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1. Introduction

The class number of a number field is by definition the order of the ideal class group of its
ring of integers. Thus, a number field has class number one if and only if its ring of integers is a
principal ideal domain. In this sense, the ideal class group measures how far R is from being a
principal ideal domain, and hence from satisfying unique prime factorization. The divisibility
properties of class numbers are very important to know the structure of ideal class groups of
number fields. Numerous results about the divisibility of the class numbers of quadratic fields
have been introduced by many authors ([1–15]). By their works, it was shown that there exist
infinitely many imaginary quadratic number fields whose ideal class numbers are multiples
of n. They proved that there exist infinitely many imaginary quadratic number fields such
that the ideal class group has a cyclic subgroup of order n. Most of such families are of
the type Q(

√
x2 − tn) or of the type Q(

√
x2 − 4tn), where x and t are positive integers with

some restrictions. (For the case of Q(
√

x2 − tn), see [1,2,6,7,9,11–13,15] and for the case of
Q(
√

x2 − 4tn) see [3–5,8,10,14]).
Recently, K. Chakraborty, A. Hoque, Y. Kishi and P.P. Pandey considered the family

Kp,q = Q(
√

q2 − pn) when p and q were distinct odd prime numbers and n ≥ 3 was an
odd integer (see Theorem 1.2 of [2]). However, they just dealt with the case when n was an
odd integer. We want to deal with the case when n is an even integer. In this article, we
treat the family Kp,2q = Q(

√
4q2 − pn) when p and q are distinct odd prime numbers.

2. Preliminaries

In this section, we review some previous results which we will use.

2.1. Being a pth Power

Proposition 1. (Proposition 2.2 in [2]). Let d ≡ 5 (mod 8) be an integer and ` be a prime. For
odd integers a, b, we have (

a + b
√

d
2

)`

∈ Z[d] if and only if ` = 3.

Definition 1. If L/K is a Galois extension and α is in L, then the trace of α is the sum of all the
Galois conjugates of α, i.e.,

Tr(α) = ∑
σ∈Gal(L/K)

σ(α),
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where Gal(L/K) denotes the Galois group of L/K.

Lemma 1. (Lemma 4 in [10]). Let K be a quadratic number field and OK be its ring of algebraic
integers. If α ∈ OK, then α is a square in OK if and only if there exists A ∈ Z such that N(α) = A2

and such that Tr(α) + 2A is a square in Z. If K is imaginary, we may assume that A ≥ 0.

2.2. Result of Y. Bugeaud and T. N. Shorey

In this section, we review a result of Y. Bugeaud and T.N. Shorey (see [16]). Let Fn be
the nth Fibonacci sequence and Ln be the nth Lucas sequence. Let us define the sets F and
G ⊂ N×N×N by

F := {(Fh1−2ε, Lh1+ε, Fh1)|h1 ∈ N s.t. h1 ≥ 2 and ε ∈ {±1}}

and
G := {(1, 4ph2

1 − 1, p1)|p1 is a prime number and h2 ∈ N}.

For λ ∈ {1,
√

2, 2}, we define the setHλ ⊂ N×N×N by

Hλ :=

(D1, D2, p)

∣∣∣∣∣∣
D1, D2 and p are mutually coprime positive integers with
p an odd prime and there exist positive integers r, s such
that D1s2 + D2 = λ2 pr and 3D1s2 − D2 = ±λ2


Theorem 1. (Theorem 1 in [16]). Let D1, D2 and p be mutually coprime positive integers with
p a prime number. Let λ ∈ {1,

√
2, 2} be such that λ = 2 if p = 2. We assume that D2 is odd if

λ ∈ {
√

2, 2}. Then, the number of positive integer solutions (x, y) of the equation

D1x2 + D2 = λ2 py (1)

is at most one except for

(λ, D1, D2, p) ∈ E :=
{

(2, 13, 3, 2), (
√

2, 7, 11, 3), (1, 2, 1, 3), (2, 7, 1, 2),
(
√

2, 1, 1, 5), (
√

2, 1, 1, 13), (2, 1, 3, 7).

}
or

(D1, D2, p) ∈ F ∪ G ∪Hλ.

We recall the result of J.H.E Cohn [17] about the appearance of squares in the Lucas se-
quence.

Theorem 2. Let Ln be the nth Lucas sequence. Then, the only perfect square appearing in the
Lucas sequences are L1 = 1 and L3 = 4.

3. Main Result

In this section, we will describe the main result. Here is the crucial theorem.

Theorem 3. Suppose that n ≥ 3 is an integer and q is an odd prime number such that (q, n) = 1
and q 6≡ ±1 (mod `) for all odd prime number ` 6= 3 dividing n. Let p be an odd prime number
with 4q2 < pn and (q, p) = 1. Let d be the square-free part of 4q2 − pn, i.e., 4q2 − pn = m2d for
some positive integer m. Assume that 2q 6≡ ±1 (mod |d|). Moreover, we assume q 6≡ 2 (mod 3)
when 3|n. Then, we have the following:

(i) Assume that n is an even integer or p ≡ 1 (mod 4). Then, the class number of
Kp,2q = Q(

√
d) is divisible by n.

(ii) Assume that n is an odd integer and p ≡ 3 (mod 4). Moreover, we assume pn/3 6=
(4q + 1)/3 when 3|n. Then, the class number of Kp,2q = Q(

√
d) is divisible by n.
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Remark 1. By Dirichlet’s theorem on arithmetic progressions, we know that there exist infinitely
many q such that q 6≡ ±1 (mod `) for all odd prime number ` 6= 3 dividing n.

Theorem 4. Let n, q be as in Theorem 3. For each q, the class number of Kp,2q is divisible by n for
all but finitely many p′s. Furthermore, for each q there are infinitely many fields Kp,2q.

4. Proof of Main Theorem
4.1. Crucial Proposition

Lemma 2. Let p, d and m be as in Theorem 3 (i) or (ii). Let ` be an odd prime such that

α = 2q + m
√

d = (a + b
√

d)`

for some integer a and b. Then, a|2q if and only if −a|2q.

Proof. Suppose that
α = 2q + m

√
d = (a + b

√
d)`.

If we compare the real parts, we know that

2q = a` +
(`−1)/2

∑
i=1

(
`

2i

)
a`−2ib2idi.

This implies that a|2q. Since a|2q, we also know that −a|2q. Similarly, −a|2q implies that
a|2q.

Proposition 2. Let n, q, p, d and m be as in Theorem 3 (i) or (ii). Then, the element α = 2q+m
√

d
is not an `th power of an element in the ring of integers of Kp,2q for any odd prime divisor ` of n. In
addition, α and −α are not a square in OKp,2q .

Proof. (i) Assume that n is an even integer or p ≡ 1 (mod 4). Moreover, we assume
pn/3 6= (q + 16)/3 when 3|n. Since n is an even integer or p ≡ 1 (mod 4), we know that
d ≡ 3 (mod 4). Let ` be an odd prime divisor of n. If α = 2q + m

√
d is an `th power, then

α = 2q + m
√

d = (a + b
√

d)`

for some integer a and b. If we compare the real parts, we know that

2q = a` +
(`−1)/2

∑
i=1

(
`

2i

)
a`−2ib2idi.

This implies that a|2q. By Lemma 2, we can assume that a = 2q, a = q, a = 2 or a = 1.

Case (i-A1): a = 2, ` 6= 3
Comparing the real parts, we have

2q = (±2)` +
(`−1)/2

∑
i=1

(
`

2i

)
(±2)`−2ib2idi ≡ ±2 (mod `).

From these, we have q ≡ ±1 (mod `), which violates our assumption.

Case (i-A2): a = 2, ` = 3
Suppose that

α = 2q + m
√

d = (2 + b
√

d)3.
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Comparing the real parts, we have

2q = 8 + 6b2d. (2)

Since d < 0, we have q = 4 + 3b2d < 0. This is impossible.

Case (i-B1) : a = q, ` 6= 3
Comparing the real parts, we have

2q = (±q)` +
(`−1)/2

∑
i=1

(
`

2i

)
(±q)`−2ib2idi ≡ ±q (mod `).

Thus, we get 3q ≡ 0 (mod `) or q ≡ 0 (mod `), which contradicts the assumption “(q, n) =
1” and “` 6= 3”.

Case (i-B2) : a = q, ` = 3
Suppose that

α = 2q + m
√

d = (q + b
√

d)3.

Comparing the real parts, we have

2q = q3 + 3qb2d. (3)

By (3), we have 2 = q2 + 3b2d, and hence 2 ≡ q2 (mod 3). This is impossible.

Case (i-C) : a = 2q
We have 2q + m

√
d = (2q + b

√
d)`. Taking the norm on both sides, we obtain

pn = (4q2 − b2d)`.

If we write D1 = −d > 0, we have

D1b2 + 4q2 = pn/`.

We also obtain
D1m2 + 4q2 = pn.

Then, we easily know that (|b|, n/`) and (m, n) are distinct solutions of (1) for D1 = −d > 0,
D2 = 4q2, λ = 1. The next thing we have to do is to show that (1, D1, D2, p) /∈ E and
(D1, D2, p) /∈ F ∪ G ∪Hλ. Clearly, (1, D1, D2, p) /∈ E and (D1, D2, p) /∈ G. By Theorem 2,
we know that (D1, D2, p) /∈ F . Finally suppose that (D1, D2, p) ∈ Hλ. Then, there exist
positive integers r, s such that

3D1s2 − 4q2 = ±1 (4)

and
D1s2 + 4q2 = pr. (5)

By (4), we have q 6= 3, and hence we have 3D1s2 − 4q2 = −1. From this together with (5),
we obtain

16q2 = 3pr + 1,

that is,
(4q− 1)(4q + 1) = 3pr.

This implies that 4q− 1 = 1 or 4q− 1 = 3. It contradicts the fact that q is an odd prime
number. Hence, (D1.D2, p) /∈ H1. By Theorem 1, the equation

−dx2 + 4q2 = py
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has at most one integer solutions (x, y). Thus, a 6= 2q

Case (i-D) : a = 1
Comparing the real parts, we have

2q = (1)` +
(`−1)/2

∑
i=1

(
`

2i

)
(1)`−2ib2idi ≡ 1 (mod |d|).

It contradicts our assumption “2q ≡ 1 (mod |d|)”.

(ii) Assume that n is an odd integer and p ≡ 3 (mod 4). Then, we know that d ≡ 1
(mod 4). Moreover, we assume pn/3 6= (4q + 1)/3 when 3|n. Let ` be an odd prime divisor
of n. If α = 2q + m

√
d is an `th power, then

α = 2q + m
√

d =

(
a + b

√
d

2

)`

, a ≡ b (mod 2).

for some integer a and b. In case both a and b are even, then we can proceed as in the above
and obtain a contradiction. Thus, we can assume that both a and b are odd. If we take the
norm on both sides we obtain

4pn/` = a2 − b2d. (6)

Since a and b are odd integers and p 6= 2, we can get d ≡ 5 (mod 8). By Proposition 1, we
know that ` = 3. Thus, we have

α = 2q + m
√

d =

(
a + b

√
d

2

)3

.

Comparing the real parts, we have

16q = a(a2 + 3b2d). (7)

Since a is an odd integer, we have a = 1 or a = q.

Case (ii-A) : a = 1
By (7) and d < 0, we have 16q = 1 + 3b2d < 0. This is not possible.

Case (ii-B) : a = q
By (6) and (7), we have

4pn/3 = q2 − b2d and 16 = q2 + 3b2d.

From these, we have 3pn/3 = q2 − 4 = (q − 2)(q + 2). This implies that q − 2 = 3 or
q + 2 = 3. Since q is a prime, we have q− 2 = 3 and pn/3 = q + 2 = 7. These violate our
assumption pn/3 6= (4q + 1)/3.

4.2. Proof of Theorem 3

Next, we prove Theorem 3.

Proof of Theorem 3. Let n, q, p, d and m be as in Theorem 3 (i) or (ii). Set α = 2q + m
√

d.
We can easily check that α and ᾱ are coprime and N(α) = αᾱ = pn. This implies that
(α) = an for some integral ideal a of Kp,2q. It suffices to show that the order of [a] in the
ideal class group of Kp,2q is n. If this is not the case, we have (α) = (β)` for some integer β
inOKp,2q and some prime divisor ` of n. Since Kp,2q is an imaginary quadratic field, the only
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units of OKp,2q are ±1. Thus, we have α = ±β`. If ` is an odd prime, we have α = γ` where
γ = ±β. This contradicts Proposition 2. Next, let us consider the case of ` = 2. Then, we
have α = ±β2. It means that α or −α is a square in OKp,2q , which contradicts Proposition 2.
Hence, the order of [a] in the ideal class group of Kp,2q is n.

4.3. Proof of Theorem 4

We are now in a position to prove the main theorem

Proof. Let n and q be as in Theorem 3. For any positive integer D, the curve

DX2 + 4q2 = Yn (8)

is an irreducible algebraic curve of genus > 0 (see [18]). By Siegel’s theorem (see [19]), there
are only finitely many integral points (X, Y) on the curve (8). Thus, for each d < 0, there
are at most finitely many primes p such that

−dx2 + 4q2 = pn.

It means that there are infinitely many fields Kp,2q for the fixed prime q. In addition, we
have |d| > 2q + 1 for sufficiently large p, so 2q 6≡ ±1 (mod |d|). Further, if p is large
enough, then pn/3 6= (q + 16)/3 and pn/3 6= (4q + 1)/3. Hence, the class number of Kp,2q
is divisible by n for a sufficiently large p.

5. Numerical Examples

In this section, we give several examples. All computations in this section are based
on the Magma program. For example, Table 1 is the list of imaginary quadratic fields Kp,2q
corresponding to n = 3 and p ≤ 19. In the below Tables 2–8, we use * in the column for class
number to indicate the failure of condition “pn/3 6= (q + 16)/3” or “pn/3 6= (4q + 1)/3”.
Furthermore, the appearance of ** in the column for a class number indicates the failure
of condition “2q 6≡ ±1 (mod |d|)”. Finally, the appearance of *** in the column for a class
number indicates the failure of condition “q 6≡ ±1 (mod `)” for an odd prime divisor ` 6= 3
of n.

Table 1. Numerical examples for n = 3.

p q 4q2 − p3 d h(d) p q 4q2 − p3 d h(d)

7 5 −243 −3 1 * 11 5 −1231 −1231 27
11 7 −1135 −1135 18 11 13 −655 −655 12
11 17 −175 −7 1 * 13 5 −2097 −233 12
13 7 −2001 −2001 48 13 11 −1713 −1713 36
13 17 −1041 −1041 36 13 19 −753 −753 12
17 5 −4813 −4813 30 17 7 −4717 −4717 24
17 11 −4429 −4429 60 17 13 −4237 −4237 24
17 19 −3469 −3469 30 17 23 −2797 −2797 18
17 29 −1549 −1549 18 17 31 −1069 −1069 30
19 5 −6759 −751 15 19 7 −6663 −6663 60
19 11 −6375 −255 12 19 13 −6183 −687 12
19 17 −5703 −5703 54 19 23 −4743 −527 18
19 29 −3495 −3495 36 19 31 −3015 −335 18
19 37 −1383 −1383 18 19 41 −135 −15 2 *
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Table 2. Numerical examples for n = 4.

p q 4q2 − p4 d h(d) p q 4q2 − p4 d h(d)

5 3 −589 −589 16 5 7 −429 −429 16
5 11 −141 −141 8 7 3 −2365 −2365 32
7 5 −2301 −2301 48 7 11 −1917 −213 8
7 13 −1725 −69 8 7 17 −1245 −1245 32
7 19 −957 −957 16 7 23 −285 −285 16

11 3 −14,605 14, 605 80 11 5 −14,541 −14,541 64
11 7 −14,445 1605 16 11 13 −13,965 −285 16
11 17 −13,485 −13,485 128 11 19 −13,197 −13,197 48
11 23 −12,525 −501 16 11 29 −11,277 −11,277 32
11 31 −10,797 −10,797 64 11 37 −9165 −9165 64
11 41 −7917 −7917 32 11 43 −7245 −805 16
11 47 −5805 −645 16 11 53 −3405 −3405 48
11 59 −717 −717 16

Table 3. Numerical examples for n = 5.

p q 4q2 − p5 d h(d) p q 4q2 − p5 d h(d)

3 7 −47 −47 5 5 3 −3089 −3089 40
5 7 −2929 −2929 40 5 11 −2641 −2641 20
5 13 −2449 −2449 40 5 17 −1969 −1969 20
5 19 −1681 −1 1 ** 5 23 −1009 −1009 20
7 3 −16,771 −16,771 40 7 5 −16,707 −16,707 20
7 11 −16,323 −16,323 30 7 13 −16,131 −16,131 40
7 17 −15,651 −1739 20 7 19 −15,363 −1707 10
7 23 −14,691 −14,691 40 7 29 −13,443 −13,443 30
7 31 −12,963 −12,963 20 7 37 −11,331 −1259 15
7 41 −10,083 −10,083 20 7 43 −9411 −9411 30
7 47 −7971 −7971 30 7 53 −5571 −619 5
7 59 −2883 −3 1 ** 7 61 −1923 −1923 10

Table 4. Numerical examples for n = 6.

p q 4q2 − p6 d h(d) p q 4q2 − p6 d h(d)

3 5 −629 −629 36 3 7 −533 −533 12
3 11 −245 −5 2 * 3 13 −53 −53 6
5 3 −15,589 −15,589 72 5 7 −15,429 −15,429 96
5 11 −15,141 −309 12 5 13 −14,949 −1661 48
5 17 −14,469 −14,469 96 5 19 −14,181 −14,181 96
5 23 −13,509 −1501 24 5 29 −12,261 −12,261 72
5 31 −11,781 −1309 24 5 37 −10,149 −10,149 120
5 41 −8901 −989 36 5 43 −8229 −8229 48
5 47 −6789 −6789 72 5 53 −4389 −4389 48
5 59 −1701 −21 4 * 5 61 −741 −741 24
7 3 −117,613 −117,613 168 7 5 −117,549 −13,061 156
7 11 −117,165 −117,165 240 7 13 −116,973 −12,997 60
7 17 −116,493 −116,493 192 7 19 −116,205 −116,205 192
7 23 −115,533 −12,837 72 7 29 −114,285 −114,285 240
7 31 −113,805 −1405 24 7 37 −112,173 −112,173 240
7 41 −110,925 −493 12 7 43 −110,253 −110,253 288
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Table 4. Cont.

p q 4q2 − p6 d h(d) p q 4q2 − p6 d h(d)

7 47 −108,813 −108,813 240 7 53 −106,413 −106,413 216
7 59 −103,725 −461 30 7 61 −102,765 −102,765 192
7 67 −99,693 −11,077 48 7 71 −97,485 −97,485 192
7 73 −96,333 −96,333 192 7 79 −92,685 −92,685 288
7 83 −90,093 −90,093 192 7 89 −85,965 −85,965 240
7 97 −80,013 −80,013 192 7 101 −76,845 −76,845 192
7 103 −75,213 −8357 72 7 107 −71,853 −71,853 144
7 109 −70,125 −2805 48 7 113 −66,573 −7397 72
7 127 −53,133 −53,133 120 7 131 −49,005 −5 2 *
7 137 −42,573 −42,573 120 7 139 −40,365 −4485 48
7 149 −28,845 −3205 24 7 151 −26,445 −26,445 96
7 157 −19,053 −2117 36 7 163 −11,373 −11,373 72
7 167 −6093 −677 30

Table 5. Numerical examples for n = 7.

p q 4q2 − p7 d h(d) p q 4q2 − p7 d h(d)

3 5 −2087 −2087 35 3 11 −1703 −1703 28
3 13 −1511 −1511 49 3 17 −1031 −1031 35
3 19 −743 −743 21 3 23 −71 −71 7
5 3 −78,089 −78,089 280 5 11 −77,641 −77,641 112
5 13 −77,449 −77,449 112 5 17 −76,969 −76,969 196
5 19 −76,681 −76,681 140 5 23 −76,009 −76,009 224
5 29 −74,761 −74,761 140 5 31 −74,281 −74,281 140
5 37 −72,649 −72,649 168 5 41 −71,401 −71,401 140
5 43 −70,729 −70,729 140 5 47 −69,289 −69,289 196
5 53 −66,889 −66,889 112 5 59 −64,201 −64,201 112
5 61 −63,241 −63,241 196 5 67 −60,169 −60,169 112
5 71 −57,961 −57,961 112 5 73 −56,809 −56,809 112
5 79 −53,161 −53,161 168 5 83 −50,569 −50,569 168
5 89 −46,441 −46,441 140 5 97 −40,489 −40,489 140
5 101 −37,321 −37,321 84 5 103 −35,689 −35,689 112
5 107 −32,329 −32,329 140 5 109 −30,601 −30,601 112
5 113 −27,049 −27,049 84 5 127 −13,609 −13,609 56
5 131 −9481 −9481 84 5 137 −3049 −3049 28
5 139 −841 −1 1 **

Table 6. Numerical examples for n = 8.

p q 4q2 − p8 d h(d) p q 4q2 − p8 d h(d)

3 5 −6461 −6461 96 3 7 −6365 −6365 64
3 11 −6077 −6077 48 3 13 −5885 −5885 96
3 17 −5405 −5405 64 3 19 −5117 −5117 64
3 23 −4445 −4445 64 3 29 −3197 −3197 64
3 31 −2717 −2717 32 3 37 −1085 −1085 32
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Table 7. Numerical examples for n = 9.

p q 4q2 − p9 d h(d) p q 4q2 − p9 d h(d)

3 5 −19,583 −19,583 99 3 7 −19,487 −19,487 144
3 11 −19,199 −19,199 162 3 13 −19,007 −19,007 108
3 17 −18,527 −18,527 108 3 19 −18,239 −18,239 144
3 23 −17,567 −17,567 90 3 29 −16,319 −16,319 153
3 31 −15,839 −15,839 180 3 37 −14,207 −14,207 81
3 41 −12,959 −12,959 99 3 43 −12,287 −12,287 90
3 47 −10,847 −10,847 63 3 53 −8447 −8447 99
3 59 −5759 −5759 108 3 61 −4799 −4799 63
3 67 −1727 −1727 36

Table 8. Numerical examples for n = 10.

p q 4q2 − p10 d h(d) p q 4q2 − p10 d h(d)

3 7 −58,853 −58,853 180 3 11 −58,565 −58,565 240
3 13 −58,373 −58,373 240 3 17 −57,893 −57,893 280
3 23 −56,933 −197 10 3 29 −55,685 −55,685 160
3 31 −55,205 −55,205 240 3 37 −53,573 −317 10
3 41 −52,325 −2093 40 3 43 −51,653 −51,653 160
3 47 −50,213 −50,213 120 3 53 −47,813 −47,813 260
3 59 −45,125 −5 2 *** 3 61 −44,165 −365 20
3 67 −41,093 −41,093 240 3 71 −38,885 −38,885 160
3 73 −37,733 −37,733 160 3 79 −34,085 −34,085 200
3 83 −31,493 −31,493 120 3 89 −27,365 −27,365 120
3 97 −21,413 −437 20 3 101 −18,245 −18,245 160
3 103 −16,613 −16,613 100 3 107 −13,253 −13,253 80
3 109 −11,525 −461 30 3 113 −7973 −7973 80
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