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Abstract: Cerebrospinal fluid (CSF) exists in the surrounding spaces of mammalian central nervous
systems (CNS); therefore, there are numerous potential protein biomarkers associated with CNS
disease in CSF. Currently, approximately 4300 proteins have been identified in CSF by protein
profiling. However, due to the diverse modifications, as well as the existing technical limits, large-
scale protein identification in CSF is still considered a challenge. Inspired by computational methods,
this paper proposes a deep learning framework, named DenSec, for secreted protein prediction in
CSF. In the first phase of DenSec, all input proteins are encoded as a matrix with a fixed size of
1000 × 20 by calculating a position-specific score matrix (PSSM) of protein sequences. In the second
phase, a dense convolutional network (DenseNet) is adopted to extract the feature from these PSSMs
automatically. After that, Transformer with a fully connected dense layer acts as classifier to perform
a binary classification in terms of secretion into CSF or not. According to the experiment results,
DenSec achieves a mean accuracy of 86.00% in the test dataset and outperforms the state-of-the-art
methods.

Keywords: cerebrospinal fluid; secreted protein prediction; DenseNet; transformer
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1. Introduction

Human body fluids, such as blood, urine and saliva, contain many disease-associated
proteins. The research of body-fluid proteomics has attracted much interest from clin-
icians, pathologists and biologists for many years. Modern proteomic tools, such as
two-dimensional gel electrophoresis (2-DE) [1], liquid chromatography (LC) [2] and mass
spectrometry (MS) [3], have led to the identification of approximately 11,000 proteins in
common human body fluids [4]. Cerebrospinal fluid (CSF) is a clear, proteinaceous fluid
that exists in the surrounding spaces of mammalian central nervous systems (CNS) [5].
Because CSF is directly connected to extracellular fluid in brain tissue, the composition of
CSF adjusts to the physiological state of the nervous system and is affected by infections,
tumours, neurodegenerative diseases, etc. Therefore, there are numerous potential protein
biomarkers associated with CNS disease in CSF, which leads to a wide application of CSF
in clinical practice.

Nowadays, the availability of many public databases provides powerful tools that
facilitate research in clinical body-fluid proteomics [6]. For instance, the human body-
fluid proteome (HBFP) database (https://bmbl.bmi.osumc.edu/HBFP/, accessed on 15
November 2021) [7], our previous research, focuses on experimentally validated proteome
and archives more than 11,000 unique proteins from 17 types of human body fluids. Among
them, 4350 CSF proteins identified by biological experiments are collected from 12 public
literature collections. Despite the success of bio experimental approaches for protein
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identification, however, large-scale protein identification is still considered a challenge due
to the highly complex composition of body-fluid proteome.

As a result, many computational approaches have been proposed to predict the
secreted protein of different body fluids based on machine learning (ML) and various
neural network technologies. The first prediction model was based on a support vector
machine (SVM), which adopted a binary classification to predict protein secretion into
blood or not and used common features, e.g., amino acid composition, signal peptide and
secondary structure, as the input [8]. Since then, some reports on urine and saliva protein
prediction were published also using a SVM algorithm and protein common features [9,10].
Despite these models achieving promising performances, they generally suffered from
some limitations such as manual intervention in the feature selection procedures. Recently,
deep learning (DL) with neural network models, such as convolutional neural network
(CNN), long short-term memory (LSTM) and gated recurrent unit (GRU), have been used
for body-fluid protein prediction [11–13]. Du et al. proposed a DL model, named DeepUEP,
which consists of a CNN module, a recurrent neural network (RNN) with LSTM and an
attention module to predict the urine excretory proteins [12]. In addition, they proposed
a DL model based on the capsule network and Transformer architecture, SecProCT, to
predict secretory proteins in blood and saliva [13]. Additionally, a novel DL framework,
DeepSec, our previous research, for prediction of 12 different types of human body fluids
was presented using CNN and a bidirectional gated recurrent unit (BGRU) [11]. Instead of
the common features, amino acid sequences were involved in the computational model
as the input features. In addition, automatic feature extraction was adopted to dispense
with the initial feature selection step and improve the prediction performance. However,
most of these models still focus on secreted protein prediction of blood, urine and saliva.
Therefore, building a model for CSF secreted protein prediction is essential.

During the years, dense convolutional network (DenseNet) has been successfully
applied in various fields to improve accuracy and efficiency [14]. It has been verified that
DenseNet is able to solve the problem of vanishing gradient and reinforce the propagation
of features across networks when compared with a traditional CNN [15]. Additionally,
recent research on Transformer architecture [16] has shown that it can focus more on solving
the large-scale computing problems caused by the excessive length of the sequence and has
surpassed CNNs in many tasks [17]. In this paper, we propose a DL-framework, named
DenSec, to predict CSF secreted proteins based on protein sequence information. DenSec
employs DenseNet as feature extractor and Transformer architecture with fully connected
dense layer as a classifier. DenSec has demonstrated promising performances with high
accuracies and outperformed existing state-of-the-art methods.

2. Protein Data
2.1. Data Collection

The CSF proteins were collected fromthe HBFP database (https://bmbl.bmi.osumc.
edu/HBFP/, (accessed on 15 November 2021)) [7]. A total of 4350 CSF secreted proteins
were obtained as positive samples of our model. For the negative samples, we have no
clear evidence on which proteins are not secreted in the CSF, so we refer to the approach of
our previous study, in which negative samples were filtered by the information of Pfam
family [11]. We chose negative samples from Pfam families (Pfam release 33.1) [18] which
do not contain any proteins in the positive samples. As a result, 4710 proteins are chosen as
negative samples for our model. Finally, the entire sample space of DenSec contains 4350
positive samples and 4710 negative samples, respectively. Then, all samples are classified
into a training dataset and a testing dataset, bearing the shares of 85% (i.e., 7800 proteins)
and 15% (i.e., 1260 proteins), respectively. In addition, 10-fold cross validation is performed
on the training dataset. Furthermore, to assess the robustness of the scores to perturbations
of the test set, we resample these data for 1000 times randomly and perform prediction on
all sets.

https://bmbl.bmi.osumc.edu/HBFP/
https://bmbl.bmi.osumc.edu/HBFP/
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2.2. Encoding Protein

Instead of common protein features, in DenSec, we adopt a position-specific score
matrix (PSSM) [19] as the input features of our model. The PSSMs are calculated by
a position-specific iterative basic local alignment search (PSI-BLAST) [20] on UniRef 90
(released in 2020_01) database with inclusion 0.001 and 3 iterations. For each PSSM, the
row represents 20 amino acid vocabulary, and the column indicates amino acid sequence of
the protein. Since different proteins contain different amino acid composition, the column
lengths of the corresponding PSSMs are also not consistent. To facilitate the subsequent
model fitting operation, we standardize the specification of the PSSM to a 1000 × 20 matrix,
where 1000 represents the amino acid sequence length of the protein and 20 represents 20
amino acids (aa). For protein sequences less than 1000 in length, the number 0 is filled after
the sequence; as for the protein sequences more than 1000 in length, 500 aa from N-terminus
and C-terminus of the protein sequence are preserved, respectively. This method of cutting
the amino acid sequence has been used in many cases of secreted protein prediction [11,12].
We then transform the PSSM described in [21] by the Sigmoid function 1/(1 + exp(−x)),
where x represents a single entry of the PSSM. It is worth noting that there are many “0”
items in the PSSMs, which are used to fill sequences. During the transform process, the filled
“0” cannot be transformed by the Sigmoid function in order not to affect the subsequent
calculation of neural networks. We calculate the mean distribution of protein sequence
length in the training and testing datasets after resampling 1000 times, respectively, as
shown in Table 1.

Table 1. The ratio of protein sequence length distribution of the training and testing datasets.

Sequence Length Range
Training Dataset Testing Dataset

# of Proteins Proportion # of Proteins Proportion

<500 4763 61.06% 889 70.56%
500–1000 2095 26.86% 263 20.87%

>1000 942 12.08% 108 8.57%

3. The Proposed Method

This paper introduces a DL-framework, DenSec, to predict secreted proteins in CSF.
The overall DenSec model is shown in Figure 1. First, the input of the model is the PSSM of
each protein, which is a 1000 × 20 matrix. Next, we employ the DenseNet, rather than the
traditional CNNs, to capture the features of the protein sequences. Finally, Transformer
with a fully connected dense layer is used as classifier.

To this end, the main contributions of this paper are as follows:

• A new deep learning model is proposed to predict CSF proteins based on DenseNet
and Transformer architecture;

• We employ the DenseNet for feature extraction instead of traditional CNNs, which
allows the model to achieve better performance with fewer parameters and computa-
tional costs;

• We propose Transformer to capture possible long-range dependencies between pro-
tein sequence and secreted status of proteins, which contributes to the improved
performance.

3.1. Feature Learning Using DenseNet

In DenSec, DenseNet is employed to extract the features of amino acid sequences.
DenseNet has achieved great success in the field of image recognition. In the image task,
every image is processed to a matrix which is similar to the PSSM matrix. Inspired by this,
in this paper, we make a big attempt and apply it to the protein sequence. The results show
that it also performs automatic feature extraction. DenseNet aims to improve the model
performance from the perspective of feature reuse. As shown in Figure 1, a three-layer
dense block with a growth rate of k = 12 is defined. In each dense block, rather than multiple
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convolution layers, single layers are connected one by one, and each subsequent layer takes
all the preceding layers as its additional input. In addition, we employ a transition layer
between blocks, which perform convolution and pooling. For a dense block, we define:

X` = H`([X0, X1, . . . , X`−1]) (1)

where X` represents the l-th layer output, which is computed by the preceding layer outputs
using a nonlinear transformation Hl(·). Hl(·) is a composite function of three consecutive
operations: batch normalization, the activation function ReLU and a convolution with
kernel size of 3 × 3.

Figure 1. The architecture of DenSec which supports input as PSSM of protein sequences, feature
extraction through DenseNet, classification based on Transformer with fully connected dense layer,
and the outputs as the probability of being secreted protein in CSF.

3.2. Classification Using Transformer

To capture the relationships of the protein sequences, we adopt Transformer for
classification. In Transformer, a two-layer architecture is built, as shown in Figure 1. The
first adopts a multi-head self-attention mechanism, and the second is a fully connected
feedforward network. Around each of the two layers, a residual connection is used,
followed by layer normalization.

h̃ = LN(h + MHAtt(h)) (2)

FFN
(
h̃
)
= max

(
0, h̃W1 + b1

)
W2 + b2 (3)

h
′
= LN

(
h̃ + FFN

(
h̃
))

(4)

where h = PosEmb(T) and T is the output of DenseNet, PosEmb is the operation of adding
positional embedding (indicating the position of each sequence) to T, LN is the layer
normalization operation [22], and MHAtt is the multi-head attention operation [23]. FFN
is the feedforward network, which consists of two linear transformations with a ReLU
activation in between. W and b are the weight vector and bias, respectively; h

′
is the final

result of Transformer.



Mathematics 2022, 10, 2490 5 of 10

The subsequent classification is performed by one fully connected layer with two
hidden layers. The hidden layers compute a non-linear transformation, defined as follows:

f = max
(

0, h
′ · µ + v

)
(5)

where µ and v are the weight vector and bias respectively, and h
′

is the output matrix of
Tranformer.

One output layer computes the probability distribution, defined as follows:

ŷ = σ( f · γ + τ) (6)

where γ and τ are the weight vector and bias, respectively, and σ is the Softmax function.
In our model, we adopt cross-entropy as the loss function to measure the distance

between the prediction and the ground truth:

L =
1
n

n

∑
i=1
−(yi · log(ŷi) + (1− y) · log(1− ŷi)) (7)

where ŷ represents the predicted value, y represents the ground truth value, and n repre-
sents the numbers of samples.

4. Results

For our experiment, all implementations and evaluation are performed on a computer
with Microsoft Windows 10 OS, and the software environment is Keras 2.2.4 and Tensor-
Flow 1.13.1. Additionally, these model’s hyperparameters are optimized using the Adam
stochastic optimizer [24] with the following parameters: an exponential decay rate of 0.9
at the first moment estimation, an exponential decay rate of 0.999 at the second moment
estimation, and an epoch of 600. All data are resampled 1000 times with 85% of the training
dataset and 15% of the test dataset.

4.1. Result Analysis Method

The prediction performance is measured based on the testing dataset. Accuracy,
sensitivity, specifically, Matthew’s correlation coefficient (MCC), and the Area under the
ROC Curve (AUC) are applied.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

MCC =
TP× TN − FP× FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(11)

where TP represents the true positive, TN represents the true negative, FP represents
the false positive, and FN represents the false negative. Accuracy represents how many
predictions of the classifier are in fact correct. Sensitivity shows how many positive
examples are correctly identified by the classifier. The specificity relates to the ability
to correctly identify the negative examples. MCC is a correlation coefficient between the
observed and predicted binary classifications. AUC presents the average value of sensitivity
for all possible values of specificity.
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4.2. Evaluating the Performance of Classification

The input is sequence length (=1000) × size of amino acid vocabulary (=20). DenseNet
uses three dense blocks with a growth rate of k = 12. The feature map sizes in the three
dense blocks are {1000 × 20 × 75, 1000 × 20 × 100}, {500 × 10 × 62, 500 × 10 × 87}, and
{250 × 5 × 68, 250 × 5 × 93}, respectively. Before entering the first dense block, a convolution
with 50 filters of size 3 × 3 is performed on the input matrix. We use 1 × 1 convolution
followed by 2 × 2 average pooling as transition layers between two contiguous dense
blocks. At the end of the last dense block, a global average pooling followed by a reshaping
is performed. In total, DenseNet gives a 31 × 3 dimensional output which is used as input
to Transformer. Transformer uses three attention heads. Meanwhile, the feedforward
neural network (FFN) is 2048 and 512 units in the two layers of Transformer, respec-
tively. Subsequently, a global average pooling is adopted to produce outputs of dimension
d = 3. Finally, the above result is fed to a fully connected dense layer that has two hidden
layers of 256 and 32 units, respectively. All parameters were optimized by the Adam
optimizer with a learning rate as 0.0001 and a dropout probability of 0.7 prior to the fully
connected layer. We chose 0.5 as the prediction threshold, which means that a probability
≥ 0.5 indicates a positive class associated with secretion into CSF.

To evaluate DenSec against other exiting methods, 10-fold cross validation is per-
formed on the training dataset. The same training dataset and validation dataset are used
for all methods. We compare the performances between the DenSec model and other
exiting models in terms of accuracy, sensitivity, specificity, MCC and AUC.

First, considering that ML algorithms have been used to predict protein secretion, we
construct several models based on the common ML methods, including SVM, adaptive
boosting (AdaBoost), Decision Tree and Random Forest. Gaussian kernel function is
employed in SVM. The penalty coefficient is set as 0.1, while the coefficient of the kernel
function is 10. Moreover, the learning rate is set as 0.6 and maximum iterations as 600 in
AdaBoost. Furthermore, in Decision Tree, we set the maximum depth of the tree as 50 and
minimum samples of leaf nodes as 3. Meanwhile, in Random Forest, we set the number
of trees in the forest as 400. Other parameters are set to default values. After resampling
and assessing 1000 times , the mean scores and the distribution [L,U] of scores are reported
in Table 2, where L and U represent the lower and upper quantiles of that distribution.
The DenSec classifier achieves the highest overall performance on testing dataset (average
AUC: 0.923). In the meantime, it also attains the highest average values of accuracy (0.860)
and MCC (0.726). The average ROCs and the Precision-Recall curves on testing datasets
are plotted in Figure 2a,b, respectively.

Table 2. The performance evaluation based on testing dataset, grouped by several machine learning
methods.

Methods Accuracy Sensitivity Specificity MCC AUC

SVM 0.563 0.547 0.656 0.405 0.500
[0.525, 0.596] [0.505, 0.597] [0.594, 0.703] [0.362, 0.466] [0.483, 0.527]

AdaBoost 0.738 0.605 0.848 0.471 0.830
[0.694, 0.784] [0.528, 0.701] [0.723, 0.897] [0.412, 0.526] [0.774, 0.882]

Decision Tree 0.601 0.458 0.745 0.412 0.636
[0.569, 0.645] [0.393, 0.581] [0.590, 0.796] [0.386, 0.504] [0.584, 0.688]

RandomForest 0.742 0.606 0.861 0.489 0.831
[0.692, 0.778] [0.543, 0.736] [0.815, 0.883] [0.408, 0.541] [0.765, 0.874]

DenSec 0.860 0.859 0.870 0.726 0.923
[0.844, 0.873] [0.830, 0.885] [0.857, 0.889] [0.688, 0.765] [0.858, 0.937]

Note: The highest scores are in bold.
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(a) (b)

Figure 2. The ROC and Precision-Recall curves for CSF protein prediction differentiation of DenSec
versus other machine learning models: (a) the ROCs on the testing dataset; (b) the Precision-Recall
curves on the testing dataset.

Then, to ensure a comprehensive and systematic comparison, we also compare our
model with the existing DL architectures, which include DeepSig (using CNN to detect
signal peptides in proteins) [25], DanQ (using CNN with BLSTM to predict the charac-
teristics and functions of DNA sequences) [26] and DeepSec (using CNN with BGRU to
predict secretory proteins in 12 types of body fluids) [7]. As shown in Table 3, it can be seen
that the performance of the DenSec classifier is better than that of the other DL methods
in terms of accuracy, sensitivity, specificity, MCC and AUC. The average ROCs and the
Precision-Recall curves are plotted in Figure 3a,b, respectively. Compared with traditional
DL-based methods, DenseNet with Transformer is able to accurately predict the secreted
protein just using the sequence information.

Table 3. The performance evaluation based on the testing dataset, grouped by several deep learning
methods.

Methods Accuracy Sensitivity Specificity MCC AUC

DeepSig 0.742 0.684 0.784 0.469 0.805
[0.701, 0.779] [0.627, 0.730] [0.716, 0.862] [0.435, 0.497] [0.774, 0.828]

DanQ 0.759 0.711 0.792 0.502 0.829
[0.712, 0.803] [0.651, 0.758] [0.727, 0.841] [0.429, 0.548] [0.797, 0.843]

DeepSec 0.823 0.800 0.846 0.571 0.858
[0.808, 0.842] [0.753, 0.833] [0.821, 0.868] [0.537, 0.614] [0.826, 0.889]

DenSec 0.860 0.859 0.870 0.726 0.923
[0.844, 0.873] [0.830, 0.885] [0.857, 0.889] [0.688, 0.765] [0.858, 0.937]

Note: The highest scores are in bold.

Finally, we apply DenSec to screen against all human proteins (20,386 unique proteins)
in the UniProtKB/Swiss-Prot database (UniProt release 2022-02) and predict 6247 proteins
as CSF proteins. Thus, 1897 potential new CSF proteins are discovered, which are available
at https://github.com/quyl/DenSec, accessed on 12 June 2022.

https://github.com/quyl/DenSec
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(a) (b)

Figure 3. The ROC curves and the Precision-Recall curves for CSF protein prediction differentiation
of DenSec versus other deep learning models: (a) the ROCs on the testing dataset; (b) the Precision-
Recall curves on the testing dataset.

4.3. Ablation Study on Classification

This experiment is used for model selection comparing the relative performances of
the following model architectures:

• Transformer
• DenseNet
• DenseNet with Transformer (DenSec)

The test performance is measured by training three models on the training dataset
using 10-fold cross validation. In addition, the same training dataset and validation dataset
are used for all models. In Table 4, we compare the performance of three models. The
DenSec model achieves the highest performance predicting the secreted protein in CSF.
From the results of the DenseNet without Transformer (accuracy 0.781), we can see that
Transformer could improve prediction performance. These results confirm the benefit of
Transformer for protein classification. In addition, DenseNet improves the performances of
the model when comparing the first and third models. All in all, our model represents the
best model architecture in predicting secreted protein in CSF based on protein sequence
information.

Table 4. Comparison of performances for different model architectures.

Methods Accuracy Sensitivity Specificity MCC AUC

Transformer 0.596 0.381 0.832 0.440 0.579
[0.576, 0.615] [0.331, 0.422] [0.794, 0.851] [0.425, 0.483] [0.548, 0.604]

DenseNet 0.781 0.753 0.802 0.552 0.767
[0.752, 0.803] [0.729, 0.788] [0.786, 0.849] [0.534, 0.577] [0.731, 0.804]

DenSec 0.860 0.859 0.870 0.726 0.923
[0.844, 0.873] [0.830, 0.885] [0.857, 0.889] [0.688, 0.765] [0.858, 0.937]

Note: The highest scores are in bold.

5. Conclusions

We propose a new deep learning framework, named DenSec, for secreted protein
prediction in CSF. The experimental results show that DenseNet with Transformer are able
to accurately predict the secreted protein just using the sequence information. In DenSec,
instead of traditional CNNs, DenseNet is employed for feature learning automatically.
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The feature maps learned by any of the layers can be accessed by all subsequent layers in
DenseNet, which leads to feature reuse and allows the model to achieve better performance.
In addition, Transformer is adopted to capture possible long-range dependencies between
protein sequence and secreted status of proteins. A multi-head attention is beneficial to
model performance. Furthermore, we have introduced the CSF protein collection and nega-
tive sample generation. The DenSec model trained on these datasets is able to generalize
better than the current prediction models, including ML algorithms (SVM, AdaBoost, Deci-
sion Tree and Random Forest) and DL methods (DeepSig, DanQ and DeepSec). In addition,
we also compared the performance against different model architectures: (1) DenseNet and
(2) Transformer. The measured average accuracy of DenSec is very high at 86.0%.

Although DenSec has achieved excellent prediction results, there is still room for
optimization. Our future effort will focus on improving the performance of the prediction
accuracy by using different input or methods. For instance, ESM-1b can be used to generate
an embedding of protein and predict straight from this embedding. In addition, we will
plan to discover novel candidates of disease biomarkers in CSF .
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