2i} b^{2i} d^{i}.
$$

This implies that *a*|2*q*. By Lemma [2,](#page-2-0) we can assume that $a = 2q$, $a = q$, $a = 2$ or $a = 1$.

Case (i-A1): $a = 2, l \neq 3$ Comparing the real parts, we have

$$
2q = (\pm 2)^{\ell} + \sum_{i=1}^{(\ell-1)/2} {\ell \choose 2i} (\pm 2)^{\ell-2i} b^{2i} d^{i} \equiv \pm 2 \pmod{\ell}.
$$

From these, we have $q \equiv \pm 1 \pmod{\ell}$, which violates our assumption.

Case (i-A2): $a = 2$, $\ell = 3$ Suppose that

$$
\alpha = 2q + m\sqrt{d} = (2 + b\sqrt{d})^3.
$$

Comparing the real parts, we have

$$
2q = 8 + 6b^2d.\tag{2}
$$

Since $d < 0$, we have $q = 4 + 3b^2d < 0$. This is impossible.

Case (i-B1) : $a = q, \ell \neq 3$ Comparing the real parts, we have

$$
2q = (\pm q)^{\ell} + \sum_{i=1}^{(\ell-1)/2} {\ell \choose 2i} (\pm q)^{\ell-2i} b^{2i} d^{i} \equiv \pm q \pmod{\ell}.
$$

Thus, we get $3q \equiv 0 \pmod{\ell}$ or $q \equiv 0 \pmod{\ell}$, which contradicts the assumption " (q, n) = 1" and " $\ell \neq 3$ ".

Case (i-B2) : $a = q$, $\ell = 3$ Suppose that

$$
\alpha = 2q + m\sqrt{d} = (q + b\sqrt{d})^3.
$$

Comparing the real parts, we have

$$
2q = q^3 + 3qb^2d.\tag{3}
$$

By [\(3\)](#page-3-0), we have $2 = q^2 + 3b^2d$, and hence $2 \equiv q^2 \pmod{3}$. This is impossible.

Case (i-C) : $a = 2q$ We have 2 $q + m\sqrt{d} = (2q + b)$ √ $\overline{d})^{\ell}.$ Taking the norm on both sides, we obtain

$$
p^n = (4q^2 - b^2d)^{\ell}.
$$

If we write $D_1 = -d > 0$, we have

$$
D_1b^2 + 4q^2 = p^{n/\ell}.
$$

We also obtain

$$
D_1 m^2 + 4q^2 = p^n
$$

.

Then, we easily know that $(|b|, n/\ell)$ and (m, n) are distinct solutions of [\(1\)](#page-1-1) for $D_1 = -d > 0$, $D_2 = 4q^2$, $\lambda = 1$. The next thing we have to do is to show that $(1, D_1, D_2, p) \notin \mathcal{E}$ and $(D_1, D_2, p) \notin \mathcal{F} \cup \mathcal{G} \cup \mathcal{H}_{\lambda}$ $(D_1, D_2, p) \notin \mathcal{F} \cup \mathcal{G} \cup \mathcal{H}_{\lambda}$ $(D_1, D_2, p) \notin \mathcal{F} \cup \mathcal{G} \cup \mathcal{H}_{\lambda}$. Clearly, $(1, D_1, D_2, p) \notin \mathcal{E}$ and $(D_1, D_2, p) \notin \mathcal{G}$. By Theorem 2, we know that $(D_1, D_2, p) \notin \mathcal{F}$. Finally suppose that $(D_1, D_2, p) \in \mathcal{H}_{\lambda}$. Then, there exist positive integers *r*,*s* such that

$$
3D_1s^2 - 4q^2 = \pm 1\tag{4}
$$

and

that is,

$$
D_1 s^2 + 4q^2 = p^r. \tag{5}
$$

By [\(4\)](#page-3-1), we have $q \neq 3$, and hence we have $3D_1s^2 - 4q^2 = -1$. From this together with [\(5\)](#page-3-2), we obtain $16q^2 = 3p^r + 1$,

$$
f_{\rm{max}}
$$

$$
(4q-1)(4q+1) = 3p^r.
$$

This implies that $4q - 1 = 1$ or $4q - 1 = 3$. It contradicts the fact that *q* is an odd prime number. Hence, $(D_1.D_2, p) \notin \mathcal{H}_1$. By Theorem [1,](#page-1-3) the equation

$$
-dx^2 + 4q^2 = p^y
$$

has at most one integer solutions (x, y) . Thus, $a \neq 2q$

Case (i-D) : *a* = 1

Comparing the real parts, we have

$$
2q = (1)^{\ell} + \sum_{i=1}^{(\ell-1)/2} {\ell \choose 2i} (1)^{\ell-2i} b^{2i} d^{i} \equiv 1 \pmod{|d|}.
$$

It contradicts our assumption " $2q \equiv 1 \pmod{|d|}$ ".

(ii) Assume that *n* is an odd integer and $p \equiv 3 \pmod{4}$. Then, we know that $d \equiv 1$ (mod 4). Moreover, we assume $p^{n/3} \neq (4q + 1)/3$ when $3|n$. Let ℓ be an odd prime divisor of *n*. If $\alpha = 2q + m\sqrt{d}$ is an ℓ th power, then

$$
\alpha = 2q + m\sqrt{d} = \left(\frac{a + b\sqrt{d}}{2}\right)^{\ell}, \ a \equiv b \pmod{2}.
$$

for some integer *a* and *b*. In case both *a* and *b* are even, then we can proceed as in the above and obtain a contradiction. Thus, we can assume that both *a* and *b* are odd. If we take the norm on both sides we obtain

$$
4p^{n/\ell} = a^2 - b^2d. \tag{6}
$$

Since *a* and *b* are odd integers and $p \neq 2$, we can get $d \equiv 5 \pmod{8}$. By Proposition [1,](#page-0-0) we know that $\ell = 3$. Thus, we have

$$
\alpha = 2q + m\sqrt{d} = \left(\frac{a + b\sqrt{d}}{2}\right)^3.
$$

Comparing the real parts, we have

$$
16q = a(a^2 + 3b^2d).
$$
 (7)

Since *a* is an odd integer, we have $a = 1$ or $a = q$.

Case (ii-A): $a = 1$

By [\(7\)](#page-4-0) and $d < 0$, we have $16q = 1 + 3b^2d < 0$. This is not possible.

Case (ii-B) : *a* = *q* By (6) and (7) , we have

$$
4p^{n/3} = q^2 - b^2d
$$
 and $16 = q^2 + 3b^2d$.

From these, we have $3p^{n/3} = q^2 - 4 = (q-2)(q+2)$. This implies that $q-2 = 3$ or *q* + 2 = 3. Since *q* is a prime, we have *q* − 2 = 3 and $p^{n/3} = q + 2 = 7$. These violate our assumption $p^{n/3} \neq (4q + 1)/3$. \Box

4.2. Proof of Theorem 3

Next, we prove Theorem [3.](#page-1-0)

Proof of Theorem [3.](#page-1-0) Let *n*, *q*, *p*, *d* and *m* be as in Theorem [3](#page-1-0) (i) or (ii). Set *α* = 2*q* + *m* √ *d*. We can easily check that *α* and \bar{a} are coprime and $N(\alpha) = \alpha \bar{\alpha} = p^n$. This implies that $(\alpha) = \mathfrak{a}^n$ for some integral ideal \mathfrak{a} of $K_{p,2q}$. It suffices to show that the order of $[\mathfrak{a}]$ in the ideal class group of $K_{p,2q}$ is *n*. If this is not the case, we have $(\alpha) = (\beta)^{\ell}$ for some integer β in $\mathcal{O}_{K_{p,2q}}$ and some prime divisor ℓ of *n*. Since $K_{p,2q}$ is an imaginary quadratic field, the only

units of $\mathcal{O}_{K_{p,2q}}$ are $\pm 1.$ Thus, we have $\alpha=\pm\beta^\ell.$ If ℓ is an odd prime, we have $\alpha=\gamma^\ell$ where *γ* = \pm *β*. This contradicts Proposition [2.](#page-2-1) Next, let us consider the case of ℓ = 2. Then, we have *α* = ±*β* 2 . It means that *α* or −*α* is a square in O*Kp*,2*^q* , which contradicts Proposition [2.](#page-2-1) Hence, the order of [a] in the ideal class group of $K_{p,2q}$ is *n*. \square

4.3. Proof of Theorem 4

We are now in a position to prove the main theorem

Proof. Let *n* and *q* be as in Theorem [3.](#page-1-0) For any positive integer *D*, the curve

$$
DX^2 + 4q^2 = Y^n \tag{8}
$$

is an irreducible algebraic curve of genus > 0 (see [\[18\]](#page-9-3)). By Siegel's theorem (see [\[19\]](#page-9-4)), there are only finitely many integral points (X, Y) on the curve (8) . Thus, for each $d < 0$, there are at most finitely many primes *p* such that

$$
-dx^2 + 4q^2 = p^n.
$$

It means that there are infinitely many fields $K_{p,2q}$ for the fixed prime q . In addition, we have $|d| > 2q + 1$ for sufficiently large *p*, so $2q \neq \pm 1$ (mod $|d|$). Further, if *p* is large enough, then $p^{n/3} \neq (q + 16)/3$ and $p^{n/3} \neq (4q + 1)/3$. Hence, the class number of $K_{p,2q}$ is divisible by *n* for a sufficiently large p . \Box

5. Numerical Examples

In this section, we give several examples. All computations in this section are based on the Magma program. For example, Table [1](#page-5-1) is the list of imaginary quadratic fields $K_{p,2q}$ corresponding to $n = 3$ and $p \le 19$. In the below Tables [2](#page-6-0)[–8,](#page-8-12) we use $*$ in the column for class number to indicate the failure of condition " $p^{n/3} \neq (q+16)/3$ " or " $p^{n/3} \neq (4q+1)/3$ ". Furthermore, the appearance of ** in the column for a class number indicates the failure of condition "2*q* $\neq \pm 1$ (mod |*d*|)". Finally, the appearance of *** in the column for a class number indicates the failure of condition " $q \not\equiv \pm 1 \pmod{l}$ " for an odd prime divisor $l \neq 3$ of *n*.

Table 1. Numerical examples for $n = 3$.

p	q	$4q^2 - p^3$	d	h(d)	\boldsymbol{p}	q	$4q^2 - p^3$	\boldsymbol{d}	h(d)
7	5	-243	-3	$1*$	11	5	-1231	-1231	27
11	7	-1135	-1135	18	11	13	-655	-655	12
11	17	-175	-7	$1*$	13	5	-2097	-233	12
13	7	-2001	-2001	48	13	11	-1713	-1713	36
13	17	-1041	-1041	36	13	19	-753	-753	12
17	5	-4813	-4813	30	17	7	-4717	-4717	24
17	11	-4429	-4429	60	17	13	-4237	-4237	24
17	19	-3469	-3469	30	17	23	-2797	-2797	18
17	29	-1549	-1549	18	17	31	-1069	-1069	30
19	5	-6759	-751	15	19	7	-6663	-6663	60
19	11	-6375	-255	12	19	13	-6183	-687	12
19	17	-5703	-5703	54	19	23	-4743	-527	18
19	29	-3495	-3495	36	19	31	-3015	-335	18
19	37	-1383	-1383	18	19	41	-135	-15	$2*$

\boldsymbol{p}	q	$4q^2 - p^4$	d	h(d)	\boldsymbol{p}	q	$4q^2 - p^4$	d	h(d)
5	3	-589	-589	16	5	7	-429	-429	16
5	11	-141	-141	8	7	3	-2365	-2365	32
7	5	-2301	-2301	48	7	11	-1917	-213	8
7	13	-1725	-69	8	7	17	-1245	-1245	32
7	19	-957	-957	16	7	23	-285	-285	16
11	3	-14.605	14,605	80	11	5	-14.541	-14.541	64
11	7	-14.445	1605	16	11	13	-13.965	-285	16
11	17	$-13,485$	$-13,485$	128	11	19	$-13,197$	$-13,197$	48
11	23	$-12,525$	-501	16	11	29	$-11,277$	$-11,277$	32
11	31	$-10,797$	$-10,797$	64	11	37	-9165	-9165	64
11	41	-7917	-7917	32	11	43	-7245	-805	16
11	47	-5805	-645	16	11	53	-3405	-3405	48
11	59	-717	-717	16					

Table 2. Numerical examples for $n = 4$.

Table 3. Numerical examples for $n = 5$.

p	q	$4q^2 - p^5$	d	h(d)	\boldsymbol{p}	q	$4q^2 - p^5$	\boldsymbol{d}	h(d)
3	7	-47	-47	5	5	3	-3089	-3089	40
5	7	-2929	-2929	40	5	11	-2641	-2641	20
5	13	-2449	-2449	40	5	17	-1969	-1969	20
5	19	-1681	-1	$1**$	5	23	-1009	-1009	20
7	3	$-16,771$	$-16,771$	40	7	5	$-16,707$	$-16,707$	20
7	11	$-16,323$	$-16,323$	30	7	13	$-16,131$	$-16,131$	40
7	17	$-15,651$	-1739	20	7	19	$-15,363$	-1707	10
7	23	$-14,691$	$-14,691$	40	7	29	$-13,443$	$-13,443$	30
7	31	$-12,963$	$-12,963$	20	7	37	$-11,331$	-1259	15
7	41	$-10,083$	$-10,083$	20	7	43	-9411	-9411	30
7	47	-7971	-7971	30	7	53	-5571	-619	5
7	59	-2883	-3	$1**$	7	61	-1923	-1923	10

p	\boldsymbol{q}	$4q^2 - p^6$	d	h(d)	p	q	$4q^2 - p^6$	d	h(d)
7	47	$-108,813$	$-108,813$	240	7	53	$-106,413$	$-106,413$	216
7	59	$-103,725$	-461	30	7	61	-102.765	-102.765	192
7	67	$-99,693$	$-11,077$	48	7	71	$-97,485$	-97.485	192
7	73	$-96,333$	$-96,333$	192	7	79	$-92,685$	-92.685	288
7	83	-90.093	-90.093	192	7	89	-85.965	-85.965	240
7	97	$-80,013$	$-80,013$	192	7	101	$-76,845$	$-76,845$	192
7	103	$-75,213$	-8357	72	7	107	$-71,853$	$-71,853$	144
7	109	-70.125	-2805	48	7	113	-66.573	-7397	72
7	127	$-53,133$	$-53,133$	120	7	131	$-49,005$	-5	$2*$
7	137	$-42,573$	-42.573	120	7	139	-40.365	-4485	48
7	149	$-28,845$	-3205	24	7	151	$-26,445$	$-26,445$	96
7	157	$-19,053$	-2117	36	7	163	$-11,373$	$-11,373$	72
7	167	-6093	-677	30					

Table 5. Numerical examples for $n = 7$.

Table 6. Numerical examples for $n = 8$.

p	q	$4q^2 - p^9$	\boldsymbol{d}	h(d)	p	\boldsymbol{q}	$4q^2 - p^9$	d	h(d)
3	5	$-19,583$	$-19,583$	99	3	7	$-19,487$	$-19,487$	144
3	11	$-19,199$	$-19,199$	162	3	13	$-19,007$	$-19,007$	108
3	17	$-18,527$	$-18,527$	108	3	19	$-18,239$	$-18,239$	144
3	23	$-17,567$	$-17,567$	90	3	29	$-16,319$	$-16,319$	153
3	31	$-15,839$	$-15,839$	180	3	37	$-14,207$	$-14,207$	81
3	41	$-12,959$	$-12,959$	99	3	43	$-12,287$	$-12,287$	90
3	47	$-10,847$	$-10,847$	63	3	53	-8447	-8447	99
3	59	-5759	-5759	108	3	61	-4799	-4799	63
3	67	-1727	-1727	36					

Table 7. Numerical examples for $n = 9$.

Table 8. Numerical examples for $n = 10$.

Funding: This study was supported by research funds from Chosun University 2022.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Ankeny, N.; Chowla, S. On the divisibility of the class numbers of quad-ratic fields. *Pac. J. Math.* **1955**, *5*, 321–324. [\[CrossRef\]](http://doi.org/10.2140/pjm.1955.5.321)
- 2. Chakraborty, K.; Hoque, A.; Kishi, Y.; Pandey, P.P. Divisibility of the class numbers of imaginary quadratic fields. *J. Number Theory* **2018**, *185*, 339–348. [\[CrossRef\]](http://dx.doi.org/10.1016/j.jnt.2017.09.007)
- 3. Cohn, J.H.E. On the class number of certain imaginary quadratic fields. *Proc. Am. Math. Soc.* **2002**, *130*, 1275–1277. [\[CrossRef\]](http://dx.doi.org/10.1090/S0002-9939-01-06255-4)
- 4. Gross, B.H.; Rohrlich, D.E. Some results on the Mordell–Weil group of the Jacobian of the Fermat curve. *Invent. Math.* **1978**, *44*, 201–224. [\[CrossRef\]](http://dx.doi.org/10.1007/BF01403161)
- 5. Ishii, K. On the divisibility of the class number of imaginary quadratic fields. *Proc. Jpn. Acad. Ser. A* **2011**, *87*, 142–143. [\[CrossRef\]](http://dx.doi.org/10.3792/pjaa.87.142) √
- 6. Ito, A. A note on the divisibility of class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{a^2-k^n})$. Proc. Jpn. Acad. Ser. A 2011, 87, 151–155. [\[CrossRef\]](http://dx.doi.org/10.3792/pjaa.87.151)
- 7. Ito, A. Remarks on the divisibility of the class numbers of imaginary quad-ratic fields $\mathbb{Q}(\sqrt{2^{2k}-q^n})$. *Glasg. Math. J.* 2011, 53, 379–389. [\[CrossRef\]](http://dx.doi.org/10.1017/S0017089511000012)
- 8. Ito, A. Notes on the divisibility of the class numbers of imaginary quadratic fields Q(√ 3 ²*^e* − 4*k ⁿ*). *Abh. Math. Semin. Univ. Hambg.* **2015**, *85*, 1–21. [\[CrossRef\]](http://dx.doi.org/10.1007/s12188-015-0106-1)
- 9. Kishi, Y. Note on the divisibility of the class number of certain imaginary quadratic fields. *Glasg. Math. J.* **2009**, *51*, 187–191. [\[CrossRef\]](http://dx.doi.org/10.1017/S001708950800462X)
- 10. Louboutin, S.R. On the divisibility of the class number of imaginary quadratic number fields. *Proc. Am. Math. Soc.* **2009**, *137*, 4025–4028. [\[CrossRef\]](http://dx.doi.org/10.1090/S0002-9939-09-10021-7)
- 11. Murty, M.R. The ABC conjecture and exponents of class groups of quadrat-ic fields. *Contemp. Math.* **1998**, *210*, 85–95.
- 12. Murty, M.R. Exponents of class groups of quadratic fields. In *Topics in Number Theory*; Mathematics and Its Applications; Kluwer Academic Publishers: University Park, PA, USA; Dordrecht, The Netherlands, 1999; Volume 467, pp. 229–239.
- 13. Soundararajan, K. Divisibility of class numbers of imaginary quad-ratic fields. *J. Lond. Math. Soc.* **2000**, *61*, 681–690. [\[CrossRef\]](http://dx.doi.org/10.1112/S0024610700008887) 14. Yamamoto, Y. On unramified Galois extensions of quadratic number fields. *Osaka J. Math.* **1970**, *7*, 57–76.
- 15. $\;$ Zhu, M.; Wang, T. The divisibility of the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{2})$ 2 ²*^m* − *k ⁿ*). *Glasg. Math. J.* **2012**, *54*, 149–154.
- 16. Bugeaud, Y.; Shorey, T.N. On the number of solutions of the generalized Ra-manujan–Nagell equation. *J. Reine Angew. Math.* **2001**, *539*, 55–74.
- 17. Cohn, J.H.E. Square Fibonacci numbers, etc. *Fibonacci Quart.* **1964**, *2*, 109–113.
- 18. Schmidt, W.M. *Equations over Finite Fields, an Elementary Approach*; Lecture Notes in Math.; Springer: Berlin, Germany; New York, NY, USA, 1976; Volume 536.
- 19. Evertse, J.-H.; Silverman, J.H. Uniform bounds for the number of solutions to *Y ⁿ* = *f*(*X*). *Math. Proc. Cambridge Philos. Soc.* **1986**, *100*, 237–248. [\[CrossRef\]](http://dx.doi.org/10.1017/S0305004100066068)