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Abstract: Fractals are already firmly rooted in modern science. Research continues on the fractal
properties of objects in physics, chemistry, biology and many other scientific fields. Fractal graphs
as a discrete representation are used to model and describe the structure of various objects and
processes, both natural and artificial. The paper proposes an introduction to prefractal graphs. The
main definitions and notation are proposed—the concept of a seed, the operations of processing a
seed, the procedure for generating a prefractal graph. Canonical (typical) and non-canonical (special)
types of prefractal graphs are considered separately. Important characteristics are proposed and
described—the preservation of adjacency of edges for different ranks in the trajectory. The definition
of subgraph-seeds of different ranks is given separately. Rules for weighting a prefractal graph by
natural numbers and intervals are proposed. Separately, the definition of a fractal graph as infinite is
given, and the differences between the concepts of fractal and prefractal graphs are described. At the
end of the work, already published works of the authors are proposed, indicating the main backlogs,
as well as a list of directions for new research. This work is the beginning of a cycle of works on the
study of the properties and characteristics of fractal and prefractal graphs.
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1. Introduction

Fractals are recognized in the form of blood vessels [1], plants [2], coastlines [3], light-
nings [4] and the structure of the Universe [5]. Recently, publications have also appeared
on the fractality of complex networks, both of natural origin and artificial self-organizing
networks [6]. This includes the Internet, social networks and biological networks [7–12].

Over the past decade, the study of fractal sets has become firmly established in
science [13–15]. A great popularizer of fractal science is Benoit B. Mandelbrot; to understand
the extent of the manifestation of the fractality of objects and processes, you should read his
monograph [16]. Fractals are used to describe the structure of objects, and various methods
are being developed for data processing and analysis [17].

The term fractal graph used in various publications has a similar meaning, but with
some features. In [18], the representation of fractals in the form of line graphs. Such
fractals as figures of Koch, Sierpinski, Minkowski, etc., are considered. For all figures,
fractal dimensions are calculated, and an approach is proposed for grouping vertices into
classes. In [13], based on the properties of fractals, a random sequence of hierarchical
scale-free graphs is generated that has similar properties. In [19], a new algorithm for
computing fractal dimension of rectifiable irregular graphs was proposed. Fractal graphs
are being researched in different directions. The recognition of fractal graphs implies the
definition of structures of natural or artificial objects as fractal. Separately, it should be
noted the construction of fractal structures with specified initial parameters. Property
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exploration includes the transfer of local properties to the global level or the emergence
of new properties that are not inherent in local parts. Characteristics are considered both
structural and numerical. Multicriteria optimization includes a description of a set of
alternatives, problem definitions, development of algorithms, and evaluation of solutions.

In the works cited above, the term fractal graph was used mainly for finite graphs; in
rare cases, infinite graphs were considered. Further, the concepts of a fractal graph as an
infinite graph and a prefractal graph as a finite graph are separated, which corresponds to
similar concepts of fractal and prefractal. Despite the closeness of the concepts of fractal
and prefractal graphs, fractal graphs require additional approaches to study. Due to the
emergence of new properties and characteristics in infinite objects. In this paper, prefractal
(finite) graphs are considered; in one of the subsections, a brief definition of a fractal graph
is given.

Introduction to the theory of fractal graphs implies familiarization with the class
of fractal (prefractal) graphs. We propose a general approach to the description and
construction of prefractal (fractal) graphs. In fact, we can talk about a separate class of
graphs. There are a large number of publications where the subclasses of prefractal graphs
are considered with their own terminology and definitions. Most of these graphs can be
classified as canonical (typical) or noncanonical (special) prefractal graphs.

In the terminology of prefractal graphs [20–22], the families of self-similar graphs,
such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified
Koch graphs, Apollonian graphs, pseudofractal scale-free webs, fractal scale-free networks,
etc. [23–25], are noncanonical prefractal graphs.

On the other hand, prefractal graphs are also dynamic graphs [26–28]. Large prefractal
graphs are used to build graph models with the help of which optimization problems are
solved [29–33].

2. Basic Definitions and Notations
2.1. Operation of Replacing Vertex by Seed

To designate a graph, the generally accepted notation G = (V, E) [34–37] is used. To
define prefractal and fractal graphs, we give additional definitions. Other definitions are
given in [38,39].

A seed H = (W, Q) is a connected graph with unnumbered vertices v ∈ W. An
addition of the graph vertex splitting operation is the vertex replacement by a seed (RVS)
operation. The essence of this addition is that the split vertex is replaced by a seed H. The
RVS operation is implemented as follows.

In G = (V, E), the vertex v0 ∈ V intended for replacement has its environment of a
vertex—the set U of all vertices adjacent to the vertex v0, and the set R of all edges incident
to the vertex v0 : R = {r = (v0, u) : u ∈ U}. Next, the mapping ϕ of vertices u ∈ U to the
set of vertices of the seed H is defined (see Figure 1a,b):

ϕ : U →W, (1)

that is, each vertex u ∈ U is assigned a vertex ϕ(u) = v ∈W of H = (W, Q).
After that, the ends of the edges r = (v0, u) ∈ R of the environment v0 are replaced by

the vertex v = ϕ(u) ∈W defined by mapping (1) (see Figure 1c,d).
The «old» edge e = (v0, u) in the modified form (v, u) retains its original designa-

tion (numbering). The RVS operation is considered completed as soon as for each edge
(v0, u) ∈ R, u ∈ U, the vertex v0 is replaced by the vertex v = ϕ(u) of the seed H according
to the mapping (1). New unnumbered vertices are assigned numbers, taking into account
the already existing numbers of other vertices of the given graph. Similarly, designations
(numbers) are assigned to new edges that have replaced the «old» vertex. It should be
noted separately that seeds are also called graphlets [40–43].
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all vertices of 𝐺ଵ  are replaced by the seed 𝐻, the resulting graph is denoted by 𝐺ଶ =(𝑉ଶ, 𝐸ଶ) . Figure 2 shows the generation 𝐺ଵ  by seed 𝐻 —a complete 3-vertex graph 
(triangle) with the arbitrary adjacency of «old» edges: (a) the vertices replaced by the seed 
are circled with small dashed circles; (b) the seeds replacing the vertices are circled by 
middle dashed circles; (c) the old edges of 𝐺ଶ are marked with bold lines. 

Figure 1. Operation of the replacement of vertex v0 by seed H : (a) selection of a vertex for replacement
and a replacement seed; (b) replacing a vertex and determining the environment of incident edges;
(c) old edges are not adjacent; (d) the adjacency of the old edges is preserved.

2.2. Procedure for Generating Prefractal Graph

Let us consider a step-by-step process of constructing a prefractal graph and applying
the RVS operation. At stage l = 1, the vertices and edges in the given seed H = (W, Q) are
numbered, and the resulting graph is denoted by G1 = (V1, E1). At stage l = 2, all vertices
of G1 are replaced by the seed H, the resulting graph is denoted by G2 = (V2, E2). Figure 2
shows the generation G1 by seed H—a complete 3-vertex graph (triangle) with the arbitrary
adjacency of «old» edges: (a) the vertices replaced by the seed are circled with small dashed
circles; (b) the seeds replacing the vertices are circled by middle dashed circles; (c) the old
edges of G2 are marked with bold lines.
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Figure 2. The generation G1 by seed H : (a) selection of vertices for replacement and a replacement
seed; (b) replacing vertices (RVS) and determining the environment of incident edges; (c) adjacency
of old edges is arbitrary.

At each next stage l = 3, 4, . . . , L, the operation RVS is applied to the vertices of the
graph Gl−1. Upon completion of stage L, a graph GL = (VL, EL) is obtained, which is
called prefractal. At each stage l = 2, 3, . . . , L of the RVS operation, e ∈ El−1 retain their
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designation (numbering) and are called old edges in the trajectory Gl , Gl+1, . . . , GL. The
edges of the replacing seeds are called new edges of the current graph Gl , and the set of new
edges is Vl\Vl−1. Thus, Gl+1 is obtained as a result of applying the RVS operation to each
of the vertices of the set Vl .

GL = (VL, EL) is a prefractal graph with the set of vertices VL, and the set of edges EL. It
is determined recursively, in Gl = (Vl , El), l = 1, 2, . . . , L− 1, each of its vertices is replaced
by a seed H = (W, Q). At stage l = 1, the prefractal graph G1 corresponds to the seed H:
G1 = H. It is said about the described process that GL is generated by H. The sequence
of prefractal graphs G1, G2, . . . , GL is called a trajectory. Gl is a prefractal graph of rank l.
Edges of rank L are new edges, and edges of rank l are old edges. A simplified notation GL
is used for GL = (VL, EL). Separately, there will be a description of the difference between
canonical and noncanonical prefractal graphs.

Figure 3 shows the trajectory G1, G2, G3 of the prefractal graph G3 generated by a
triangle H with the arbitrary adjacency of the old edges.
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Figure 3. Trajectory G1, G2, G3 of the prefractal graph G3. The dotted circles indicate the seeds.

An addition of the process of generating GL is such a case when instead of H, a set
H = {H} = {H1, H2, . . . , Ht, . . . , HT}, T ≥ 2 is given. In the transition from Gl to Gl+1
vertex is replaced by Ht ∈ H. In accordance with this, one of the seeds Ht is taken as the
prefractal graph G1. The cardinality of the set of vertices of the seed Ht = (Wt, Qt), that is,
the number of vertices, is respectively equal to |Wt| = nt. For simplification, the following
notations are used: seed H ∈ {Ht}, where the number of vertices is n = maxnt, and the
number of edges is q = maxqt.
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Figure 4 shows G3 generated by a set H with arbitrarily adjacency of old edges: (a)
H = {H1, H2, H3}, H1 is a complete 3-vertex graph-triangle, H2 is a complete 2-vertex
graph, H3 is a 4-vertex graph star; (b) the seeds that again replaced the vertices are outlined
by small dashed circles; (c) large dashed circles outline the subgraphs that appeared instead
of the graph vertices G1 after the second stage of replacing the vertices with a seed.
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2.3. Canonical and Noncanonical Prefractal Graphs

A distinctive feature of the generating process is that at each l = 2, 3, . . . , L in the
graph Gl−1 = (Vl−1, El−1), each vertex v ∈ Vl−1 is replaced by a seed. Prefractal graphs
resulting from such a process are called canonical.

A noncanonical prefractal graph is generated with one fundamental difference: when
passing from Gl−1 to Gl in the trajectory G1, G2, . . . , Gl−1, Gl , . . . GL, not every vertex
v ∈ Vl−1 of Gl−1 is replaced by H, but only a subset V∗l−1 ⊂ Vl−1.

A non-trivial case of the RVS operation is the replacement of a vertex not by a seed,
but by a graph Gl−t, t = 1, 2, . . . , l − 1 from the trajectory G1, G2, . . . , Gl−1. Figure 5 shows
a noncanonical prefractal graph G4, in which, at the last fourth stage of generation, two
vertices are replaced by a graph G2 from the trajectory G1, G2, . . . , G3.
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As mentioned in the introduction, graphs from the family of self-similar graphs can
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2.4. Prefractal Multigraphs

Not only ordinary graphs, but also multigraphs, including directed graphs, can be
used as seeds. A multigraph (or pseudograph) is a graph that allows the presence of
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multiple edges that have the same end vertices, that is, two vertices can be connected by
more than one edge. There are several different ways to label the edges of a multigraph.
In one case, an edge is defined by the vertices it connects, and each edge can be repeated
multiple times. Otherwise, the edges are equal and must have their own identification.
A prefractal graph generated by a set of seed multigraphs or a single seed multigraph is
called a prefractal multigraph.

Figure 7 shows a prefractal multigraph G3 generated by a set H = {H1, H2} with the
arbitrarily adjacency of old edges. The edges e′ and e′′ are adjacent in G2, but are no longer
so in G3.
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Figure 7. Multigraph G3 generated by a set H = {H1, H2}.

Figure 8 shows a prefractal oriented multigraph G3 generated by a set H = {H1, H2}
with the arbitrarily adjacency of old edges. The arc e′ of the seed H2 is a loop. The incidences
of arcs change: the arc e′′ forming a loop in G2 ceases to be such in G3, the beginning of the
arc leaves the vertex v′, and the end enters v′′ .

Prefractal graphs generated by hypergraphs are complicated objects and require a
separate study. Recall that in a hypergraph, an edge can connect not only two vertices, but
any subset of vertices.

2.5. Definitions and Characteristics of a Prefractal Graph

A prefractal graph GL is an (n, q, L)-graph if its n-vertex seed H = (W, Q) has a set
Q consisting of q = |Q| ≤ n(n− 1)/2 edges. GL is an (n, L)-graph if it is generated by
a set of n-vertex connected seeds of the same degree. If the only seed H constituting
the set H is a complete n-vertex graph (q = n(n− 1)/2 ), then the prefractal graph GL is
(n, L)-graph with complete seed. The result of constructing a prefractal graph GL is a trajectory
G1, G2, . . . , Gl , . . . GL, where the parameter l is the rank of Gl .
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Using the RVS operation in the process of generating GL for Gl = (Vl, El), l ∈ {1, 2, . . . , L− 1}
allows to enter a mapping ϕ : Vl → Vl+1 (or ϕ(Vl) = Vl+1), and in general form

ϕt : Vl → Vl+t , t ∈ {1, 2, . . . , L− l}. (2)

The set Vl+t is the image of Vl , and Vl is the preimage of the set Vl+t.
The number of vertices (3) and edges (4) of GL = (VL, EL) equals

N = N(n, L) = |VL| = nL, (3)

where n = |W| is the number of vertices of H.

M = M(n, q, L) = |EL| = q
(

1 + n + n2 + . . . + nL−1
)
= q

(
nL − 1

)
/(n− 1), (4)

where q = |Q| is the number of edges of H.
Let us consider in the sequence G1, G2, . . . , Gl , . . . GL a pair Gl−1, Gl for any l ∈ {2, 3, . . . , L}.

The set of edges of rank l is the set El\El−1 of edges that appear at stage l. And the element
e ∈ {El\El−1} is accordingly called an edge of rank l.

As mentioned earlier, for canonical prefractal (n, q, L)-graphs GL = (VL, EL), the
simplified term prefractal graph GL is used.

2.5.1. The Adjacency of Old Edges of a Prefractal Graph

An important characteristic of a prefractal graph is the preservation of the adjacency
of old edges during generation. In the general case, the process of generating a prefractal
graph is characterized by random incident connections of old edges with seed vertices,
which replace the ends of old edges. However, in the study of complicated structures,
special cases of generating prefractal graphs are important. When the adjacency of all
old edges or only old edges of the same rank is preserved. If the adjacency of old edges
of only one rank l, l ∈ {1, 2, . . . , L} is preserved, then we say that the prefractal graph
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GL is generated while preserving the adjacency of old edges of rank l. If the adjacency
of old edges of all ranks is preserved, then the prefractal graph is generated with the
adjacency of old edges preserved (see Figure 9a). In the event that the old edges of rank l,
l ∈ {1, 2, . . . , L} are not adjacent (do not intersect), then it says in the prefractal graph GL
the old edges of rank l do not intersect. If the old edges of any ranks do not intersect, then
in the prefractal graph, the old edges do not intersect (see Figure 9b).
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Conditions for preserving or crossing old edges of certain ranks, for example, even
or odd, are negotiated additionally. For example, a prefractal graph in which old edges of
equal ranks do not intersect, while old edges of different ranks can intersect.

Statement 1. Any prefractal graph GL generated by a single seed H can be constructed with
non-intersecting old edges.

In this statement, non-intersecting edges means non-adjacent edges. The maximum
number of edges q = n(n− 1)/2 is present in the full seed H. Then, in accordance with

the generating procedure for GL N = nL, M =
q(nL−1)

n−1 = n(n−1)
2 · (nL−1)

n−1 =
n(nL−1)

2 . At the
first step, the graph G1 = H has n vertices and n(n− 1)/2 edges. Each of the n vertices of
the complete graph is incident with (n− 1) edges, and all edges are new. At the next step,
to generate the graph G2, each of the n vertices of G1 is replaced by a seed H. Each seed
from G2 contains n vertices of n(n− 1)/2 new edges and connects (n− 1) old edges. Since
there are n vertices in the seed, and the number of ends of old edges is (n− 1), then all old
edges are incident to different vertices and are not adjacent (do not intersect). In this case,
in each seed, there remains 1 «free» vertex, to which no old edge is incident. At the third
step, to generate the graph G3, each of the n2 vertices of G2 is replaced by a seed H. Each
seed from G3 contains n vertices of n(n− 1)/2 new edges and matches (n− 1) old edges of
the second rank. As in the previous step, in each seed, there is 1 «free» vertex, which is not
incident with any old edge. The number of new seeds G3 is equal to the number of vertices
G2 at the previous step n2. The number of old edges of the first rank is n(n−1)

2 = n2−n
2 < n2,

if we count the ends of the old edges as n2 − n < n2. That is, all old edges of the first rank
are placed in such a way that they are not adjacent to any old edges of different ranks. Thus,
in G3, the old edges do not intersect and there are n «free» vertices left. The construction
of graphs Gl at all steps l = 1, 2, . . . , L in this way allows you to save the conditions of
non-intersection of old edges (old edges are not adjacent).

Consequence 1. For each prefractal graph of the trajectory G1, G2, . . . , GL, Statement 1 is true.
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2.5.2. Blocks of Prefractal Graph

If from GL generated by the n-vertex H, we successively remove all edges of ranks l =
1, 2, . . . , L− 1, then the original graph splits into a set

{
B1

L
}

. Component B1
L is isomorphic

to H. The elements of the set
{

B1
L
}

are called blocks of the first rank (r = 1). Similarly,
when removing edges of ranks l = 1, 2, . . . , L− 2 from GL, we obtain a set

{
B2

L
}

of the
second rank. Generalizing, when removing all edges of ranks l = 1, 2, . . . , L− r from GL,
we obtain a set

{
Br

L,i

}
of blocks of the rank r, r ∈ {1, 2, . . . , L− 1}, and i = 1, 2, . . . , nL−r is

the ordinal number of the block. B1
L ⊆ GL of the first rank is subgraph-seeds of GL. It is

obvious that any block Br
L =

(
Ur

L, Mr
L
)

is a prefractal graph Br = (Ur, Mr) generated by a
seed H.

Let us specify a number of details for the mapping ϕ. For any vertex vj ∈ Vl ,

j ∈
{

1, 2, . . . , nl
}

of Gl = (Vl , El) from the trajectory G1, G2, . . . , GL, the following is true:

ϕt(vj
)
= Bt

l+t,j, (5)

where Bt
l+t,j =

(
Ut

l+t,j, Mt
l+t,j

)
⊆ Gl+t, t ∈ {1, 2, . . . , L− l}.

Similarly, ϕt
(

Br
l,i

)
= Br+t

l+t,i, r ∈ {1, 2, . . . , L− t}, i ∈
{

1, 2, . . . , nl−r
}

.
Two blocks of GL are adjacent if there is an edge between them. The fact that the blocks

of GL are adjacent if and only if their preimages from (5) are adjacent does not require
proof.

On Figure 10, blocks of the first rank B1
L,1 and B1

L,2 are adjacent through the edge e′,
blocks of the second rank B2

L,1 and B2
L,2 are adjacent through e′′ , and blocks of different

ranks B1
L,2 and B2

L,2 are adjacent through the edge e′′′ . The prefractal graph G3 is generated
by a complete 5-vertex seed with old edge adjacency preserved.
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In what follows, the blocks of the prefractal graph are considered directly on the
graphs without the procedure for removing old edges.

Statement 2. Any prefractal graph can be represented as a set of subgraph-seeds connected by old
edges of different ranks.

Namely, the old edges of rank (L− 1) combine the set of subgraph-seeds
{

B1
L
}

into
the set of blocks

{
B2

L
}

of the second rank, they, in turn, are combined by the old edges of the
rank (L− 2) into the set of blocks

{
B3

L
}

of the third rank, and so on. Finally, the old edges of

the first rank unite the set of blocks
{

BL−1
L

}
of the rank (L− 1) into a connected prefractal

graph GL. The process of connecting blocks of different ranks is shown in Figure 10.

2.5.3. Subgraph-Seeds of Prefractal Graph

The subgraph-seed zl
s is the block B1

l,s, s = 1, 2, . . . , nl−1 of Gl , l = 1, 2, . . . , L. Sequential
selection of subgraph-seeds zl

s in the trajectory G1, G2, . . . , GL splits the set of edges EL into
non-intersecting subsets Z(GL) =

{
zl

s

}
, where l = 1, 2, . . . , L, and s = 1, 2, . . . , nl−1. Such

subsetting allows saving information about the adjacency of old edges at the time of their
appearance in GL. In what follows, for simplicity, the term seed zl

s of rank l is used.
The transition in the trajectory from Gl−1 to Gl is carried out by nl−1 = |Vl−1| RVS

operations. Then the number of seeds of GL is 1 + n + n2 + . . . + nL−1 = nL−1
n−1 . Then the

cardinality |Z(GL)| = nL−1
n−1 .

2.5.4. Weighting Prefractal Graphs

Consider the weighting of GL = (VL, EL) generated by H = (W, Q) with |W| = n,
|Q| = q. GL is weighted if its edges e(l) ∈ EL is assigned a real number
w
(

e(l)
)
∈
(

θl−1a, θl−1b
)

, where l = 1, L, a, b > 0, a < b and 0 < θ < a/b—similarity
coefficient θ ∈ (0, 1).

A vertex-weighted prefractal graph is defined similarly. GL is vertex-weighted if
its vertices v(l) ∈ EL is assigned a real number v

(
e(l)
)
∈
(

θl−1a, θl−1b
)

, where l = 1, L,
a, b > 0, a < b and 0 < θ < a/b—similarity coefficient θ ∈ (0, 1).

Without violating the rules for weighting a prefractal graph in the classical sense, we
define the edge weights as follows. A prefractal graph GL is interval-weighted if each of its
edges e(l) ∈ EL is assigned an interval number w

(
e(l)
)
= [w, w] ⊆

(
θl−1a, θl−1b

)
.

These definitions are also true for prefractal graphs generated by a set of seeds.

2.6. Some Theorems and Consequences for the Class of Prefractal Graphs

A graph is connected if it contains exactly one connected component. Which means
that there is at least one path between any pair of vertices in this graph.

Theorem 1. A prefractal graph (canonical or noncanonical) generated by a connected seed
is connected.

Proof of Theorem 1. If the prefractal graph is undirected, the existence of one connected
component allows one to construct a path from one vertex to any other. The procedure for
generating a prefractal graph guarantees that a connected prefractal graph will be obtained
for a connected seed. �

Consequence 2. A prefractal graph from the trajectory G1, G2, . . . , GL (canonical or noncanonical)
generated by a set of connected seeds is connected.

A digraph is strongly connected if all its vertices are mutually reachable. That is,
between any two vertices there is a path in both directions.
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Theorem 2. A prefractal digraph (canonical or noncanonical) generated by a strongly connected
seed is strongly connected.

Proof of Theorem 2. For a prefractal digraph, it is not always possible to find an oriented
path from one of its vertices to another. Vertices can only exist with incoming or outgoing
arcs. Consider the procedure for generating a prefractal digraph by a strongly connected
seed. The prefractal digraph G1 in the trajectory G1, G2, . . . , GL is taken equal to the seed
H, that is, each of its vertices is reachable from any other vertex. At the next step of
constructing the digraph G2, the vertices of G1 are replaced by seeds. Let us consider this
process in detail. We replace only one vertex v1 of the digraph G1 with the seed H. If the
adjacency of the old arcs incident to the vertex v1 is preserved, the seed is actually glued
together at the common vertex v1 (see Figure 11a,b).
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Figure 11. The procedure for generating a prefractal digraph G2 with a 3-vertex complete oriented
seed H : (a) prefractal digraph seed H; (b) the seed is glued at the common vertex v1; (c) replacing
vertex v2 with seed H; (d) prefractal digraph G2.

In the constructed digraph G′1, all n vertices of the digraph G1 are reachable among
themselves, and n vertices of the seed H are also reachable. However, in the digraph G′1,
one vertex is common for G1 and H. Then it is possible to build a path from any vertex G1
to the common vertex v1 and further from it to any vertex of the glued seed H. It is also
possible to build a path from any vertex of the seed H to a common vertex v1 and then from
it to any vertex of the subgraph G1 of the digraph G′1. That is, every vertex is reachable
from every other vertex of G′1. We replace the next vertex v2 of the digraph G1 with the seed
H, and in fact of the digraph G′1 (see Figure 11c). Suppose that the adjacency of the old arcs
incident to the vertex v2 is not preserved. Old arcs become incident to new seed vertices in
an arbitrary order. However, the seed H is a strongly connected graph, and then the ends of
previously adjacent arcs are mutually reachable via the paths of the seed. We obtain that all
vertices of the digraph G′′1 are mutually reachable. Replacing in turn the remaining (n− 1)
vertices of the digraph G1, we obtain a digraph G2 in which each vertex is reachable from
any other vertex, which means that the prefractal digraph G2 is strongly connected (see
Figure 11d). Replacing alternately the vertices of the digraph G2, we construct a digraph
G3, which is also strongly connected. Using the above reasoning, we construct prefractal
digraphs G1, G2, . . . , GL. At the L-th stage, we obtain a prefractal digraph GL, which is
strongly connected. For a noncanonical prefractal digraph, not all vertices are replaced by
seeds during generation, that does not affect the proof of the theorem. �

Consequence 3. A prefractal digraph from the trajectory G1, G2, . . . , GL (canonical or noncanoni-
cal) generated by a set of strongly connected seeds is strongly connected.

2.7. The Concept of a Fractal Graph

In accordance with the procedure for generating a prefractal graph, a fractal graph is
determined. Let the trajectory G1, G2, . . . , Gl , . . . , GL be given. As l → ∞ , the graph Gl is
fractal. For a fixed l, a prefractal graph is considered. For l = L, the prefractal graph GL
is considered.

It should be noted that the infinite sequence G1, G2, . . . , Gl→∞ moves to the right
starting from the first element G1 and then the next one. That is, in such a sequence, you
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can always select the first element G1, the second G2 and all subsequent ones. Each graph
in this sequence is a finite prefractal graph.

Another kind of fractal graph is an infinite sequence in both directions . . . Gl−1, Gl , Gl+1, . . .
. In this case, the fractal graph has no initial value G1 = H and each graph in the
trajectory . . . Gl0−1, Gl0 , Gl0+1, . . .. is actually fixed by the observer. The graphs in the
. . . Gl0−1, Gl0 , Gl0+1, . . .. sequence are infinite. Moreover, the vertices exist only at the time
of fixing the graph Gl0 .

The following questions require further study: how the similarity coefficient affects
the weights; at what values of the similarity coefficient there are limiting values of units or
total weights; what the ratio will be of the cardinalities of the sets of vertices and edges in
the trajectory, etc. It also requires the development of methods for searching for a set of
generating seeds, adaptation of algorithms designed for prefractal graphs, calculation of
structural, and numerical characteristics of infinite (fractal) graphs.

A fractal graph, for example, can be used as a tool for modeling large-scale clustering
of matter in the universe. However, in practical applications, prefractal graphs, including
large ones, are mainly used, which allow modeling artificial objects. A separate work will
be devoted to the study of fractal graphs, including the definition of fractal dimension, and
the possibility of saving the results obtained on prefractal graphs. Refinement of the theory
will be made with correction for the infinity of graphs.

3. Results and Discussion

This paper proposes an introduction to the class of fractal (prefractal) graphs. The
first mention of fractal graphs can be found in [44]. Since then, the terminology of fractal
graphs has firmly established itself in graph science. Nevertheless, different authors,
understanding and speaking about the same objects, both fractals and their models—fractal
graphs—offered independent definitions and descriptions. In this paper, the authors
propose a general description of fractal (prefractal) graphs as a class of graphs. It is worth
mentioning that in this work, the main attention is paid to prefractal graphs, as finite
analogues of fractal graphs. Speaking in a general sense about fractal graphs and about the
class of fractal graphs, both types of finite and infinite graphs are meant. If necessary, for
the rigor of statements, the term prefractal graph is used.

Thus, to determine prefractal graphs, the main operations for their generation are
proposed. A fractal graph is known to have the property of self-similarity, where a part of
the graph is similar to its other parts or to the entire graph. The minimal possible similar
parts are called seeds. In the general literature, the concepts of graphlets [45–47] and motifs
are used. Graphlets are often used in the analysis of the structure of graphs and, in fact, are
equivalent to the concept of seeds in fractal graphs.

Motives are similar in meaning to graphlets but are used for the statistical analysis of
large-scale networks, including the identification of properties and characteristics [48–51].
The types of motives and the number of their occurrences in the graph are calculated. In fact,
the graph is divided into many subgraphs—motives. A set of algorithms for identifying
motives and their further statistical processing is developed.

The operation RVS is considered in detail, when the current vertex is removed and a
subgraph, a seed, is inserted instead. The procedure for generating a prefractal graph is a
step-by-step replacement of all vertices with seeds. At the output of each stage, a prefractal
graph is formed. The sequence of stages of generation of prefractal graphs forms a sequence
G1, G2, . . . , GL called a trajectory. If the rules for generating a prefractal graph are observed,
we are talking about a canonical, that is, a typical graph. If the generation procedure
is violated or additional restrictions are introduced, then one speaks of a noncanonical
(special) graph. GL is also generated not by one, but by many seeds.

For a complete description of the class, directed graphs and multigraphs with multiple
edges and loops are also briefly considered.

Special attention is paid to the description of the adjacency property of old edges,
which affects the formation of the graph structure, including the generation of model
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graphs. The concepts of blocks and seed subgraphs of different ranks are also considered.
The ranks of individual subgraphs, edges or vertices indicate their belonging to a particular
generation stage.

The rules for weighting prefractal graphs by real numbers and intervals are given.
The issue of weighting fractal graphs requires separate consideration. It is also necessary to
expand the concept of multi-weighting, including non-deterministic and fuzzy weights—
time series, fuzzy sets, etc.

GL is also dynamic graph and represented by sequence G1, G2, . . . , GL [26,28]. For-
mulations of multicriteria problems refer to a fixed GL. It is required to consider the
applicability of the statements to the sequence G1, G2, . . . , GL. It is necessary to consider
the end-to-end work of algorithms and link the sequence of solutions.

At the end of the main part, some theorems and corollaries are given. Undoubtedly, it
is required to expand the theoretical basis of the class of fractal graphs with a proof base,
that is, to bring theorems with proofs. This will be done in the next publications.

Let us once again mention the difference between fractal (infinite) and prefractal (finite)
graphs. In this paper, some descriptions of fractal graphs are given, and the main issues
that require further study are identified.

The description of fractal graphs is intended to combine various families—self-similar
graphs, Sierpiński graphs, scale-invariant graphs, etc. Flexible generation rules allow us
to consider these and other well-known families of graphs with fractal properties. In this
paper, in contrast to the works cited in the references, attention is paid to the rules of
generation in topological time, where the trajectory shows how the graph developed. That
is, the foundations for the study of fractal graphs as dynamic ones are laid. The above
characteristics will allow us to continue the study of this class of graphs and take a fresh
look at the problems of calculating dimensions, packing, genetic properties, etc.

4. Conclusions

This work is more of a theoretical nature; the main definitions, properties and charac-
teristics of prefractal graphs are considered. In the future, there will be an expansion of
research into the practical area, including for solving optimization problems. Prefractal
graphs are used as a modeling tool (the structure of a social network [52,53], transport and
logistics systems [54], processes in cryptocurrency networks [55,56], DNA structure, etc.).

Multiobjective optimization is applied on large graphs and complex networks [57–60],
for example, in the problems of splitting a social graph [61] or transport and logistics
problems [62,63]. The structure of prefractal graphs makes it possible to parallelize well-
known sequential algorithms.

From an applied point of view, prefractal graphs are a universal tool for describing
network interaction in multi-element network systems. For example, they are used to
design the interaction structure of monitoring systems based on small UAVs [64]. In [65],
we also have discussed six known NP-complete problems in relation to the class of prefractal
graphs.

Thus, the class of prefractal (fractal) graphs has firmly taken its place in graph theory
and has prospects for further research. We single out the following areas for further study
of the class of fractal graphs:

(1) The study of seed properties, comparative analysis of graphlets and motifs; statistical
analysis of prefractal graphs, identification of seeds (graphlets, motifs).

(2) The study of the properties of fractal (infinite) graphs, expansion of the conceptual
base, description of the similarity coefficient, calculation of the fractal dimension;
comparison of properties and characteristics of fractal and prefractal graphs; and
studying the behavior of known and new algorithms on fractal graphs.

(3) The formulation of particular formulations of optimization problems on prefractal
graphs, development of algorithms for finding solutions, building models, and practi-
cal applications.
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(4) The study of prefractal graphs as a subclass of dynamic graphs; introduction of
terminology and theoretical basis; formulation of general problems; description of
dynamic solutions; and the continuity and stability of solutions.

(5) The study of well-known NP-complete problems (more than 300) in the class of
prefractal graphs, formation of a general approach to identifying solvability condi-
tions, etc.

In future works, it is planned to present new results in these areas, as well as to identify
points of contact with network science and a number of other scientific sections.
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