
Citation: Huang, H.; Mo, G.; Li, H.;

Fang, H.-B. Representation Theorem

and Functional CLT for RKHS-Based

Function-on-Function Regressions.

Mathematics 2022, 10, 2507. https://

doi.org/10.3390/math10142507

Academic Editors: Huiming Zhang

and Ting Yan

Received: 20 June 2022

Accepted: 15 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Representation Theorem and Functional CLT for RKHS-Based
Function-on-Function Regressions
Hengzhen Huang 1 , Guangni Mo 1 , Haiou Li 2 and Hong-Bin Fang 2,*

1 College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China;
hzhuang@mailbox.gxnu.edu.cn (H.H.); guangnimo@stu.gxnu.edu.cn (G.M.)

2 Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center,
Washington, DC 20057, USA; hl662@georgetown.edu

* Correspondence: hf183@georgetown.edu

Abstract: We investigate a nonparametric, varying coefficient regression approach for modeling
and estimating the regression effects caused by two functionally correlated datasets. Due to modern
biomedical technology to measure multiple patient features during a time interval or intermittently
at several discrete time points to review underlying biological mechanisms, statistical models that do
not properly incorporate interventions and their dynamic responses may lead to biased estimates of
the intervention effects. We propose a shared parameter change point function-on-function regression
model to evaluate the pre- and post-intervention time trends and develop a likelihood-based method
for estimating the intervention effects and other parameters. We also propose new methods for
estimating and hypothesis testing regression parameters for functional data via reproducing kernel
Hilbert space. The estimators of regression parameters are closed-form without computation of
the inverse of a large matrix, and hence are less computationally demanding and more applicable.
By establishing a representation theorem and a functional central limit theorem, the asymptotic
properties of the proposed estimators are obtained, and the corresponding hypothesis tests are
proposed. Application and the statistical properties of our method are demonstrated through an
immunotherapy clinical trial of advanced myeloma and simulation studies.

Keywords: functional data; hypothesis testing; regression function; reproducing kernel Hilbert space;
sparsely observed data

MSC: 62G05; 62G10

1. Introduction

Modern biomedical technology has made it possible to measure multiple patient
features during a time interval or intermittently at several discrete time points to review
underlying biological mechanisms. Functional data also arise in genetic studies—a massive
amount of gene expression data is recorded for each subject and could be treated as a func-
tional curve [1]. Functional data analysis provides distinct features related to the dynamics
of cellular responses and activity and other biological processes. Existing methods, such as
projection, dimension-reduction, and functional linear regression analysis, are not adapted
for such data. Overviews can be found in the book by Horváth and Kokoszka [2] and some
recently published papers such as Yuan et al. [3] and Lai et al. [4].

Ramsay and Silverman [5], Clarkson et al. [6], and Ferraty and Vieu [7] introduced
some basic tools and widely accepted methods for functional data analysis; Horváth and
Kokoszka [2] established some fundamental methods for estimation and hypothesis testing
on mean functions and covariance operators of functional data. The topics are broad and
the results are in depth. Conventionally, each data curve is assumed to be observed over a
dense set of points, often over thousands of points, then smoothing techniques are used to
produce continuous curves, and these curves are treated as completely observed functional
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data for statistical inference. In contrast with those assumptions, we consider the more
practical issues in which the data curves are only observed at some (not dense) time points,
and the observed data curves are actually interpolations at those observed points. Of course,
a relatively large sample size is needed for sparse observations. The effects of both number
of observation points and sample size are also considered in our analysis.

For analyzing longitudinal data, Zeger and Diggle [8] considered a semiparametric
regression model of the form, with longitudinal observations

Y(t) = X′(t)β + θ(t) + ε(t), t ∈ T , (1)

where Y(t) is the response variable, X(t) is the p× 1 covariate vector at time t, β is a p× 1
constant vector of unknown regression coefficients, θ(t) is an unspecified baseline function,
ε(t) is a zero-mean stochastic process, and T represents the observation interval. Under
this model, Lin and Ying [9] estimated β via a weighted least squares estimator based on the
theory of counting processes; Fan and Li [10] further studied this model using a weighted
difference-based estimator and a weighted local linear estimator followed by statistical
inference, as discussed in Xue and Zhu [11].

For functional data analysis, the data are often represented by (yi, xi(·)) (i = 1, . . . , n),
and the model is [12–14]

yi =
∫
T

β(t)xi(t)dt + εi. (2)

Some researchers considered the following model [2,5,15]

yi(t) =
∫
T

β(s, t)xi(s)ds + εi(t). (3)

To estimate β(·, ·), assume there are basis {ξk} and {ηk}, which span the spaces of the
{xi(·)} and {yi(·)}, respectively. The estimate of β(·, ·) of the form is given by

β̂(s, t) =
k

∑
i=1

r

∑
j=1

bijξi(s)ηj(t),

and bij is estimated by minimizing the residual sum of squares ∑n
i=1 ||yi−

∫
β̂(s, t)xi(s)ds||2.

Although the resulting estimator is useful, a representation theorem for such an estimator
is hard to obtain, and hence the asymptotic distribution of this approach is not clear.
Yao, et al. [15] investigated a functional principle component method for estimation of
model (3) and obtained consistent results. Müller and Yao [16] studied a variation of the
above model in the conditional expectation format.

The smoothing spline method is popular for curve estimation. The function curves
can be estimated at any point, followed by the computation of coefficients. However, the
asymptotic property of estimators based on the spline method is tough to handle. For
natural polynomial splines, the number of knots is the number of untied observations,
which is sometimes redundant and undesirable. B-splines only require a few (the degree
of the polynomial plus two) basis functions and are easy to implement [17–19]. Another
method is local linear fit [20–22], but the difficulty is in choosing the bandwidth, especially
when the observation points are uneven. Therefore, in this paper we employ reproducing
kernel Hilbert space (RKHS), a special form of spline method in which the turning point
from curve estimation to point estimation Yuan and Cai [12] explored its application on
functional linear regression problem, and Lei and Zhang [23] extented it to RKHS-based
partially functional linear models. In general, one needs to choose a set of (orthogonal) basis
functions and the number of basis for functional estimations, while with RKHS one only
needs to determine the kernel(s) of RKHS. Furthermore, the Riesz presentation theorem
shows that any bounded linear function can be reproduced as a representer based on the
RKHS kernel with a closed form.



Mathematics 2022, 10, 2507 3 of 23

However, existing RKHS methods often meet obstacles when choosing different norms
and the corresponding optimization procedures. Although using a carefully selected norm
in the optimization criterion has the advantage of interpretation, it suffers in that the re-
sulting regression estimator generally needs the computation of an inversion of a large
matrix (the same as the sample size). Moreover, most of the existing methods, including
the aforementioned RKHS methods, are designed for the case where the observed data
are sampled from a dense rate and are limited to models in which either the response or
predictors are functions. New methods for estimation and hypothesis testing of regression
parameters for the more general case where both the response and predictors are functions
with sparsely observed data are needed. To address these problems, we propose a new
RKHS method with a unified norm to characterize the RKHS and the optimization criterion
for function-on-function regression. Although the statistical interpretation of this optimiza-
tion criterion is not fully clear, with a simple closed form of the estimated regressors under
a general function-on-function regression model, this optimization is more computationally
reliable and applicable without the need of computing the inverse of a massive matrix.
By establishing a representation theorem and a functional central limit theorem based on
the proposed model, we obtain the asymptotic distribution of the estimators. Hypothesis
testing of the underlying curves is proposed accordingly.

The remainder of this paper is organized as follows. Section 2 describes the proposed
method for the estimation and hypothesis testing of regression parameters for functional
data via the reproducing kernel Hilbert space and establishes some theoretical properties.
Simulation studies and a real-data example to demonstrate the effectiveness of our proposed
method are given in Sections 3 and 4, respectively. Section 5 gives some concluding remarks,
and all technical proofs are left in the Appendix A.

2. The Proposed Method

We consider the observed data
{
(yi(tij), xi(tij)), j = 1, . . . , mi; i = 1, . . . , n

}
. The un-

derlying data curves (yi(·), xi(·)) are iid copies from (y(·), x(·)), where y(·) and x(·) =
(x1(·), . . . , xd(·))′ are random curves on some region T. The observation times tij ∈ (0, T]
are generally assumed to be different for each subject i for some 0 < T < ∞. We assume
that time points mi (i = 1, . . . , n) are iid copies from some integer-valued random variable
m, and given mi, the time points tij for (j = 1, . . . , mi) are iid copies from a positive random
variable G, with its support on (0, T]. For each individual, the observed data (yi, xi) can be
interpolated as curves (ŷi, x̂i) on T. We assume the following model for the observed data

yi(t) = β′(t)xi(t) + εi(t), E[εi(t)] = 0, (i = 1, . . . , n), (4)

where β(·) = (β1(·), . . . , βd(·))′ are the true regression coefficient functions for the co-
variates xi(·)’s, and the εi(·)’s are random errors. In general, εi(s) and εi(t) are non-
independent for s 6= t, e.g., εi(·) being a zero-mean Gaussian process with some covariance
function Γ(s, t), known or unknown. Note that model (4) is more general than (2) and is
more straightforward than model (3) in describing the relationship between the responses
yi(·)-th and the covariates xi(·). Typically, we set x1(·) ≡ 1, and so β1(·) is the baseline
function. Since tij and tkj may be different even for the same j, there may be no observation
or just a few observations at each time point t.

To estimate the regression coefficient function β(·), the simplest way is the point-
wise least squares estimate or any other non-smoothing (i.e., without roughness penalty)
functional estimates. However, those estimates have some undesirable properties, often
with wiggly shape and large variances in the area with sparse observations. An established
performance measure for functional estimation is the mean square error (MSE),

MSE = Bias2 + Sampling variance.

Non-smoothed estimates often have small bias but large sampling variance, while
smoothed estimates are the other way around, with much smoother shape by adjusting
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the shape from neighboring data, but with larger bias. To better balance the trade-off
between bias and sampling variance and optimize the MSE, a regularized smooth estimate
is preferred, in which a smoothing parameter could control the degree of penalty.

Existing smoothing methods all suffer different aspects of weakness. Functional
principal component analysis [15] is computationally intensive. General spline and kernel
smoothing methods [24] do not fit the problem under research due to their constant choice
of bandwidth. It is known that for non-smoothing methods, computation complexity is
often of the order O(n), where n is the data sample size, while for smoothing methods the
amount of computation may substantially exceeds O(n) and even become computationally
prohibitive. Thus, for smoothing methods, it is important to find a method with O(n)
computation load. To achieve this with spline methods, the basis should have only local
support (i.e., nonzero only locally). Recently, a popular method in functional estimation is
using the reproducing kernel Hilbert space (RKHS). RKHS is a special spline method that
has this property, and can achieve the O(n) computation for many functional estimation
problems [5,12].

For functional estimate with RKHS, we define two norms (inner products) on the same
RKHS H: one, denoted by < ·, · >, defines the objective optimization criterion, and another
one, denoted by < ·, · >H, is for the RKHS H. Different from a general Hilbert space, in
an RKHS H of functions on T, the point evaluation functional ρt(h) = h(t) (h ∈ H) is a
continuous linear map, so that by the Riesz representation theorem, there is a bi-variate
function k(·, ·) on T such that

ρt(h) = h(t) =< h(·), k(·, t) >H, ∀ h ∈ H.

Take h(·) = k(·, s), we also get

k(t, s) =< k(·, s), k(·, t) >H .

The above two properties yield the name RKHS.
Note that for a given Hilbert space H, a collection of functions on some domain T with

a given inner product < ·, · >H, its reproducing kernel K may not be unique. In fact, for any
mapping G : T 7→ `2(T2), K(s, t) =< G(s, ·), G(t, ·) >H is a reproducing kernel for H, and
any reproducing kernel of H can be expressed in this form (Berlinet and Thomas-Agnan,
2004), and it has a one-to-one correspondence with a covariance function on H2. The choice
of a kernel is mainly for convenience. However, a reproducing kernel under one inner
product may not be a reproducing kernel under another inner product on the same space
H. Assume β ∈ Hd, with H being some RKHS and a known kernel K(·, ·), both are to be
specified later. Let < ·, · > be another inner product on H (typically < f , g ≥

∫
T f (t)g(t)dt

and ||h||2 =< h, h > for all h ∈ H). With the observed curves (ŷi, x̂i) (i = 1, . . . , n), ideally
an optimization procedure for estimating β(·) in (4) will be of the form

β̂n,λ(·) = arg inf
β∈Hd

(
1
n

n

∑
i=1
||ŷi − β′ x̂i||2 + λJ(β)

)
,

where J(·) is a penalty functional, and λ > 0 is the smoothing parameter. The penalty
term J(·) can be significantly simplified via the RKHS as shown in the proof of Theorem 1
below. If λ = 0, the above procedure gives the unsmoothed estimate with some undesirable
properties such as overfitting and large variance.

For model (2) with one covariate variable, Yuan and Cai [12] considered penalized
estimate β̂ of β(·). The corresponding estimator β̂(·) has a closed form of being linear in
xi(·), but the computation involves the inverse of an (n + 2) matrix. For model (1) with d
covariates, we first consider estimator of β(·) in the form of linear in xi(·). It turns out that
the estimator has a closed form but also involves the inverse of a d(n + 2) matrix, which is
computationally infeasible in general.
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Consider an estimator of β in the form of a linear combination of (x̂1(·), . . . , x̂n(·)).
For any f ∈ H, denote (K0 f )(t) =< K0(t, ·), f (·) >H, and for any f = ( f1, . . . , fd)

′ ∈ Hd,
denote (K0f)(t) = ((K0 f1)(t), . . . , (K0 fd)(t))′ and similarly for K1f. For d× n matrix B and
n× d matrix Z, let b1, . . . , bd be the d rows of B, z1, . . . , zd be the d columns of Z, and define
B�Z = (b1z1, . . . , bdzd)

′ a d-column vector. Since x̂i = K0 x̂i +K1 x̂i, and K0 x̂i ∈ Hd
0, H0 has

a basis g = (g1(·), . . . , gk(·))′, we consider estimate β̂(·) of β0(·) with the form Ag +B�Zn,
where A is a d× k matrix, B is a d× n matrix, and Zn(·) = (K1 x̂1(·), . . . , K1 x̂n(·))′ is n× d.
With ||h||2 =

∫
T h2(t)dt, for fixed λ an RKHS estimator of β0(·) is of the form

β̂n,λ(·) = Âg + B̂� Zn(·),

where

(Â, B̂) = arg inf
(A,B)

(
1
n

n

∑
i=1
||ŷi − x̂′i(Ag + B� Zn)||2 + λJ(Ag + B� Zn)

)
. (5)

For the penalty, let D be a pre-specified d× d symmetric positive definite constant
matrix; we define

J(h) =< h′(D1/2)′, D1/2h >H=< h′D, h >H:= ||h||2H, h ∈ Hd

and
Hd

0 = {h ∈ Hd : J(h) = 0} = {h ∈ Hd : ||h||2H = 0} ⊂ Hd

as the null space for the penalty, and Hd
1 is its orthogonal complement (with respect to

the inner product < ·D, · >H). Then, Hd = Hd
0 ⊕ Hd

1. That is, ∀h ∈ Hd; it has the
decomposition h = h0 + h1, with h0 ∈ Hd

0 and h1 ∈ Hd
1. Here, H1 is also an RKHS

with some reproducing kernel K1(·, ·) on H1. With RKHS, K0h ∈ Hd
0 for all h ∈ Hd,

which implies that < (K0h)′D, K0h >H= 0. Further, K1h ∈ Hd
1 for all h ∈ Hd, and

< (K0h)′D, K1h >H= 0. Thus

J(h) =< h′D, h >H=< (K0h + K1h)′D, K0h + K1h >H=< (K0h)′D, K0h >H

+2 < (K0h)′D, K1h >H + < (K1h)′D, K1h >H=< (K1h)′D, K1h >H .

Typically, D is chosen to be a d× d identity matrix. The choices of K0, K1, and the
inner product < ·D, · >H will be addressed latter.

For a function a(·) and a vector of functions b(·) = (b1(·), . . . , bk(·))′, denote < a, b ≥ (<
a, b1 >, . . . < a, bk >)′; for a matrix B(·) =

(
bij(·)

)
d×k, denote < a, B ≥ (< a, bij >)d×k, and

similarly for the notations < a, b >H and < a, B >H. The following representation theorem
shows that the estimator given in (5) is computationally feasible for many applications.

Theorem 1. Assume β0(·) ∈ Hd, (ŷi(·), x̂i(·)) ∈ Hd+1 for i = 1, . . . , n. Then for the given
penalty functional J(β) = ||K1(β)||2H and fixed λ, there are constant matrices Â = (aij)d×k and
B̂ = (bij)d×n such that β̂n,λ given in (5) has the following representation

β̂n,λ(t) = Âg(t) + B̂� (K1 x̂)n(t), t ∈ (0, T]

where (K1 x̂)n(·) = (K1 x̂1(·), . . . , K1 x̂n(·))′, and in vector form (â, b̂) of (Â, B̂)(
â
b̂

)
=

(
O R
R′ S + λW

)−1( u
v

)
,

where the matrices R (dk× dn), O (dk× dk), S (dn× dn), and W (dn× dn), and the vectors u
and v are given in the proof.
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For the ordinary regression model y = β′x + ε, with Xn = (x1, . . . , xn)′ and yn =
(y1, . . . , yn)′, the least squares method yields the estimation of β as β̂ = (X ′nXn)−1X ′nyn.
Since (X ′nXn)−1 is of order n−1 (a.s.), β̂ can be viewed as approximately a linear form
n−1X ′nyn. Let X̂n(·) = (x̂1(·), . . . , x̂n(·))′ and ŷn(·) = (ŷ1(·), . . . , ŷn(·))′. Now we con-
sider estimate β̂(·) of β0(·) with linear form n−1X̂ ′nŷn. Since n−1X̂ ′nŷn = K0(n−1X̂ ′nŷn) +

K1(n−1X̂ ′nŷn), and K0(n−1X̂ ′nŷn) ∈ Hd
0, we only need to consider an estimate of the form

Ag + Bẑn, where A is a d × k parameter matrix, B is a d × d parameter matrix, and
ẑn(·) = n−1[K1(X̂ ′nŷn)](·) is a d-vector. This allows us to express the estimate via the
basis of the RKHS and with a greater degree of flexibility than the linear combination of
n−1X̂ ′nŷn. Another advantage of using estimates of the form Ag + Bẑn is convenience of
hypothesis testing. As typically g = (1, t)′, thus testing the hypothesis of linearity of β(·) is
equivalent to testing B = 0.

For any function h(·), we set ||h||2 =
∫

T h2(t)dt, and for fixed λ,

β̂n,λ(·) = Âg(·) + B̂ẑn(·),

where

(Â, B̂) = arg inf
(A,B)

(
1
n

n

∑
i=1
||ŷi − (Ag + Bẑn)

′ x̂i||2 + λJ(Ag + Bẑn)

)
. (6)

Let a = (a11, . . . , a1k, . . . , ad1, . . . , adk)
′ be the vector representation of A; b =

(b11, . . . , b1d, . . . , bd1, . . . , bdd)
′ be that of B, O = Odk×dk = n−1 ∑n

i=1 < si, s′i > with
si = (x̂i1g1, . . . , x̂i1gk, . . . , x̂idg1, . . . , x̂idgk)

′, R′ = P = Pd2×dk = n−1 ∑n
i=1 < ti, s′i >

with ti = (x̂i1ẑ1, . . . , x̂i1ẑd, . . . , x̂id ẑ1, . . . , x̂id ẑd)
′, S = Sd2×d2 = n−1 < ti, t′i >, U =

n−1 ∑n
i=1 < ŷi, x̂ig′ ≥ (uij)d×k and its vector form u = (u11, . . . , u1k, . . . , ud1, . . . , udk)

′,
V = n−1 ∑n

i=1 < ŷi, x̂i ẑ′n ≥ (vij)d×d and its vector form v = (v11, . . . , v1d, . . . , vd1, . . . , vdd)
′;

λ1 ≥ · · · ≥ λd ≥ 0 be all the eigenvalues of D, and q1, . . . , qd be its normalized eigenvectors,
W = Wd2×d2 = n−1 ∑n

j=1 < cj, c′j >H and cj = λj(qj1ẑ1, . . . , qj1ẑd, . . . , qjd ẑ1, . . . , qjd ẑd)
′.

Theorem 2. Assume β(·) ∈ Hd, (ŷi(·), x̂i(·)) ∈ Hd+1 for i = 1, . . . , n. Then for the
given penalty functional J(β) = ||K1(β)||2H and fixed λ, there are constant matrices Â = (aij)d×k

and B̂ = (bij)d×d such that β̂n,λ(·) given in (6) has the following representation

β̂n,λ(t) = Âg(t) + B̂(K1[n−1X̂ ′nŷn])(t), t ∈ (0, T]

and in vector form (â, b̂) of (Â, B̂) when the following inverse exists,(
â
b̂

)
=

(
O R
R′ S + λW

)−1( u
v

)
.

Below we study asymptotic behavior of β̂n,λ(·) given in (6). Denote β0(·) as the true
value of β(·), and |M| is the determinant of a square matrix M. Lai et al. [25] proved
strong consistency of the least squares estimate under general conditions, while Eicker
[26] studied its asymptotic normality. The proposed estimators in this paper have some
similarity to the least squares estimate, but they also have some different features and
require different conditions.

(C1). β0 ∈ Span(E[xy]).
(C2). inft∈T |E[x(t)x′(t)]| > 0.

(C3). E
(
||y− (Ag + BZ)′x||2

)
< ∞ for all bounded (A, B), where Z = E[K1(xy)].

(C4). limn→∞ max1≤i≤n ||(ŷi, x̂i)− (yi, xi)|| → 0 (a.s.).
(C5). λ = λn → 0.
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Theorem 3. Assume conditions (C1)–(C5) hold, then as n→ ∞,

||β̂n,λ − β0|| → 0, (a.s.).

To emphasize the dependence on n, we denote λ = λn. Let l∞(T) be the space of

bounded functions on T equipped with the supreme norm, and D⇒ stands for weak con-
vergence in the space l∞(T). With the following condition (C6), we obtain the asymptotic
normality of β̂n,λ(·)

(C6).
√

nλn → 0.

Theorem 4. Assume conditions (C1)–(C4) and (C6) hold. Then as n→ ∞,

Wn :=
√

n
(

β̂n,λ − β0 − op(1)
) D⇒W on l∞(T),

where W(·) is the zero-mean Gaussian process on T with covariance function σ(s, t) =
E[W(s)W(t)] given in the proof, s, t ∈ T, and op(1) is given in the proof.

Test linearity of β0. It is of interest to test the hypothesis H0(J) : J′β0(t) is linear in
t, where J is a d-dimensional vector with entries 0 or 1, with 1 corresponding to the
element of β0 to be tested for linearity. The hypothesis H0(J) is equivalent to test the
corresponding coefficients J′B̂ in B̂ be zeros. Let O0 = E < s1, s′1 >, P0 = E < t1, s′1 >,
S0 = E < t1, t′1 >, U0 = E < y1, x1g′ >, V0 = E < y1, x1z′0 >. Let u0 and v0 be the
vector representations of U0 and V0, and w0 = (u′0, v′0)

′. Denote T = matrix(O, R; P, S),
T0 = matrix(O0, R0; P0, S0). By Theorem 4, we have

Corollary 1. Assume the conditions of Theorem 4 hold, under H0(J), we have

√
n(J′B̂− op(1))

D→ N(0, Ω(J)),

where Ω(J) is the sub-matrix of T−1
0 ΓT−1

0 that corresponds to the covariance of J′B̂, op(1) =
(T − T0)w0, and Γ is given in the proof of Theorem 4.

The nonzero bias term op(1) in Theorem 4 and Corollary 1 is typical in functional
estimation, and often such a bias term is zero for the corresponding Euclidean parame-
ter estimation.

Choice of the smoothing parameter. In nonparametric penalized regression for the
model y(t) =< β, x > (t) + ε(t), the most commonly-used method for the choice of the
smoothing parameter is cross-validation (CV), based on the ideas of Allen (1974) and Stone
(1974). This method chooses λ by minimizing

1
n

n

∑
i=1

1
mi

mi

∑
j=1

[
yi(tij)− < β̂n,λ,i, x̂i > (tij)

]2,

where β̂n,λ,i(·) is the estimated regression function without using the observations of the
ith individual. This method is usually computationally intensive even when the sample
size is moderate. An improved version of the method is K-fold cross-validation. This
method first randomly partitions the original sample equally into K subsamples, and then
the cross-validation process is conducted K times. At each replicate, K− 1 subsamples are
used as the training data to construct the model, while the remaining one is used as the
validation datum. The results from K folds are averaged to obtain a single estimation. In
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notation, let n1, . . . , nK be the sample sizes of the K folds, then the K-fold cross-validation
method is to choose the λ which minimizes

1
K

K

∑
J=1

1
nJ

nJ

∑
i=1

1
mi

mi

∑
j=1

[
yi(tij)− < β̂n,λ,J , x̂i > (tij)

]2,

where β̂n,λ,J(·) is the estimated regression function without using the data in the Jth fold.
In this paper, we set K = 5, which is also the default setting in much software.

Choices of K0, K1 , and < ·, · >H. For notational simplicity, we consider T = [0, 1]
without loss of generality. Recall that for a function f on [0, 1] with m − 1 continuous
derivatives and f (m)(·) ∈ L2[0, 1], it has the following Taylor expansion [27]

f (t) =
m−1

∑
j=0

f (j)(0)
j!

tj +
∫ 1

0

f (m)(s)
(m− 1)!

(t− s)m−1
+ ds,

where (x)+ = x if x > 0 and (x)+ = 0 otherwise.
To construct an RKHS H on L2[0, 1], a common choice for the inner product on H0 =

{h : h(2)(·) ≡ 0} is < f , g >H,0, and the orthogonal complement of H0 is H1 = {h :
h(j)(0) = 0, j = 0, 1;

∫ 1
0 h(2)(t)dt < ∞}, with inner product < f , g >H,1, where

< f , g >H,0=
1

∑
j=0

f (j)(0)g(j)(0), < f , g >H,1=
∫ 1

0
f (2)(t)g(2)(t)dt.

The inner product on H is < ·, · >H=< ·, · >H,0 + < ·, · >H,1. Kernels for the
RKHS with more general K0 for H0 and K1 for H1 with these inner products can be found
in [28]. More generalized construction of kernels K0 and K1 can be found in Ramsay and
Silverman [5]. For our case,

K0(s, t) = 1 + st, K1(s, t) =
∫ 1

0
(s− u)+(t− u)+du = (s ∧ t)2(3(s ∨ t)− (s ∧ t)

)
/6.

With the above inner product, K0, and K1, let K = K0 + K1, then ∀h ∈ H, h(t) =<
K(t, ·), h(·) >H, and H0 and H1 are orthogonal to each other with respect to < ·, · >H, but
these are not true if < ·, · >H is replaced by a different inner product < ·, · > on [0, 1].

3. Simulation Studies

In this section, we conduct two simulation studies to investigate the finite sample
performance of the proposed RKHS method. The first simulation study is designed to
compare the RKHS estimator with the conventional smoothing spline and local polynomial
model methods in terms of curve fitting. For more details on the implementations of
smoothing spline and local polynomial model methods, please refer to the book by Fang,
Li, and Sudijianto [24]. The second simulation study is to examine the performance of
Corollary 1 for testing the linearity of the regression functions. It turns out that with
moderate sample sizes, the proposed RKHS estimator performs very favorably with the
competitors, and the type I errors and powers of the testing are satisfactory.

Simulation 1. Assume that the underlying individual curve i at time point t ∈ T = [0, 1]
is generated from

yi(t) = β0(t) + β1(t)xi1(t) + β2(t)xi2(t) + εi(t),

where β0(t) ≡ 10, β1(t) = 1 + t, β2(t) = (1− t) sin(2πt), xi1(t) = sin(100πt), xi2(t) =
cos(100πt), and εi(·) is a stationary Gaussian process with zero mean, unit variance, and
a constant covariance 0.5 between any two distinct time points. For each subject i, the
number of observation time points mi is generated from the discrete uniform distribution on
{5, 6, . . . , 30}, and the observation time points tij, j = 1, . . . , mi are independently generated
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from the exponential distribution E(0, 1). The density function of E(0, 1) is displayed in
the left panel of Figure 1, from which it is easy to see that the density value decreases as
t increases.
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Figure 1. Left panel visualizes the density function of E(0, 1); right panel visualizes the kernel density
estimation of the number of observation time of MD001.

Then, we use cubic interpolation to interpolate the yi(tij), xi1(tij), and xi2(tij) on T to
obtain ŷi(·), x̂i1(·), and x̂i2(·), respectively.

Based on the functions ŷi(·), x̂i1(·), and x̂i2(·) described above, we use the RKHS
introduced in Section 2 to estimate the regression functions β0(t), β1(t), and β2(t), and
compare its performance with the spline smoother and local polynomial models. Typical
comparisons (the random seed is set to be “set.seed(1)” in R) are given in Figures 2–4 with
sample sizes of 50, 100, and 200, respectively. The simulation shows that the proposed RKHS
method estimates the regression functions well and compares very favorably with the other
two methods. Broadly speaking, the RKHS estimator has relatively stable performance and
is close to the “true” curve; it has narrower confidence bands at dense sampling regions,
and they become wider at sparse sampling regions. On the contrary, the spline smoother
and local polynomial model appear to have good fit at dense sampling regions, but they
have large bias when the data become sparse.

In order to make a thorough comparison for this simulation, we use the root inte-
grated mean squared prediction error (RIMSPE) to measure the accuracy of the estimates [24].
The RIMSPE for estimate β̂ of β is given by

RIMSPE(β̂) =

√∫ 1

0
[β(t)− β̂(t)]2dt,

and the simulation is repeated 1000 times. By using the R software, the CPU time of
implementing this simulation is about 84.5 s on a PC with a 1.80 GHz dual-core Intel i5-
8265U CPU and 8 GB memory. The boxplots of the RIMSPE values are presented in Figure 5,
from which it is clear that RKHS performs much better than the other two methods, because
it has much smaller RIMSPE values.
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Figure 2. Performance of curve estimation when the sample size is 50 and the random seed is
“set.seed(1)” in R. First row: curve estimation performance of the spline smoother; Second row: curve
estimation performance of the local polynomial model; Third row: curve estimation performance
of the proposed RKHS method. Solid red line: true curve; Solid blue line: estimated curve; Dotted
lower and upper green lines: 95% confidence bands.
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Figure 3. Performance of curve estimation when the sample size is 100 and the random seed is
“set.seed(1)” in R. First row: curve estimation performance of the spline smoother; Second row: curve
estimation performance of the local polynomial model; Third row: curve estimation performance
of the proposed RKHS method. Solid red line: true curve; Solid blue line: estimated curve; Dotted
lower and upper green lines: 95% confidence bands.
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Figure 4. Performance of curve estimation when the sample size is 200 and the random seed is
“set.seed(1)” in R. First row: curve estimation performance of the spline smoother; Second row: curve
estimation performance of the local polynomial model; Third row: curve estimation performance
of the proposed RKHS method. Solid red line: true curve; Solid blue line: estimated curve; Dotted
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Figure 5. Boxplots of the RIMSPE values. The first row corresponds to sample size 50, the second
row corresponds to sample size 100, and the third row corresponds to sample size 200. In each row,
the left panel is for estimating β0(t), the middle panel is for estimating β1(t), and the right panel is
for estimating β2(t).

Simulation 2. In this simulation study, we examine the performance of Corollary 1 for
testing the hypothesis

H0 : βi(t) is linear in t VS H1 : βi(t) is not linear in t, for i = 1, 2.

According to the setting described in Simulation 1, β1(t) is linear in t, whereas β2(t)
is apparently not linear in t. Therefore, we will check the type I error for testing β1(t)
and the power for testing β2(t). By setting the significance level to 0.05 and repeating the
simulation 1000 times, we use Corollary 1 to derive χ2 testing statistics and list its type I
errors and powers in Table 1 for various sample sizes. The results in Table 1 suggest that
the type I error of the test is close to the nominal level 0.05, and the power of the test is not
small even with a sample size of 50.
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Table 1. Summary of simulation results for linearity testing.

Type I Error PowerSample Size
(for Testing β0(t)) (for Testing β1(t))

50 0.059 0.756
100 0.052 0.865
200 0.051 0.923

The simulation is based on 1000 repetitions.

4. Real Data Analysis

In this section, the proposed method is applied to characterize the relationships in
patient immune response in a clinical trial of combination immunotherapy for advanced
myeloma. The objective of the original trial was to study whether introducing vaccine-
primed T cells early leads to cellular immune responses to the putative tumor antigen
hTERT. In this study, 54 patients were recruited and assigned to two treatment arms
based on their leukocyte response to human leukocyte antigen A2. Various immune cell
parameters (CD3, CD4, CD8), T-cell levels, cytokines (IL7, IL-15), and immunoglobulins
(IgA, IgG, IgM) were measured repeatedly to investigate the treatment effect on immune
recovery and function. The measurements were taken at nine time points: 0, 2, 7, 14,
40, 60, 90, 100, and 180 days [29]. Moreover, as a subtype of white blood cells in the
human immune system, absolute lymphocyte cell (ALC) count was recorded over time
during or after patients’ hospitalization up to day 180. Figure 6 shows the trajectories
of two individuals, namely “MD001” and “MD002”, in the dataset, with the observation
interval scaled to [0, 1]. The trajectories of all 54 individuals can be found in the paper by
Fang et al. [30]. Previous research has shown that the patient’s survival time is associated
with the trajectory of the patient’s ALC counts.

Figure 6. Left panel: trajectory of individual “MD001"; right panel: trajectory of individual “MD002".
The observation interval has been scaled to [0, 1].

In the human immune system, the relationships among various biological features
are too complicated and have been topologically described only. For illustrating the
performance of our proposed methods with a limited sample size, we only investigate how
the levels of a patient’s immunoglobulin IgG and immune cell CD8 dynamically affect
the trajectory of the patient’s ALC counts in this section. For simplicity, the observation
time points are scaled to the interval [0, 1]. Let x1(t), x2(t) and y(t) be the trajectories of the
patient’s IgG, CD8, and ALC counts, respectively. Their relationship can then be described
as follows

y(t) = β0(t) + β1(t)x1(t) + β2(t)x2(t) + ε(t), E[ε(t)] = 0,

where β0(t), β1(t) and β2(t) are the regression coefficient functions, and ε(t) is the random
error function. The purpose of this study is to estimate the regression coefficient functions
and test whether β1(t) and β2(t) are linear functions in t.
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In the used data, the number of observation times generally becomes sparse as t
increases. The right panel of Figure 7 visualizes the kernel density estimation of individual
“MD001” in the data. The distribution of observed time points reveals the trend. The
proposed RKHS method is used to estimate the regression coefficient functions and test the
linearity. By using the R software, the CPU time of implementing the estimation procedure
is only about 1.5 s on a PC with a 1.80 GHz dual-core Intel i5-8265U CPU and 8 GB memory.
Figure 7 visualizes the estimated curves and their 95% confidence bands. It is observed that
β1(t) and β2(t) are apparently nonlinear in t. This observation is also confirmed by the χ2

statistic derived from Corollary 1, which yields p-values less than 0.001 for both β1(t) and
β2(t). It is worth noting that β0(t) is monotone in t, but β1(t) and β2(t) are not monotone in
t. The results show that with the immunotherapy of tumor antigen vaccination, a patient’s
immunoglobulin IgG enhances the ALC counts. When the increasing CD8 immune cells
result in a high ALC count, immunoglobulin IgG inhibits the patient’s ALC counts such
that the level of ALC counts is reconverted into the normal interval (1000, 4500), and this
immunotherapy can potentially improve patient survival time.

Figure 7. The regression coefficient functions estimated by the proposed RKHS method. Solid blue
line: estimated curve; dotted lower and upper green lines: 95% confidence bands. The time t has
been scaled to the interval [0, 1].

5. Concluding Remarks

The existing work on functional data analysis has focused primarily on the case where
the observed data are sampled from a dense rate and has been limited to models in which
either the response or predictors are functions. In this paper, we consider the more practical
situation for functional data analysis where the data are only observed at some (not dense)
time points, and we propose a general regression model in which both the response and
predictors are functions. This function-on-function regression model, as given by Equation
(4), can be viewed as a generalization of multivariate multiple linear regression to allow the
response, predictors, and even the regression coefficients to be all functions of t. In order to
estimate the underlying regression curves and conduct hypothesis testing on these curves,
we use reproducing kernel Hilbert space (RKHS), which only needs to choose the kernel(s)
of the RKHS, and enables a closed-form solution for the regression coefficients in terms
of the kernel. To the best of our knowledge, this is the first representation of functional
regression coefficients with sparsely observed data. Furthermore, the estimator based on
RKHS provides a foundation for hypothesis testing, and the asymptotic distribution of the
estimator is obtained. Simulation studies show that the RKHS estimator has relatively stable
performance. Application and statistical properties of our method are further demonstrated
through an immunotherapy clinical trial of advanced myeloma. By using the proposed
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function-on-function regression model and related theorems established in this paper, this
real application showed that with the immunotherapy of tumor antigen vaccination, patient
immunoglobulin IgG enhances ALC counts, and hence this immunotherapy can potentially
improve patient survival time. Future work may consider experimental design for the
time points to be observed. If the time points can be controlled by the experimenter, their
careful selection would improve the efficiency of the estimator (e.g., reduce the bias or
MES). Further, we hope to study function-on-function generalized linear regressions with
sparse estimation coefficient functions by the penalized method of Zhang and Jia [31].
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Appendix A

Proof of Theorem 1 (1-dimensional case). In this case, d = 1, A = a = (a1, . . . , ak), B =
b = (b1, . . . , bn), Zn(·) = (K1 x̂1(·), . . . , K1 x̂n(·))′, B� Zn = bZn = ∑n

i=1 biK1 x̂i, D = 1, and

J(ag + b� Zn) = J(K1(bZn)) =< (K1bZn), K1(bZn) >H

=< (bK1Zn), (bK1Zn) >H=< (bZn), (bZn) >H .

Below we evaluate ∂ < (bZn), (bZn) >H /∂b. As

(bZn)(bZn) =
n

∑
i=1

b2
i (K1 x̂i)

2 + ∑
i 6=j

bibj(K1 x̂i)(K1 x̂j),

thus
(bZn)(bZn)

∂bi
= 2bi(K1 x̂i)

2 + 2 ∑
i 6=j

bj(K1 x̂i)(K1 x̂j) = 2(K1 x̂i)
n

∑
j=1

bj(K1 x̂j).

From this we get

∂ < (bZn), (bZn) >H
∂b

=
(∂ < (bZn), (bZn) >H

∂b1
, . . . ,

∂ < (bZn), (bZn) >H
∂bn

)
= q, q = (q1, . . . , qn),

where, qi = 2 ∑n
j=1 < (K1 x̂i), bj(K1 x̂j) >H= 2 < bZn, zi >H. Note ∂||y − x(ag +

bZn)||2/∂ai
= −2 < y− x(ag + bZn), xgi >, or

∂||y− x(ag + bZn)||2
∂a

= −2 < y− x(ag + bZn), xg′ > .

Further, ∂
(

x(bZn)
)

/∂bi = xzi, or

∂||y− x(ag + bZn)||2
∂b

= −2 < y− x(ag + bZn), xZ′n >,
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where, by convention, xZ′n = (xz1, . . . , xzn), a n-dimensional row vector.
Rewrite (2) as

(â, b̂) = arg inf
(a,b)

G(a, b),

where G(a, b) = 1
n ∑n

i=1 ||ŷi − x̂i(ag + bZn)||2 + λ < (bZn), (bZn) >H. (â, b̂) must satisfy 01×k =
∂G(a,b)

∂a = −2 1
n ∑n

i=1 < ŷi − x̂i(ag + bZn), x̂ig′ >

01×n = ∂G(a,b)
∂b = −2

(
1
n ∑n

i=1 < ŷi − x̂i(ag + bZn), x̂iZ′n > − λ
2 q
)

or{ 1
n ∑n

i=1 < ŷi x̂i, g >= 1
n ∑n

i=1 < x̂2
i ag, g > + 1

n ∑n
i=1 < x̂2

i bZn, g >
1
n ∑n

i=1 < ŷi x̂i, Zn >= 1
n ∑n

i=1 < x̂2
i ag, Zn > + 1

n ∑n
i=1 < x̂2

i bZn, Zn > +λ < bZn, Zn >H
.

It is easy to check that n−1 ∑n
i=1 < x̂2

i ag, g ≥ n−1 ∑n
i=1 < x̂2

i , gg ′ > a′ := Oa′ , (Ok×k),
n−1 ∑n

i=1 < x̂2
i bZn , g ≥ n−1 ∑n

i=1 < x̂2
i , gZ′n > b′ := Rb′ , (Rk×n), n−1 ∑n

i=1 <
x̂2

i ag, Zn ≥ n−1 ∑n
i=1 < x̂2

i , Zng′ > a′ = R′a′, n−1 ∑n
i=1 < x̂2

i bZn, Zn >= n−1 ∑n
i=1 <

x̂2
i , ZnZ′n > b′ := Sb′, (Sn×n), and < bZn, Zn >H=< ZnZ′n >H b′ := Wb′, (Wn×n).

Denote 1
n ∑n

i=1 < ŷi x̂i, g ≥ u, (uk×1) and 1
n ∑n

i=1 < ŷi x̂i, Zn ≥ v, (vn×1), then the above
system of equations can be rewritten as(

O R
R′ S + λW

)(
a′

b′

)
=

(
u
v

)
, (A1)

or when the following inverse exists,(
â′

b̂
′

)
=

(
O R
R′ S + λW

)−1( u
v

)
.

Proof of Theorem 2 (one-dimensional case). In this case, X̂n = (x̂1, . . . , x̂n)′, ẑn(·) = n−1

∑n
i=1 K1(x̂iyi)(·), a = (a1, . . . , ak)

′, b = b, β̂n,λ(·) = β̂n,λ(·) = â′g(·) + b̂ẑn(·), and

(â, b̂) = arg inf
(a,b)

(
1
n

n

∑
i=1
||ŷi − (a′g + bẑn)x̂i||2 + λJ(a′g + bẑn)

)

= arg inf
(a,b)

(
1
n

n

∑
i=1
||ŷi − (a′g + bẑn)x̂i||2 + λb2||ẑn||2H

)
:= G(a, b).

As in the proof of Theorem 1 (one-dimensional case), (â, b̂) must satisfy

 01×k =
∂G(a,b)

∂a = −2 1
n ∑n

i=1 < ŷi − x̂i(a′g + bẑn), x̂ig′ >

0 = ∂G(a,b)
∂b = −2

(
1
n ∑n

i=1 < ŷi − x̂i(a′g + bẑn), x̂i ẑn > −λb||ẑn||2H
)

,

or { 1
n ∑n

i=1 < ŷi x̂i, g >= 1
n ∑n

i=1 < x̂2
i a′g, g > +b < x̂2

i ẑn, g >
1
n ∑n

i=1 < ŷi x̂i, ẑn >= 1
n ∑n

i=1 < x̂2
i a′g, ẑn > +b

(
1
n ∑n

i=1 < x̂2
i , ẑ2

n > +λ||ẑn||2H
)

It is easy to check that n−1 ∑n
i=1 < x̂2

i a′g, g ≥ n−1 ∑n
i=1 < x̂2

i , gg′ > a := Oa, (Ok×k);
n−1 ∑n

i=1 < x̂2
i bẑn, g ≥ n−1 ∑n

i=1 < x̂2
i ẑn, g > b := Rb, (Rk×1); n−1 ∑n

i=1 < x̂2
i a′g, ẑn ≥

n−1 ∑n
i=1 < x̂2

i ẑn, g′ > a = R′a; n−1 ∑n
i=1 < x̂2

i bẑn, ẑn ≥ n−1 ∑n
i=1 < x̂2

i ẑn, ẑn > b := Sb;
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and < bẑn, ẑn >H=< ẑn, ẑn >H b := Wb. Denote 1
n ∑n

i=1 < ŷi x̂i, g ≥ u, (uk×1), and
1
n ∑n

i=1 < ŷi x̂i, ẑn ≥ v, the above system of equations is rewritten as(
O R
R′ S + λW

)(
a
b

)
=

(
u
v

)
, (A2)

or when the following inverse exists,(
â
b̂

)
=

(
O R
R′ S + λW

)−1( u
v

)
.

Proof of Theorem 1. We first simplify the penalty term J(Ag + B� Zn). By property of
RKHS, K(s, t) =< K(s, ·), K(t, ·) >H, thus ∀h ∈ H, (K1h)(·) :=< K1(·, ), h >H ∈ H1 and
∀h ∈ H1, (K1h) = h. Thus

J(Ag + B� Zn) = J(K1(B� Zn)) =< K1(B� Zn)
′D, K1(B� Zn) >H

=< (B� K1Zn)
′D, B� K1Zn >H=< (B� Zn)

′D, B� Zn >H .

Note that the inner product < ·, · >H of the RKHS is often not the inner product < ·, · >
used in the optimization objective, such as the one corresponding to the L2 norm. Thus, the
above expression of J(Ag + B� Zn) does not hold under the inner product < ·, · >.

Below we need to evaluate ∂ < (B� Zn)′D, B� Zn >H /∂B. For this, write bi =
(bi1, . . . , bin) for the i-th row of B (i = 1, . . . , d), and zi = (z1i, . . . zni)

′ for the i-th column of
Zn. Then

(B� Zn)
′D(B� Zn) =

d

∑
i,r=1

dir(bizi)(brzr) =
d

∑
i

dii(bizi)
2 +

d

∑
i=1

d

∑
r 6=i

dir(bizi)(brzr)

and we get, since dir = dri, and bizi = ∑n
j=1 bijzji,

∂
(
(B� Zn)′D(B� Zn)

)
∂bij

= 2diizji(bizi) +
d

∑
r 6=i

dirzji(brzr) = diizji(bizi) +
d

∑
r=1

dirzji(brzr).

From this we get

∂ < (B� Zn)′D, (B� Zn) >H
∂B

= Q, Q = (qij)d×n,

where qij = dii < zji, (bizi) >H +∑d
r=1 dir < zji, (brzr) >H. Note ∂||y − x′(Ag + B �

Zn)||2/∂aij = −2 < y− x′(Ag + B� Zn), xigj >, or

∂||y− x′(Ag + B� Zn)||2
∂A

= −2 < y− x′(Ag + B� Zn), xg′ > .

Further, x′(B� Zn) = ∑d
i=1 xi(bizi), and ∂

(
x′(B� Zn)

)
/∂bij = xizji, or

∂||y− x′(Ag + B� Zn)||2
∂B

= −2 < y− x′(Ag + B� Zn), xZ′n >,

where, by convention, xZ′n is the d× n matrix with (i, j)-th entry xizji.

Rewrite (2) as
(Â, B̂) = arg inf

(A,B)
G(A, B),
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where G(A, B) = 1
n ∑n

i=1 ||ŷi− x̂′i(Ag + B�Zn)||2 +λ < (B�Zn)′D, (B�Zn) >H. (Â, B̂)
must satisfy 0d×k =

∂G(A,B)
∂A = −2 1

n ∑n
i=1 < ŷi − x̂′i(Ag + B� Zn), x̂ig′ >

0d×n = ∂G(A,B)
∂B = −2

(
1
n ∑n

i=1 < ŷi − x̂′i(Ag + B� Zn), x̂iZ′n > − λ
2 Q
)

. (A3)

To solve the linear system (A3), we need to rewrite it in terms of vector forms a and
b of A and B. For this, let a = (a11, . . . , a1k, . . . , ad,1, . . . , ad,k)

′ be the vector representation
of A; b = (b11, . . . , b1n, . . . , bd,1, . . . , bd,n)

′ be that of B. For x = (x1, . . . , xd)
′, < x′Ag, xg′ >

is a d× k matrix with (i, j)-th entry < x′Ag, xigj ≥ ∑d
r=1 ∑k

s=1 ars < xrgs, xigj >. Similarly,
n−1 ∑n

m=1 < x̂′m Ag, x̂mg′ > is a d× k matrix with (i, j)-th entry n−1 ∑d
r=1 ∑k

s=1 ars ∑n
m=1 <

x̂mrgs, x̂migj >; n−1 ∑n
m=1 < x̂′m(B � Zn), x̂mg′ > is a d × k matrix with (i, j)-th entry

n−1 ∑d
r=1 ∑n

s=1 brs ∑n
m=1 < x̂mrzsr, x̂migj >; and n−1 ∑n

m=1 < ŷm, x̂mg′ > is a d× k matrix
with (i, j)-th entry n−1 ∑n

m=1 < ŷm, x̂migj >.
Likewise, n−1 ∑n

m=1 < x̂′mAg, x̂mZ′n > is a d× n matrix with (i, j)-th entry n−1 ∑d
r=1

∑k
s=1 ars ∑n

m=1 < x̂mrgs, x̂mizji >; n−1 ∑n
m=1 < x̂′m(B� Zn), x̂mZ′n > is a d× k matrix with

(i, j)-th entry n−1 ∑d
l=1 ∑n

r=1 blr ∑n
m=1 < x̂mlzrl , x̂mizji >; and n−1 ∑n

m=1 < ŷm, x̂mZ′n > is a
d× k matrix with (i, j)-th entry n−1 ∑n

m=1 < ŷm, x̂mizji >.
Let the notation < x′Ag, xg′ >∼ Oa means rearrange elements in the d× k matrix

< x′Ag, xg′ > as a dk-vector in dictionary order in terms of its dk-vector a form. Thus,

n−1
n

∑
m=1

< x̂′m Ag, x̂mg′ >∼ Oa, Odk×dk = n−1
n

∑
i=1

< si, s′i >,

where si = (x̂i1g1, . . . , x̂i1gk, . . . , x̂i,dg1, . . . , x̂i,dgk)
′; Similarly,

n−1
n

∑
m=1

< x̂′m(B� Zn), x̂mg′ >∼ Rb, Rdk×dn = n−1
n

∑
i=1

< si, t′i >,

where ti = (x̂i1ẑ11, . . . , x̂i1ẑn1, . . . , x̂id ẑ11, . . . , x̂id ẑn1)
′; and

n−1
n

∑
m=1

< ŷm, x̂mg′ >∼ u, u = (u11, . . . , u1k, . . . , ud1, . . . , udk)
′,

where uij = n−1 ∑n
m=1 < ŷm, x̂migj >.

Likewise,

n−1
n

∑
m=1

< x̂′mAg, x̂mẐ′n >∼ Pa, Pdn×dk = n−1
n

∑
i=1

< ti, s′i ≥ R′;

n−1
n

∑
m=1

< x̂′m(B� Ẑn), x̂mẐ′n >∼ Sb, Sdn×dn = n−1
n

∑
i=1

< ti, t′i >;

and

n−1
n

∑
m=1

< ŷm, x̂mẐ′n >∼ v, v = (v11, . . . , v1n, . . . ., vd1, . . . , vdn)
′,

where vij = n−1 ∑n
m=1 < ŷm, x̂mizji >.

Rewrite qij as

qij =
n

∑
s=1

bisdii < ẑji, ẑsi >H +
d

∑
r=1

n

∑
s=1

brsdir < ẑji, ẑsr >H, (1 ≤ i ≤ d; 1 ≤ j ≤ n).
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Let z = (z11, . . . , zn1, . . . , z1d, . . . , znd)
′, 1 be the n× n matrix of 1’s, D0 = diag{d111, . . . , ddd1},

and

D1 =

 d111 · · · d1d1
. . . . . . . . .

dd11 · · · ddd1

.

For any two matrices A = (aij) and B = (bij) of the same dimension, denote A⊗ B =
(aijbij). Let Wdn×dn = (D0 + D1)⊗ < z, z′ >H. It it not difficult to check that

Q =∼Wb.

Then (A1) is rewritten as(
O R
R′ S + λ

2 W

)(
â
b̂

)
=

(
u
v

)
, (A4)

or when the following inverse exists,(
â
b̂

)
=

(
O R
R′ S + λ

2 W

)−1( u
v

)
.

Proof of Theorem 2. In this case, ẑn = (ẑ1, . . . , ẑd)
′ is a d-vector and, similar to the proof

of Theorem 1, we have J(Ag + Bẑn) =< ẑ′nB′D, Bẑn >H. To evaluate ∂ < ẑ′nB′D, Bẑn >H
/∂B, write B = (b1, . . . , bd), where bj = (b1j, . . . , bdj) is the j-th column of B. Then
Bẑn = ∑d

j=1 zjbj, and

ẑ′nB′DBẑn =
d

∑
j=1

(
ẑ2

j b′jDbj + 2
d

∑
l 6=j

ẑjb
′
jDbl ẑl

)

=
d

∑
j=1

(
ẑ2

j

d

∑
i=1

(
b2

ijdii + 2
d

∑
k 6=i

bijdikbkj +
d

∑
k 6=i

d

∑
l 6=i

bkjdklbl j
)
+ 2

d

∑
l 6=j

ẑj
( d

∑
r,s=1

brjdrsbsl
)
ẑl

)
,

we get, since dij = dji,

∂
(
ẑ′nB′DBẑn

)
∂bij

= 2ẑj

(
diibij ẑj +

d

∑
k 6=i

dikbkj ẑj +
d

∑
l 6=j

d

∑
s=1

disbsl ẑl

)

= 2ẑj

d

∑
l=1

d

∑
s=1

disbsl ẑl = 2ẑjdiBẑn,

where di = (di1, . . . , did) is the i-th row of D. From this we get

∂ < ẑ′B′D, Bẑn >H
∂B

= 2Q, Q = (qij)d×d, qij =< diBẑn, ẑj >H= diB < ẑn, ẑj >H

or
∂ < ẑ′nB′DB, ẑn >H

∂B
= 2DB < ẑn, ẑ′n >H .

Now (3) is rewritten as

(Â, B̂) = arg inf
(A,B)

G(A, B),
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where G(A, B) = 1
n ∑n

i=1 ||yi − (Ag + Bẑn)′ x̂i||2 + λ < ẑ′nB′DB, ẑn >H, and (Â, B̂) must
satisfy 0d×k =

∂G(A,B)
∂A = −2 1

n ∑n
i=1 < ŷi − (Ag + Bẑn)′ x̂i, x̂ig′ >

0d×d = ∂G(A,B)
∂B = −2

(
1
n ∑n

i=1 < ŷi − (Ag + Bẑn)′ x̂i, x̂i ẑ′n > −λDB < ẑn, ẑ′n >H

)
,

or { 1
n ∑n

i=1 < x′i(Ag + Bẑn), x̂ig′ >= 1
n ∑n

i=1 < ŷi, x̂ig′ >
1
n ∑n

i=1 < x̂′i(Ag + Bẑn), x̂i ẑ′n > +λDB < ẑn, ẑ′n >H=
1
n ∑n

i=1 < ŷi, x̂i ẑ′n >
. (A5)

Let (Â, B̂) be the solution of (A5).
To solve the linear system (A5), we need to rewrite it in terms of vector forms a and b

of A and B. For this, let a = (a11, . . . , a1k, . . . , ad1, . . . , adk)
′ be the vector representation of

A; let b = (b11, . . . , b1d, . . . , bd1, . . . , bdd)
′ be that of B.

Let the notation < x′Ag, xg′ >∼ Oa mean rearranging the elements in the matrix
< x′Ag, xg′ > in terms of its vetor a form. As in the proof of Theorem 1,

n−1
n

∑
m=1

< x′m Ag, x̂mg′ >∼ Oa, Odk×dk = n−1
n

∑
i=1

< si, s′i >,

where si = (x̂i1g1, . . . , x̂i1gk, . . . , x̂idg1, . . . , x̂idgk)
′.

Similarly,

n−1
n

∑
m=1

< x̂′m Ag, x̂mẑ′n >∼ Pa, Pd2×dk = n−1
n

∑
i=1

< ti, s′i >,

where ti = (x̂i1ẑ1, . . . , x̂i1ẑd, . . . , x̂id ẑ1, . . . , x̂id ẑd)
′;

n−1
n

∑
m=1

< x̂′mBẑn, x̂mg′ >∼ Rb, Rdk×d2 = n−1
n

∑
i=1

< si, t′i ≥ P′;

and

n−1
n

∑
m=1

< x′mBẑn, x̂mẑ′n >∼ Sb, Sd2×d2 = n−1
n

∑
i=1

< ti, t′i > .

Denote U = n−1 ∑n
i=1 < ŷi, x̂ig′ ≥ (uij)d×k and its vector form u = (u11, . . . , u1k, . . . , ud1,

. . . , udk)
′; let V = n−1 ∑n

i=1 < ŷi, x̂i ẑ′n ≥ (vij)d×d and its vector form
v = (v11, . . . , v1d, . . . , vd1, . . . , vdd)

′; since D is semipositive definite, let λ1 ≥ · · · ≥ λd ≥ 0
be its eigenvalues, Λ = diag(λ1, . . . , λd) and q1, . . . , qd be its normalized eigenvectors, Q =

(q1, . . . , qd), then D = QΛQ′ = ∑d
j=1 λjqjq

′
j. Rearranging elements of DB < ẑn, ẑ′n >H in

vector form similarly as before

DB < ẑn, ẑ′n >H=
d

∑
j=1

λj < q′jBẑn, qjẑ
′
n >H∼Wb, Wd2×d2 =

d

∑
j=1

< cj, c′j >H,

where cj =
√

λj(qj1ẑ1, . . . , qj1ẑd, . . . , qjd ẑ1, . . . , qjd ẑd)
′.

Then (A5) is rewritten as(
O R
R′ S + λW

)(
â
b̂

)
=

(
u
v

)
, (A6)
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or when the following inverse exists,(
â
b̂

)
=

(
O R
R′ S + λW

)−1( u
v

)
.

Proof of Theorem 3. Note that

ẑn(·) = n−1
n

∑
i=1

[K1(x̂i ŷi)](·) = n−1
n

∑
i=1

[K1(xiyi)](·)

+n−1
n

∑
i=1

[K1(x̂i ŷi − xiyi)](·) := xn(·) + rn(·).

Note that (C3) implies E||xy|| < ∞ and E||K1(xy)|| < ∞, so by Theorem 7.9 (or Corol-
lary 7.10) in Ledoux and Talagrand [32], ||zn − z0|| → 0 (a.s.), where z0(·) = E[K1(xy)](·).
By (C4), ||rn|| → 0 (a.s.). Thus, ||ẑn − z0|| → 0 (a.s.).

Let C = (A, B), Ĉ = (Â, B̂), m(C) = ||y− (Ag + Bz0)
′x||2, Pm(C) = E[m(C)], Pn is

the empirical distribution based on n iid samples from m(C). Let

Mn(C) =
1
n

n

∑
i=1
||ŷi − (Ag + Bẑn)

′ x̂i||2 + λJ(Ag + Bẑn).

By (C5) and (C4) and the fact ||ẑn − z0|| → 0 (a.s.),

Mn(C) =
1
n

n

∑
i=1
||yi − (Ag + Bz0)

′xi||2 + λJ(Ag + Bz0) + o(1)

=
1
n

n

∑
i=1
||yi − (Ag + Bz0)

′xi||2 + o(1) := Pnm(C) + o(1) = Pm(C) + o(1), (a.s.). (A7)

In the above we used Theorem 7.9 (or Corollary 7.10) in Ledoux and Talagrand [32] again
to get Pnm(C) = Pm(C) + o(1) (a.s.).

Note that E||xy|| < ∞ implies E(||xy||
∣∣x) < ∞, this together with (C3) implies that

infC Pm(C) = E
(

infC E[m(C)
∣∣x]) has an unique (and finite) minimizer C0 = (A0, B0). We

first prove ||Ĉ− C0|| → 0 (a.s.).
By definition of Ĉ, Mn(Ĉ) ≤ Mn(C0) = Pm(C0) + o(1) (a.s.), and by (A7), Pm(Ĉ) ≤

Pnm(C0) + o(1) (a.s.). Thus,

Pm(Ĉ)− Pm(C0) ≤ Pnm(C0)− Pm(C0) + o(1)

≤ sup
C∈C
|Pnm(C)− Pm(C)|+ o(1)→ 0 (a.s.), (A8)

where C is some bounded set of C’s, and we used the fact that {Pnm(C) : C ∈ C} is a
Glivenko–Cantelli class on any bounded C. Thus supC∈C |Pnm(C)− Pm(C)| → 0 (a.s.).

On the other hand, since C0 is the unique minimizer of Pm(C), for every δ > 0, there
is η > 0, such that

inf
C:||C−C0||≥δ

Pm(C) > Pm(C0) + η.

Thus, by (A8) we must have that for all large n, ||Ĉ− C0|| < δ (a.s.) for every δ > 0. This
gives ||Ĉ− C0|| → 0 (a.s.).

Note that Eβ0

(
y
∣∣x) = β′0x, which is the minimizer of the conditional expectation

Eβ0

(
||y− β′0x||2

∣∣x), and β0 is also the pointwise least squares “estimate" of itself under
the objective functional Eβ0

{||y − β′0x||2} = E{Eβ0

(
||y − β′0x||2

∣∣x)}, so by (C1), β0 =

[E(xx′)]−1E(xy) ∈ Span(E(xy)) = Span(E[K0(xy)], E[K1(xy)]) ⊂ Span(g, z0), (C2) im-
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plies E[x(·)x(·)′] is invertible, and so θ0 can be written in the form ((Ag)′, (Bz0)
′)′.

Since C0 = (A0, B0) also minimizes Pm(C) (over a larger space than that θ0 belongs
to), we must have ((A0g)′, (B0z0)

′)′ = β0, and Ĉ = (Â, B̂) → (A0, B0) (a.s.) gives

β̂n,λ =
(
(Âg)′, (B̂ẑn)′

)′
→
(
(A0g)′, (B0z0)

′
)′

= β0 (a.s.).

Proof of Theorem 4. Recall the blockwise inversion formula(
A B
C D

)−1

=

(
A−1 + A−1B(D− CA−1B)−1CA−1 −A−1B(D− CA−1B)−1

−(D− CA−1B)−1CA−1 (D− CA−1B)−1

)
and for λ→ 0, (A + λW)−1 = A−1 − λA−1WA−1 + O(λ2) = A−1 −O(λ).

By (C2) and (C3), for all large n, O−1, P−1, R−1, S−1 and W−1 all exist (a.s.). Using
the above blockwise inversion formulae, by Theorem 2, we get(

â
b̂

)
=

(
O R
P S

)−1( u
v

)
−O(λ)

(
u
v

)
.

In the proof of Theorem 3, we showed ||Ĉ − C0|| → 0 (a.s.), i.e., (â′, b̂
′
)′ → (a0, b0)

(a.s.). Further, similar to the proof of Theorem 3, we can get

O a.s.→ O0 = E < s1, s′1 >, P = R′ a.s.→ P0 = E < t1, s′1 >, S a.s.→ S0 = E < t1, t′1 >.

U a.s.→ U0 = E < y1, x1g′ >, V a.s.→ V0 = E < y1, x1z′0 >.

Let u0 and v0 be the vector representations of U0 and V0, then we have(
â
b̂

)
a.s.→
(

O0 R0
P0 S0

)−1( u0
v0

)
:=
(

a0
b0

)
.

Denote ĉ = (â′, b̂)′ and c0 = (a′0, b′0)′, we first find the asymptotic distribution of
ĉ. Denote T = matrix(O, R; P, S), T0 = matrix(O0, R0; P0, S0), w = (u′, v′)′ and w0 =
(u′0, v′0)

′, then c0 = T−1
0 w0, and ĉ = T−1w. By (C6),

√
n
(
ĉ− c0

)
=
√

n
(
T−1

0 + op(1)
)
(w−w0) + o(1).

It can be shown that the sequences {ŷi, x̂ig′} and {ŷi, x̂i ẑ′n} are Donsker classes, and
so √

n(w−w0)
D→ N(0, Γ), Γ = (γij)d(d+k)×d(d+k), γij = Cov(w̃i, w̃j),

where w̃(·) = (ũ′, ṽ′)′, ũ is the vector form of Ũ =< y1, x1g′ > and ṽ is the vector form of
Ṽ =< y1, x1z′0 >. From the above we get, as T0 is symmetric,

√
n(ĉ− c0 − op(1))

D→ N(0, T−1
0 ΓT−1

0 ). (A9)

Now, rewrite β̂n,λ(·) = Fn(·)ĉ, with Fn = (g′, Jn), and F0 = (g′, J0), where Jn =

(ẑn, . . . , ẑn), and J0 = (Z0, . . . , Z0). Then Fn(t) = F0(t) + op(r−1/2
n (t)), and by (A9) we get

Wn =
√

n(β̂n,λ(·)− β0(·)− op(1)) =
√

nF0(·)(ĉ− c0 − op(1))
D⇒W, in [l∞(T)]d,

where W is a mean zero Gaussian process on T with covariance function σ(s, t) = E(W(s),
W(t)) = F0(s)T−1

0 ΓT−1
0 F ′0(t).
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