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Abstract: This article proposes a calibrated individual semantic (CIS)-based failure mode and effect
analysis (FMEA) to deal with the risk evaluation of industrial internet platforms (IIP) from four
perspectives: network security, data processing capability, equipment performance, and openness.
The novelty of the CIS model is based on the deviation between linguistic terms and numerical values
to calibrate linguistic scales of decision-makers (DMs). Not only can it handle situations in which
different DMs have different understandings of the same term, but it is also suitable for multiple
attributes decision-making with uncertainty. In addition, this new FMEA framework considers
the consensus-reaching process as a way to eliminate the disagreement among DMs from different
departments. Finally, a comparison between the proposed and traditional method is presented to
illustrate the advantages of new method.
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1. Introduction
1.1. Background

The Industrial Internet has already attracted great interest from both industry and
academia due to the explosive growth of novel technologies, such as big data, cloud
computing, artificial intelligence, etc. [1]. In response to the “fourth industrial revolution”,
General Electric (GE) first proposed the concept of the Industrial Internet in 2012, defining it
as “the convergence of the global industrial system with the power of advanced computing,
analytics, low-cost sensing and new levels of connectivity permitted by the Internet” [2].

IIP, one of the most important core products of the Industrial Internet, is a service
system that is based on the needs of digitalization, networking, and intelligence in man-
ufacturing [3]. Though a large number of benefits have been brought to enterprises by
IIPs, such as cost reductions, efficiency increases, improvements in products and services,
innovations in business models, etc., there are still several problems in the construction and
implementation of IIP, such as digital technology [2], integration of systems [3], cybersecu-
rity [4], openness of platform [5], etc. However, few studies have focused on the overall
risk management of the IIP. Therefore, in this paper we will introduce the framework of
FMEA to reduce the problems and challenges posed by the implementation of IIP.

FMEA, originating from NASA in the 1960s, is a powerful risk management tool
and engineering technique that can effectively manage the quality and reliability of
products [6,7]. It has been widely used in identifying and eliminating potential failures,
problems, errors from systems, designs, processes, and services [8]. Different from general
risk evaluation methods that analyze problems after an adverse event occurs, FMEA is a
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tool for proactive risk assessment and management, evaluating and eliminating failures
before they occur or reach customers [9,10]. Therefore, it has been widely utilized in various
practical scenarios, such as cold-chain logistics management [11], healthcare services [12],
energy issues [13,14], semiconductor manufacturing [15], etc. Usually, a classic FMEA
model includes the following four steps: (1) failure modes (FMs) and their causes and
results are identified; (2) the risk priorities of FMs are determined by risk priority numbers
(RPNs), which involves three risk factors: the probability of occurrence (O), the severity of
effects (S), and the difficulty of detection (D); (3) the risk priority ranking of FMs is obtained,
such that the FMs with larger RPN values would cause severer problems, requiring higher
priorities; (4) corresponding measures are taken for high-risk issues [10,16,17].

1.2. Related Work

FMEA has made a huge number of contributions in many fields, however, there are
still some drawbacks for the traditional FMEA method.

On the one hand, DMs need to use crisp numbers to provide the risk factors number
about FMs in the traditional FMEA approach [9]. However, it is difficult for DMs, as human
beings and not machines, to describe risk levels of FMs precisely. To deal with uncertainty of
evaluation in FMEA, a large number of approaches have been introduced, mainly including
fuzzy set theory, evidence-based reasoning theory, developed methods based on 2-tuple
linguistic model, etc. [18]. For example, a fuzzy FMEA was proposed that allows the
RFs and their relative weights to be evaluated in a linguistic manner [19]; evidence-based
reasoning theory was introduced into FMEA techniques to improve the effectiveness and
flexibility of subjective information processing in uncertain environments [20–22]. However,
these approaches to deal with uncertainty are still far-removed from human expression
habits, i.e., using linguistic labels or terms [9].

On the other hand, computing with words (CW) was proposed by [23] and the 2-tuple
linguistic representation model was initiated by [24]. A large number of extended methods
based on the 2-tuple linguistic model have been developed to a notable degree [9,25,26];
probabilistic hesitant fuzzy language was presented to solve the problem of DMs hesitating
between multiple options in the evaluation process [27]; linguistic distribution assessments
can enable DMs to better reflect their actual experience and avoid information loss and
distortion [9,25]; double hierarchy hesitant fuzzy linguistic term sets allow DMs to evaluate
problems and solutions using a much more intuitive expression method [13].

However, a problem still needs to be solved by these linguistic extended methods
in that the same term has different meanings for different DMs. Thus, an optimization-
based PIS model was designed to achieve linguistic calibration for different DMs [28].
Subsequently, more extended methods based on PIS have been reported. A consensus
model for large-scale linguistic group decision-making (GDM) based on clustered PIS were
created to improve the willingness of DMs who have to revise their preference [29]. To
estimate the ignorance elements in incomplete distribution linguistic preference relations
(DLPRs) and obtain the personalized numerical meanings of linguistic expressions to DMs,
a consistency-driven methodology to manage DLPRs with PIS was proposed [30].

However, a PIS model needs to assume that the preferences of individual DMs are as
consistent as possible, which causes it to only accept pairwise comparisons of alternatives
under one criterion. It is not friendly to DMs in the multi-attribute decision-making
problem, because all the pairwise comparison matrices under different attributes must be
provided by DMs. To solve this issue, we found an approach used to obtain personalized
membership function. Ishizaka et al. [31] proposed a method of calibrating the membership
functions with comparisons given by DMs on alternatives with known measures. The
best-matching scale of each DM is selected according to the mental representation of the
verbal scale [32]. This article creates a novel individual semantic evaluation approach,
called the CIS model, by combining membership function and verbal scale calibration to
calibrate the linguistic terms provided by DMs.
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1.3. Contribution

The primary work of this article can be summarized as follows. First, a designed
linguistic calibration experiment is created to obtain the CISs to deal with the linguistic
calibration and unify expression habits of DMs. Second, the possible inconsistencies of
the FMEA team are solved by introducing the consensus reach process with minimum
adjustment cost. Third, the developed method is applied into the risk management of IIP
with 15 proposed FMs. Its main advantages are as follows:

• It proposes an experiment procedure based on the area of figures; essentially, it is a
step of calibrating the psychological score of each DM for linguistic terms according to
the membership function calibration proposed by Ishizaka et al. [31,32].

• The proposed CIS model is concise when it is applied to multi-attribute decision
making. Compared with PIS model, a framework based on an optimization model is
not necessary and it has a simpler converting process between linguistic terms and
crisp value.

• This article uses the FMEA method to evaluation the risks of IIP. To the best of our
knowledge, this is the first time of FMEA in an IIP risk evaluation. All data were
obtained from questionnaires provided to staff of the company in this article.

The rest of this paper is organized as follows. In Section 2, a novel framework of
FMEA is designed based on a CIS model considering a consensus-reaching process; the
CIS model is proposed to convert linguistic terms into crisp values and is described in
detail. Section 3 provides a real case of FMEA on IIP and applies it to the proposed model
to analyze the FMs. In Section 4, the comparisons between the proposed and related FMEA
methods are given to discuss its advantages. Finally, Section 5 concludes this article and
points out future directions.

2. Materials and Methods

In this section, we will develop an extended linguistic FMEA method based on CIS
considering the consensus-reaching process of multiple DMs, whose framework is shown
in Figure 1. In detail, first, each DM needs to evaluate the FMs of IIP according to the
given linguistic term set and provide an evaluation matrix. Second, every DM has to
participate in a linguistic calibration experiment which is performed through the evaluation
of measurable alternatives with the given linguistic term set. Third, a consensus-reaching
process is introduced to ensure that all DMs achieve consensus. Finally, the rank of all FMs
can be calculated by the collective evaluation matrix.

The main innovation of the tdeveloped method is to propose a novel linguistic calibra-
tion approach, he CIS model. Compared with most existing linguistic methods, it considers
the situation that different DMs have different understandings of the same term. It has a
unique advantage in that it is based on the theoretical foundation of graphic area calibration
experiments, avoiding the primary assumption that individuals’ preferences are as consis-
tent as possible, in contrast to the PIS model. In addition, a process of group risk evaluations
is involved in the FMEA method, where there usually exists disagreement among DMs.
Thus, this article introduces a consensus-reaching process with a minimum adjustment
cost feedback mechanism [33]; the consensus measure, inconsistency identification, and
minimum adjustment cost feedback are described in [33], but are not repeated.

When DMs express their evaluation about FMs, linguistic expressions are more in line
with human habits than numerical expressions. However, the same words have different
meanings for different individuals, which may lead to final error results. While PIS is a
useful tool to deal with this problem, it assumes that the preferences of individual DMs
are completely consistent, i.e., if alternative A is better than alternative B and if alternative
B is better than alternative C, then alternative A cannot be worse than alternative C. In
addition, the original preferences must be provided by pairwise comparison matrices in
PIS model, which is not friendly to DMs in the multi-attribute decision-making problem,
because all the pairwise comparison matrices under different attributes must be provided
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by DMs. Thus, this article proposes a novel individual semantic evaluation approach to
calibrate the linguistic terms provided by DMs.

Figure 1. The framework of proposed FMEA method.

Inspired by the method of calibrating membership function [31,32], this article designs
a CIS model to transform the linguistic terms provided by DMs into crisp numbers and
includes two steps: (1) linguistic term collection based on the areas of graphics and (2) the
calibration process of linguistic terms, as shown in Figure 2.

Figure 2. The basic framework of CIS model.

Herrera and Martinez [24] proposed the 2-tuple linguistic model in the framework of
computing with words, which is a linguistic representation model widely used in different
fields. Definition 1 illustrates:
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Definition 1. (The 2-tuple linguistic model). Let S =
{

s0, s1, · · · , sg
}

be a linguistic term
set, and β ∈ [0,g] be a value representing the result of a symbolic aggregation operation. The
2-tuple linguistic model involves the transformation function between 2-tuples and numerical
values as follows.

∆ : [0, g]→ S (1)

∆(β) = (st, α), with
{

st, t = round(β)
α = β− t, α ∈ [−0.5, 0.5)

(2)

where function ∆ is a one-to-one mapping whose inverse function ∆−1 : S→ [0, g] is equal to
∆−1(st, α) = t + α.

Based on Definition 1, each DM in FMEA team uses a 2-tuple linguistic model to
evaluate the areas of u sets of graphics, there are g figures in each set, and their real areas
are 1, 2, . . . , g, respectively, where the area of xth figure in yth set is Ak =

(
ak

yx

)
u×g

as

provided by DMk, k = 1, 2, . . . , m, where ak
yx is a 2-tuple linguistic term. Please note that

the area of each figure provided to DMs in each set of graphics is random, but in the u sets
of graphics, there are g figures with area t, which is beyond doubt. This guarantees that
DMs will provide the area of the figures based on their judgment, rather than the ordering
of graphics, so as to obtain the true psychological measurement error of DMs. The real
areas of graphics and the mean value of the linguistic term provided by DMs are matched
to calibrate the DMs’ linguistic term in the calibration process of linguistic terms. Thus, the
CIS of DMk about each linguistic term st can be obtained as follows.

CISk(st) =
1
u

u

∑
y=1

∆−1
(

ak
yx

)
(3)

Here, CISk(st) < CISk(st+1). If it happens that CISk(st) ≥ CISk(st+1), there exists
wrong information provided by DMs or wrong information about figures, thus, DMs must
update their evaluation or the information about figures is revised.

Example 1. (Process of Calibrated Individual Semantic). A CIS numerical scales CISk(st) of
different individual DMk is required to convert the linguistic terms into crisp values. Suppose five
DMs provide the areas of five sets of figures (there are 7 figures in each set) by the linguistic terms
set, where the figures are depicted as Figures 3–7 and the area of figures provided by DMs are shown
as Tables 1–5.

Figure 3. The first set of graphics.
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Figure 4. The second set of graphics.

Figure 5. The third set of graphics.

Figure 6. The fourth set of graphics.

Figure 7. The fifth set of graphics.
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Table 1. Answers for calibration experiment of DM1.

Fig.A Fig.B Fig.C Fig.D Fig.E Fig.F Fig.G

Set 1 s5 s6 s1 s2 s6 s4 s3
Set 2 s3 s6 s7 s2 s4 s1 s5
Set 3 s2 s6 s7 s3 s5 s1 s4
Set 4 s1 s4 s3 s5 s7 s2 s5
Set 5 s1 s7 s3 s5 s1 s5 s5

Table 2. Answers for calibration experiment of DM2.

Fig.A Fig.B Fig.C Fig.D Fig.E Fig.F Fig.G

Set 1 s6 s6 s2 s3 s5 s4 s4
Set 2 s3 s5 s6 s4 s4 s2 s4
Set 3 s3 s6 s6 s4 s5 s2 s4
Set 4 s1 s3 s2 s4 s5 s2 s4
Set 5 s2 s5 s4 s5 s3 s5 s4

Table 3. Answers for calibration experiment of DM3.

Fig.A Fig.B Fig.C Fig.D Fig.E Fig.F Fig.G

Set 1 s7 s6 s1 s2 s5 s3 s4
Set 2 s3 s6 s7 s2 s4 s1 s5
Set 3 s2 s6 s7 s3 s5 s1 s4
Set 4 s1 s5 s3 s4 s7 s2 s6
Set 5 s1 s7 s3 s5 s2 s6 s4

Table 4. Answers for calibration experiment of DM4.

Fig.A Fig.B Fig.C Fig.D Fig.E Fig.F Fig.G

Set 1 s5 s6 s1 s2 s7 s4 s3
Set 2 s3 s6 s7 s2 s5 s1 s4
Set 3 s2 s6 s7 s3 s5 s1 s4
Set 4 s1 s5 s3 s4 s6 s2 s7
Set 5 s1 s7 s3 s5 s2 s6 s4

Table 5. Answers for calibration experiment of DM5.

Fig.A Fig.B Fig.C Fig.D Fig.E Fig.F Fig.G

Set 1 s7 s5 s1 s2 s6 s3 s4
Set 2 s3 s5 s7 s3 s4 s1 s4
Set 3 s3 s6 s6 s4 s5 s2 s5
Set 4 s1 s4 s3 s4 s5 s2 s5
Set 5 s3 s5 s4 s5 s3 s6 s4

Thus, the CIS numerical scale and the semantic curves of CIS are obtained for different
DMk based on Equation (3), as shown in Table 6 and Figure 8.

Table 6. The CIS numerical scales for different DMk.

CISk(St) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

k = 1 1 1.8 3 4.4 5.2 5.4 6.6
k = 2 1.8 3 3.4 4 4.4 5.2 5.6
k = 3 1 2 3.2 4 5 5.8 7
k = 4 1 2 3 4.2 5.4 6 6.4
k = 5 1.6 2.6 3.6 4 4.8 5.4 6
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After processing, we get matrix Ak as follows.

A1 = (a1
yx)5×7

=


s1 s2 s3 s4 s6 s6 s5
s1 s2 s3 s4 s6 s6 s7
s1 s2 s3 s5 s5 s5 s7
s1 s2 s3 s4 s4 s5 s7
s1 s1 s3 s5 s5 s5 s7



A2 = (a2
yx)5×7

=


s2 s3 s4 s4 s5 s6 s6
s2 s4 s3 s4 s5 s6 s6
s2 s3 s4 s4 s5 s4 s6
s1 s2 s2 s4 s3 s5 s5
s2 s3 s4 s4 s4 s5 s5



A3 = (a3
yx)5×7

=


s1 s2 s4 s3 s5 s6 s7
s1 s2 s3 s4 s6 s6 s7
s1 s2 s3 s5 s5 s6 s7
s1 s2 s3 s4 s5 s5 s7
s1 s2 s3 s4 s4 s6 s7



A4 = (a4
yx)5×7

=


s1 s2 s3 s4 s7 s6 s5
s1 s2 s3 s5 s6 s6 s7
s1 s2 s3 s4 s5 s7 s7
s1 s2 s3 s4 s5 s5 s6
s1 s2 s3 s4 s4 s6 s7



A5 = (a5
yx)u×o

=


s1 s2 s4 s3 s6 s5 s7
s1 s3 s3 s4 s5 s6 s7
s2 s3 s4 s4 s5 s5 s6
s1 s2 s3 s5 s4 s5 s5
s3 s3 s4 s4 s4 s6 s5



Figure 8. The semantic curves of CIS.

After finishing the calibration process of the 2-tuple linguistic model, all the 2-tuple
linguistic terms are transformed into numerical values. Here, we assume that a 2-tuple lin-
guistic individual evaluation matrix about FMi (i = 1, 2, . . . , m) regarding three risk factors(

RFj, j = 1, 2, 3
)
, including occurrence (O), severity (S), and detection (D), is Vk =

(
vk

ij

)
n×3

(k = 1, 2, . . . , m; i = 1, 2, . . . , n; j = 1, 2, 3), as provided by each DMk (k = 1, 2, . . . , m) in
the FMEA team. Next, Vk =

(
vk

ij

)
n×3

(k = 1, 2, . . . , m; i = 1, 2, . . . , n; j = 1, 2, 3) can be

transformed into numerical individual evaluation matrix Ek =
(

ek
ij

)
n×3

(k = 1, 2, . . . , m;
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i = 1, 2, . . . , n; j = 1, 2, 3) by the proposed CIS model. Then, the numerical collective evalu-
ation matrix Ec =

(
ec

ij

)
n×3

(i = 1, 2, . . . , n; j = 1, 2, 3) can be calculated as follows.

ec
ij =

m

∑
k=1

ek
ij·wk (4)

3. The Extended FMEA for Industrial Internet Platform

In this section, a case of IIP FMEA is provided, where five experts are invited to be the
DMs to provided risk evaluations of fifteen FMs in Section 3 by 2-tuple linguistic terms for
analysis of the potential failures of the IIP and improvement of its quality and reliability.
Wherever the CIS model is used to revise the linguistic terms of DMs, a CRP with the
minimum adjustment cost feedback mechanism is adopted to eliminate the disagreement
among DMs, and a ranking process of FMs is achieved according to the final collective
evaluation results.

3.1. Case Background

As mentioned in introduction, it is necessary to implement comprehensive risk man-
agement for IIP. However, there has been little investigation into the comprehensive risk
management of IIP to date. Therefore, this article proposes fifteen FMs for IIP according
to the literature from the four perspectives of network security ( FM1 ∼ FM4), data pro-
cessing capability ( FM5 ∼ FM9), equipment performance ( FM10 ∼ FM12), and openness
( FM13 ∼ FM15), as shown in Table 7.

Table 7. Failure Modes for Industrial Internet Platform.

No. Failure Modes Causes Effects

FM1 Safeguard for private information
is deficient

There are defects in security management
of private information, or safeguard can

not cover all processes.

The users’ private information
is leaked

FM2 Lack of information for security
contingency plan

Lack of experience or insufficient plans in
handling emergency information

security incidents

Inability to deal with information
security incidents in time

FM3 Lag in technology for
network security

There are only traditional passive
protection methods and a lack of

relatively active defense measures

The network security of the
platform is low and vulnerable

to attacks

FM4 Lack of safeguards for
data storage

Lack of means to respond to emergencies,
such as cloud backup or remote

disaster recovery

The core data of the platform are
prone to damage in the event of

an accident

FM5 Cloud computing capability is
less adaptable

Cloud computing capabilities cannot be
dynamically adjusted according

to demand

Resource shortage at peak times,
waste of resources at trough times

FM6 Poor adaptability of
storage capacity

The storage capacity of the platform
cannot be dynamically adjusted

according to demand

Data cannot be entered during
peak hours, and space is greatly

wasted during low valleys

FM7 Data processing is deficient
Failure to sufficiently understand the
type, content, and structure of data

required by users
Data redundancy and backlog

FM8 Poor data modeling ability
Insufficient number of various models

and algorithms based on big data
intelligent analysis

Reduced efficiency and
effectiveness in business
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Table 7. Cont.

No. Failure Modes Causes Effects

FM9 Poor data visualization
Too much emphasis on design and

functionality, leading to overly flashy
data visualization

Inability to effectively
communicate ideas, concepts,

and information

FM10 Lag in device
authentication technology

Device connection, identification, and
permission granting require

manual authorization

High human resource
consumption and time waste

FM11 Device access is limited
Specific data interface access is required,

or the types of accessible resources
are limited

Low efficiency of data access

FM12 The edge data response delay
is serious

The hardware facilities of users and
equipment connected to the platform

are poor

The speed of information
exchange and feedback is reduced

FM13 Less data-sharing with users

There are many restrictions on the
amount of openly shared data, the type

of data, and the objects to whom
data-sharing services are provided.

The requirements of users cannot
be satisfied

FM14 Low platform
co-construction capability

The benefit-sharing mechanism is lacking
or incomplete, or it cannot reasonably

reflect the value created by the
platform partners

Conflict between relevant parties
is not conducive to the long-term

development of the platform

FM15 Poor platform innovation ability
The number and fields of cooperation
involved in platform construction and

operation are relatively small

Inability to improve functions and
services according to the

demands of industrial
manufacturing in time

3.2. Risk Information Collective and CIS Application

Five DMs are required to provide their risk evaluation matrices
{

V1, V2, . . . , V5}
of FMi (i = 1, 2, . . . , 15) regarding three RFj, including Occurrence (O), Severity (S), and
Detection (D), using linguistic terms set S = {s1= ‘extremely little’; s2= ‘very little’; s3= ‘little’;
s4= ‘moderate’; s5= ‘large’; s6= ‘very large’; s7= ‘extremely large’}, as follows.

V1 =



FMs O S D
FM1 s7 s5 s3
FM2 s6 s4 s3
FM3 s5 s6 s4
FM4 s6 s4 s4
FM5 s5 s4 s4
FM6 s4 s5 s3
FM7 s5 s5 s5
FM8 s6 s5 s5
FM9 s7 s6 s6
FM10 s5 s4 s4
FM11 s4 s4 s4
FM12 s4 s4 s4
FM13 s4 s4 s4
FM14 s4 s4 s4
FM15 s4 s4 s5
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V2 =



FMs O S D
FM1 s5 s5 s3
FM2 s4 s5 s6
FM3 s6 s5 s5
FM4 s4 s6 s3
FM5 s4 s4 s3
FM6 s3 s3 s2
FM7 s5 s3 s3
FM8 s6 s5 s3
FM9 s7 s5 s3
FM10 s4 s4 s4
FM11 s3 s5 s1
FM12 s5 s4 s3
FM13 s5 s4 s4
FM14 s6 s4 s4
FM15 s6 s4 s2



V3 =



FMs O S D
FM1 s4 s6 s6
FM2 s5 s6 s6
FM3 s6 s6 s6
FM4 s3 s7 s4
FM5 s4 s4 s4
FM6 s3 s3 s2
FM7 s4 s6 s3
FM8 s6 s6 s6
FM9 s3 s6 s2
FM10 s4 s5 s4
FM11 s6 s4 s2
FM12 s5 s5 s2
FM13 s6 s6 s2
FM14 s6 s5 s5
FM15 s6 s6 s2



V4 =



FMs O S D
FM1 s3 s5 s4
FM2 s3 s4 s4
FM3 s3 s4 s3
FM4 s3 s3 s4
FM5 s3 s4 s3
FM6 s3 s3 s3
FM7 s3 s3 s3
FM8 s4 s4 s4
FM9 s3 s3 s3
FM10 s3 s4 s4
FM11 s3 s3 s3
FM12 s4 s4 s4
FM13 s4 s3 s4
FM14 s3 s3 s4
FM15 s4 s3 s4



(1)
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V5 =



FMs O S D
FM1 s4 s6 s4
FM2 s4 s6 s4
FM3 s4 s6 s5
FM4 s5 s6 s5
FM5 s5 s5 s4
FM6 s5 s5 s4
FM7 s5 s7 s4
FM8 s5 s7 s4
FM9 s5 s7 s5
FM10 s5 s4 s5
FM11 s5 s4 s4
FM12 s6 s6 s5
FM13 s6 s5 s3
FM14 s6 s4 s3
FM15 s5 s5 s4



(2)

According to Table 5, the numerical risk evaluation matrix Ek of DMk is generated
as follows.

E1 =



FMs O S D
FM1 6.6 5.2 3
FM2 5.4 4.4 3
FM3 5.2 5.4 4.4
FM4 5.4 4.4 4.4
FM5 5.2 4.4 4.4
FM6 4.4 5.2 3
FM7 5.2 5.2 5.2
FM8 5.4 5.2 5.2
FM9 6.6 5.4 5.4
FM10 5.2 4.4 4.4
FM11 4.4 4.4 4.4
FM12 4.4 4.4 4.4
FM13 4.4 4.4 4.4
FM14 4.4 4.4 4.4
FM15 5.2 4.4 4.4



E2 =



FMs O S D
FM1 4.8 4.8 3.4
FM2 4 4.8 5.8
FM3 5.8 4.8 4.8
FM4 4 5.8 3.4
FM5 4 4 3.4
FM6 3.4 3.4 3
FM7 4.8 3.4 3.4
FM8 5.8 4.8 3.4
FM9 6.6 4.8 3.4
FM10 4 4 4
FM11 3.4 3.4 1.8
FM12 4.8 4 3.4
FM13 4.8 4 4
FM14 5.8 4 4
FM15 5.8 4 3
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E3 =



FMs O S D
FM1 4 5.8 5.8
FM2 5 5.8 5.8
FM3 5.8 5.8 5.8
FM4 3.2 7 4
FM5 4 4 4
FM6 3.2 3.2 2
FM7 4 5.8 3.2
FM8 5.8 5.8 5.8
FM9 3.2 5.8 s2
FM10 4 5 4
FM11 5.8 4 2
FM12 5 5 2
FM13 5.8 5.8 2
FM14 5.8 5 5
FM15 5.8 5.8 2



E4 =



FMs O S D
FM1 3 5.4 4.2
FM2 3 4.2 4.2
FM3 3 4.2 3
FM4 3 3 4.2
FM5 3 4.2 3
FM6 3 3 3
FM7 3 3 3
FM8 4.2 4.2 4.2
FM9 3 3 3
FM10 3 4.2 4.2
FM11 3 3 3
FM12 4.2 4.2 4.2
FM13 4.2 3 4.2
FM14 3 3 4.2
FM15 4.2 3 4.2



E5 =



FMs O S D
FM1 4 5.4 4
FM2 4 5.4 4
FM3 4 5.4 4.8
FM4 4.8 5.4 4.8
FM5 4.8 4.8 4
FM6 4.8 4.8 4
FM7 4.8 6 4
FM8 4.8 6 4
FM9 4.8 6 4.8
FM10 4.8 4 4.8
FM11 4.8 4 4
FM12 5.4 5.4 4.8
FM13 5.4 4.8 3.6
FM14 5.4 4 3.6
FM15 4.8 4.8 4



(3)

3.3. Consensus Measure and Feedback Recommendation

The weights of the five DMs are assigned as W = (w1, w2, w3, w4, w5)
T = (0.23,

0.23, 0.18, 0.18, 0.18)T based on their positions and work experience. Then, collective nu-
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merical risk evaluation matrix Ec can be aggregated by individual numerical risk evaluation
matrices

{
E1, E2, E3, E4, E5}, according to Equation (4), as follows.

Ec =



FMs O S D
FM1 4.602 5.334 3.992
FM2 4.276 4.888 4.406
FM3 4.742 5.072 4.564
FM4 4.096 4.980 4.134
FM5 4.286 4.272 3.774
FM6 3.774 4.004 3.000
FM7 4.470 4.688 3.860
FM8 5.056 5.226 4.544
FM9 4.786 4.964 3.742
FM10 4.286 4.308 4.272
FM11 4.242 3.774 3.046
FM12 4.744 4.560 3.774
FM13 4.888 4.380 3.696
FM14 4.764 4.092 4.236
FM15 5.102 4.380 3.538


Subsequently, the three levels of consensus indexes (CIs) of DMs are obtained [33–35],

as follows. The element-level CIs of DMs are:

CE1 =



FMs O S D
FM1 0.667 0.989 0.835
FM2 0.846 0.919 0.766
FM3 0.890 0.979 0.973
FM4 0.816 0.903 0.956
FM5 0.814 0.979 0.896
FM6 0.896 0.767 1.000
FM7 0.845 0.881 0.743
FM8 0.976 0.971 0.857
FM9 0.698 0.961 0.757
FM10 0.814 0.985 0.979
FM11 0.974 0.896 0.774
FM12 0.943 0.973 0.896
FM13 0.919 0.997 0.883
FM14 0.939 0.949 0.973
FM15 0.950 0.997 0.856



CE2 =



FMs O S D
FM1 0.967 0.911 0.901
FM2 0.954 0.985 0.868
FM3 0.924 0.955 0.961
FM4 0.984 0.963 0.878
FM5 0.952 0.955 0.938
FM6 0.938 0.899 1.000
FM7 0.945 0.785 0.923
FM8 0.976 0.929 0.809
FM9 0.864 0.973 0.943
FM10 0.952 0.949 0.955
FM11 0.860 0.938 0.792
FM12 0.991 0.907 0.938
FM13 0.985 0.937 0.949
FM14 0.927 0.985 0.961
FM15 0.984 0.9367 0.910





Mathematics 2022, 10, 2492 15 of 22

CE3 =



FMs O S D
FM1 0.900 0.922 0.699
FM2 0.879 0.848 0.768
FM3 0.824 0.879 0.794
FM4 0.851 0.663 0.978
FM5 0.952 0.955 0.962
FM6 0.904 0.866 0.833
FM7 0.922 0.815 0.890
FM8 0.876 0.904 0.791
FM9 0.736 0.861 0.710
FM10 0.952 0.885 0.955
FM11 0.740 0.962 0.826
FM12 0.957 0.927 0.704
FM13 0.848 0.763 0.717
FM14 0.827 0.849 0.873
FM15 0.884 0.763 0.744



CE4 =



FMs O S D
FM1 0.733 0.989 0.965
FM2 0.787 0.885 0.966
FM3 0.710 0.855 0.739
FM4 0.817 0.670 0.989
FM5 0.786 0.988 0.871
FM6 0.871 0.833 1.000
FM7 0.755 0.719 0.857
FM8 0.857 0.829 0.943
FM9 0.702 0.673 0.876
FM10 0.786 0.982 0.988
FM11 0.793 0.871 0.992
FM12 0.909 0.940 0.929
FM13 0.706 0.770 0.916
FM14 0.850 0.818 0.994
FM15 0.884 0.770 0.890



CE5 =



FMs O S D
FM1 0.890 0.989 0.999
FM2 0.954 0.915 0.932
FM3 0.876 0.945 0.961
FM4 0.883 0.930 0.889
FM5 0.914 0.912 0.962
FM6 0.829 0.867 0.833
FM7 0.945 0.781 0.978
FM8 0.957 0.871 0.909
FM9 0.998 0.827 0.824
FM10 0.914 0.949 0.912
FM11 0.907 0.962 0.841
FM12 0.891 0.860 0.829
FM13 0.915 0.930 0.984
FM14 0.894 0.985 0.894
FM15 0.950 0.930 0.923



(4)
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CIs of DMs at FMs levels are:

CFk =



FMs K = 1 K = 2 K = 3 K = 4 K = 5
FM1 0.830 0.926 0.840 0.896 0.962
FM2 0.843 0.936 0.832 0.879 0.934
FM3 0.947 0.946 0.832 0.768 0.927
FM4 0.892 0.942 0.831 0.825 0.901
FM5 0.896 0.948 0.956 0.882 0.930
FM6 0.888 0.946 0.868 0.901 0.843
FM7 0.823 0.886 0.875 0.777 0.901
FM8 0.935 0.905 0.857 0.876 0.913
FM9 0.805 0.927 0.869 0.750 0.883
FM10 0.926 0.952 0.931 0.919 0.925
FM11 0.881 0.863 0.843 0.885 0.903
FM12 0.937 0.945 0.863 0.926 0.860
FM13 0.933 0.957 0.776 0.857 0.943
FM14 0.954 0.958 0.850 0.839 0.925
FM15 0.934 0.944 0.797 0.836 0.934


The CIs of DMs are: (CI1, CI2, CI3, CI4, CI5) = (0.895, 0.9319, 0.8479, 0.8545, 0.9122).

Based on the identification rules [33,36–38] and given consensus threshold γ = 0.85, DM3
is inconsistent and the set of inconsistent elements is such that:

APS = {(3, 1, 3), (3, 2, 2), (3, 2, 3), (3, 3, 1), (3, 4, 2), (3, 6, 3), (3, 7, 2), (3, 8, 3), (3, 9, 1), (3, 9, 3),
(3, 11, 1), (3, 11, 3), (3, 12, 3), (3, 13, 1), (3, 13, 2), (3, 13, 3), (3, 14, 1), (3, 14, 2), (3, 15, 2), (3, 15, 3)}

According to the minimum adjustment cost model [39], the minimum adjustment cost
feedback parameter δ for DM3 is solved as δ3 = 0.03. Then, the adjusted numerical risk
evaluation matrix of DM3 and updated collective numerical risk evaluation matrix can be
obtained as follows:

RE3 =



FMs O S D
FM1 4.000 5.850 5.746
FM2 5.000 5.773 5.758
FM3 5.768 5.800 5.763
FM4 3.200 6.939 4.000
FM5 4.000 4.000 4.000
FM6 3.200 3.200 2.030
FM7 4.000 5.767 3.200
FM8 5.800 5.800 5.762
FM9 3.248 5.800 2.052
FM10 4.000 5.000 4.000
FM11 5.753 4.000 2.031
FM12 5.000 5.000 2.053
FM13 5.773 5.757 2.051
FM14 5.769 4.973 5.000
FM15 5.800 5.757 2.046
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REc =



FMs O S D
FM1 4.602 5.334 3.982
FM2 4.276 4.883 4.399
FM3 4.736 5.072 4.557
FM4 4.096 4.969 4.134
FM5 4.286 4.272 3.744
FM6 3.774 4.004 3.005
FM7 4.470 4.682 3.860
FM8 5.056 5.226 4.537
FM9 4.795 4.964 3.751
FM10 4.286 4.308 4.272
FM11 4.234 3.774 3.052
FM12 4.744 4.560 3.784
FM13 4.883 4.372 3.705
FM14 4.758 4.087 4.236
FM15 5.102 4.372 3.546



(5)

After the feedback mechanism, the new CIs of DMs are calculated as
CI′ =

(
CI′1, CI′2, CI′3, CI′4, CI′5

)
= (0.8951, 0.9319, 0.8505, 0.8548, 0.9122). Since the CI of

each DM in FMEA team has reached the consensus threshold, the final stage is activated to
rank FMs.

3.4. Ranking of Failure Modes

According to the updated collective numerical risk evaluation matrix REc and the
relative weight of risk factors W = (wO, wS, wD) =

(
1
3 , 1

3 , 1
3

)
, the RPN values of FMs

are calculated by Equation (5), shown in Table 8, and the FMs are sorted in descending
order according to the RPN value, like so: FM8 > FM3 > FM1 > FM2 > FM9 > FM4 >
FM14 > FM12 > FM7 > FM15 > FM13 > FM10 > FM5 > FM11 > FM6.

RPN = O · wO × S · wS × D · wD (5)

Table 8. The CIS numerical scales for different DMk.

FMs FM1 FM2 FM3 FM4 FM5

RPN 32.584 30.613 36.493 28.047 23.034
FMs FM6 FM7 FM8 FM9 FM10
RPN 15.138 26.928 39.962 29.761 26.293
FMs FM11 FM12 FM13 FM14 FM15
RPN 16.253 27.283 26.369 27.461 26.370

Notice that this article assumes that the weights of RFs are assigned evenly, and the
weights of DMs are given in advance based on position and experience of DMs; however, a
full explanation of these techniques is beyond the scope of this paper. In the managerial
practice of the proposed methodology, more interesting techniques can be introduced to
extend the entire FMEA framework.

4. Comparison and Discussion

In order to demonstrate the advantages of the proposed method of FMEA for IIP, a
comparison analysis is performed between the proposed method and the traditional FMEA
without CIS in this subsection. The collective numerical risk evaluation matrix without CIS
model, Ec′, is calculated; the CIs of DMs in FMEA team are exhibited in Figure 9. As can be
seen in Figure 9, the CIs of DMs have improved by accepting CIS. Meanwhile, according to
the threshold, DM4 has already achieved consensus after using CIS and no extra feedback
recommendation process for DM4 is required.
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Figure 9. The CI of DMs under different linguistic models.

Subsequently, the CRP with the minimum adjustment cost feedback mechanism
is carried out without CIS. Boundary feedback parameters are δ3 = 0.11, δ4 = 0.14,
respectively, and the updated collective numerical risk evaluation matrix without CIS
model REc′ is calculated as:

REc′ =



FMs O S D
FM1 4.799 5.360 3.990
FM2 4.486 4.953 4.590
FM3 4.895 5.435 4.603
FM4 4.338 5.201 3.950
FM5 4.266 4.180 3.590
FM6 3.590 3.820 2.770
FM7 4.506 4.739 3.640
FM8 5.486 5.382 4.360
FM9 5.301 5.461 3.870
FM10 4.266 4.180 4.180
FM11 4.122 3.590 2.770
FM12 4.770 4.540 3.590
FM13 4.953 4.362 3.460
FM14 5.032 4.006 4.000
FM15 5.246 4.362 3.180


Then, the RPNs of FMs is calculated according to REc′, shown in Table 9 and the

ranking of FMs is FM8 > FM3 > FM9 > FM2 > FM1 > FM4 > FM14 > FM12 > FM7 >
FM13 > FM10 > FM15 > FM5 > FM11 > FM6.

Table 9. The CIS numerical scales for different DMk.

FMs FM1 FM2 FM3 FM4 FM5

RPN 33.438 33.996 40.818 29.708 21.338
FMs FM6 FM7 FM8 FM9 FM10
RPN 12.662 25.907 42.913 37.338 24.844
FMs FM11 FM12 FM13 FM14 FM15
RPN 13.665 25.915 24.921 26.875 24.258

Based on the above comparison analysis, it is obvious that linguistic expressions of
DMs are a key issue affecting the final result of group decision-making by affecting the CIs
among DMs, in addition to knowledge background, work experience, and so on, which
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means that an additional adjustment cost will be paid for the individual differences in
linguistic terms.

Additionally, the technique of linguistic calibration will affect the final rank of FMs
by comparing the final ranking results of FMs, whose differences can be attributed to
the implementation of linguistic calibration. There exists a similar result between the
proposed and traditional method in the ranking of FMs with the highest and least risk,
which demonstrates that the proposed method is effective.

In order to illustrate the distinctions of the proposed mechanism, a theoretical compar-
ison with existing FMEA methods is presented from four perspectives: ‘what expression
preference is used?’, ‘what linguistic calibration mechanism is adopted?’, ‘is a consensus
process involved?’ and ‘to what practice is it applied?’, as shown in Table 10. In terms
of expression preference, different linguistic expressions have their unique advantages.
While the more complex the linguistic method is, the less loss of information there will be,
the difficulty of application will also increase significantly. Therefore, 2-tuple linguistic
methods are more popular with the public than other approaches due to their practicality.
As for linguistic calibration, it is very important to address the fact that different DMs have
different understandings of the same term. Compared with the PIS model, there exists
no assumption that each preference is as consistent as possible in the CIS model, and so
it is much easier to tackle the multi-attribute multi-alternative decision-making problem.
Compared to [13,39,40], it is crucial to achieve consensus for a group of DMs in order to
better implement the result of FMEA, because the DMs of an FMEA team often come from
different fields and organizations with various professional skills, education backgrounds,
and work experiences. In practice, the FMEA method proposed by Huang et.al. [9] was
applied to the risk evaluation of a grinding wheel system, while Duan et.al. [13] proposed
a FMEA model with double hierarchy hesitant fuzzy linguistic term sets and k-means
clustering for the risk evaluation of floating offshore wind turbines. FMEA based on pos-
sibilistic hesitant fuzzy linguistic information with consensus process has been applied
in the risk evaluation of proton beam radiotherapy [39], and a large-scale FMEA model
with social network analysis and fairness-oriented consensus process has been utilized
for photovoltaic systems [41]. In addition, a PIS-based FMEA approach with incomplete
preference was adopted to the reliability management of blood transfusion [40].

Table 10. Comparisons with related FMEA methods.

FMEA
Methods

Expression
Preference

Linguistic
Calibration Consensus FMEA

Application

The proposed method 2-tuple linguistic term CIS Consensus IIP

Huang et.al. [9] Linguistic distribution assessment No
calibration

Without
consensus Grinding wheel system

Duan et.al. [13] Double hierarchy linguistic term No Duan et.al. Double hierarchy
linguistic term

Zhang et.al. [39] Possibilistic hesitant fuzzy
linguistic term

No
calibration Consensus Proton beam

radiotherapy

Zhang et.al. [40] Linguistic distribution assessment PIS Without
consensus Blood transfusion

Tang et.al. [41] Crisp numbers No
calibration Considered Photovoltaic systems

5. Conclusions and Future Work

This article proposes a novel FMEA framework based on a CIS model considering a
consensus-reaching process. Its main contributions are as follows:

An improved FMEA approach must address issues such as effectiveness, difficulty,
practicality, etc. The proposed method does so as follows. First, compared with the
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conventional FMEA method, the proposed method has improved ability to tackle infor-
mation uncertainties compared to the crisp values of RFs given by the 2-tuple linguistic
model. Second, in contrast to the existing linguistic calibration method, not only is the
figure-based CIS model more convenient to operate than the PIS model, but it also has a
stronger reference foundation, making it more suitable for practical scenarios. Third, the
proposed FMEA framework can better solve the disagreement between different DMs via
a consensus-reaching process with a minimum adjustment cost feedback mechanism, as
DMs in FMEA evaluation teams are usually from different organizations and departments.
Fourth, the use of a real case of IIP illustrates the proposed FMEA framework, where the
data involved are sourced from the staff of an industrial internet company.

In the future, the frameworks of large-scale group decision-making models will be
introduced into FMEA problems to extend application scenarios, because there are usually
a large number of FMEA evaluation members from multiple departments who are involved
in complex decision-making. However, the relative weights of DMs are not considered in
this article, being beyond the scope of the present research focus. Thus, in future work, the
weights of DMs will be assigned based on the deviation between individual CIS curves
and original curves. Furthermore, as the possible interrelationships between risk factors
can affect the outcomes of risk rankings, such interrelationships will also be considered in
the adjustment of risk factor weights in future work.
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