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Abstract: With the rapid development and evolution of the Internet-of-Things (IoT) and big-data
analysis technologies, faster and more accurate production data analysis and process capability
evaluation models will bring industries closer to the goal of smart manufacturing. Small sample sizes
are also common, due to destructive testing, the high costs of detection, and insufficient technological
capacity, and these undermine the reliability of the statistical method. Many studies have pointed
out that a confidence-interval-based fuzzy decision model can incorporate accumulated data and
expert experiences to increase testing accuracy for small samples. Therefore, this study came up with
a confidence-interval-based fuzzy decision model based on a process yield index. The index not only
reflects process capability but also has a one-to-one mathematical relation with the process yield so
that it is convenient to apply in practice. The proposed model not only diminishes the probability
of misjudgment resulting from sampling error but also improves the accuracy of testing under the
situation of small sample sizes, thereby contributing to the development of smart manufacturing.

Keywords: process yield index; process capability; confidence interval; fuzzy evaluation and decision
model; mathematical programming method

MSC: 62C05; 62C86

1. Introduction

Central Taiwan is the home to a machine-tool industry cluster that is facing keen global
competition. Nowadays, numerous manufacturers emphasize their core competencies by
making components that they excel at making to improve their competitive advantages.
They then outsource non-core manufacturing to suppliers [1–4]. The machine-tool supply
chain is comprised of critical suppliers, machine-tool manufacturers (which sell their ma-
chine tools via online platforms to countries all over the world for finishing), and their final
customers. Taiwan’s electronics industry also represents a comprehensive ecological chain
of the electronics industry within the worldwide supply chain of information and commu-
nication technology. It boasts, therefore, an established foothold in the global electronics
industry. According to the Taiwanese IC industry, in 2021Q1, the global semiconductor
market sales value was US $123.1 billion, and Taiwan’s overall IC industry output value
reached US $29.565 billion (accounting for 24% of global output). In addition, many re-
searchers noted that Taiwan’s electronics industry plays a major part in the production of
consumer electronics [5–8].

Process capability indexes are commonly applied in the evaluation and analysis of
process quality in the above-mentioned industries. These evaluations are usually conducted
under statistical control mechanisms. In other words, products are sampled only when the
production process is stable [9,10]. The advantages of process capability indexes are large
sample sizes and comprehensive data. These characteristics offer high levels of accuracy.
However, these indexes are time-consuming to apply in practice, so they cannot meet
corporate demands for rapid responses.

Mathematics 2022, 10, 2514. https://doi.org/10.3390/math10142514 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10142514
https://doi.org/10.3390/math10142514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10142514
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10142514?type=check_update&version=2


Mathematics 2022, 10, 2514 2 of 11

With the rapid development and evolution of the Internet-of-Things (IoT) and big-
data analysis technologies, faster and more accurate production data analysis and process
capability evaluation models will bring industries closer to the goal of smart manufacturing.
At the same time, it is important to develop analysis methods that are appropriate for small
sample sizes. Destructive testing is sometimes necessary to meet the rapid response needs of
enterprises or to acquire production data, thereby increasing costs. Technology capabilities
may also be insufficient. The resulting small sample sizes will result in excessive interval
lengths, reducing the effectiveness of interval estimation.

The process yields index and the process yield have a one-to-one mathematical rela-
tionship [11,12]. Huang et al. [13] applied this index to evaluate the production capability
of a backlight module with multiple process characteristics. Wisnowski, Simpson, and
Montgomery [14] proposed an asymptotic distribution for an estimator of this index. This
asymptotic distribution can assist statistical inferences of the process yield [15]. As the
process yield index concurrently reflects process capability and yield [16,17], this study
uses this index for the evaluation of process quality.

As noted above, this model offers rapid-response low-cost detection technology for the
evaluation of small samples. In addition, many studies have pointed out that a confidence-
interval-based fuzzy decision model can incorporate accumulated data and expert expe-
riences to increase testing accuracy for small samples [18–20]. Therefore, this study puts
forward a confidence-interval-based fuzzy decision model based on a process yield index.
The index not only reflects process capability but also has a one-to-one mathematical rela-
tion with process yield so that it is convenient to apply in practice. The proposed model not
only declines the risk of misjudgment incurred by sampling errors but also improves the
accuracy of testing in the case of small sample sizes, thereby contributing to the ongoing
development of smart manufacturing.

The remainder of this paper is arranged below. Section 2 derives the confidence region
of process mean and standard. Section 3 uses the mathematical programming method
to find the confidence interval of the process yield index. Section 4 elaborates on the
proposed fuzzy decision model according to the confidence interval of this index. Section 5
provides an example to present the efficacy and applicability of the proposed method.
Lastly, conclusions are made in the final section.

2. Confidence Region of Process Mean and Standard

According to Boyles [21], the following process yield index features a one-to-one
mathematical relation with the process yield:

SPK =
1
3

Φ−1
{

1
2

Φ
(

USL− µ

σ

)
+

1
2

Φ
(

µ− LSL
σ

)}
(1)

where Φ(·) is the cumulative distribution function of standard normal distribution; USL
and LSL are the upper and lower specification limits, respectively. The one-to-one mathe-
matical relation between index SPK and the process yield is expressed as follows:

Yield% = 2Φ(3SPK)− 1 (2)

For example, process yield equals 99.73% (2Φ(3) − 1) when SPK = 1.
If we let (X1, X2, · · · , Xn) be a random sample of X, then the maximum likelihood

estimator (MLE) of process mean µ and process standard deviation S are, respectively,
as follows:

process sample mean X =
1
n

n

∑
i=1

Xi (3)

process sample standard deviation S =

√
1
n

n

∑
i=1

(
Xi − X

)2 (4)
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Furthermore, let Z =
√

n
(
X− µ

)
/σ and K = nS2/σ2. On the assumption of normality, Z and

K are distributed as N(0, 1) and χ2
n−1, respectively. Thus, P{−Zα′/2 ≤ Z ≤ Zα′/2} =

√
1− α

and P
{

χ2
α′/2;n−1 ≤ K ≤ χ2

1−(α′/2);n−1

}
=
√

1− α, where Zα′/2 is the upper α′/2 quintile of

N(0, 1), χ2
α′/2;n−1 is the upper α′/2 quintile of χ2

n−1, α′ = 1−
√

1− α, and α represents the
confidence level. X and S2 are distinct from each other, and so are Z and K. Furthermore,
we can obtain the equation from their relations below:

1− α = p
{
−Zα′/2 ≤ Z ≤ Zα′/2, χ2

α′/2;n−1 ≤ K ≤ χ2
1−(α′/2);n−1

}
= p

{
−Zα′/2 ≤

√
n(X−µ)

σ ≤ Zα′/2, χ2
α′/2;n−1 ≤

nS2

σ2 ≤ χ2
1−(α′/2);n−1

} (5)

Equivalently,

1− α = P

X− Zα′/2σ√
n
≤ µ ≤ X +

Zα′/2σ√
n

,

√√√√ nS2

χ2
1−(α′/2);n−1

≤ σ ≤
√

nS2

χ2
α′/2;n−1

 (6)

If we let (x1, x2, · · · , xn) represent the observed value of (X1, X2, · · · , Xn), then x and
s are the observed values of X and S, respectively, as displayed below:

x =
1
n

n

∑
i=1

xi (7)

s =

√
1
n

n

∑
i=1

(xi − x)2 (8)

Then, the confidence region of (µ, σ) can be defined in the following equation:

CR(µ, σ) = P{x− e ≤ µ ≤ x + e, σL ≤ σ ≤ σU} (9)

where σL=
√

ns2/χ2
0.5+

√
1−α/2;n−1

, and σU =
√

ns2/χ2
0.5−

√
1−α/2;n−1

. Obviously, process

yield index SPK is a function of (µ, σ). We use process yield index SPK(µ, σ) as the ob-
jective function and use confidence region CR(µ, σ) as a feasible solution area. For any
σ≤σU , SPK(µ, σ)≥SPK(µ, σU). Thus, the mathematical programming model for the lower
confidence limit is illustrated as follows:

LSPK = min SPK(µ, σU)
subject to

x− eU ≤ µ ≤ x + eU

(10)

where LSPK is the lower confidence limit of index SPK and

eU =
Z0.5−

√
1−α/2s√

χ2
0.5−

√
1−α/2;n−1

(11)

Similarly, for any σ≥σL, SPK(µ, σ)≤SPK(µ, σL), and the mathematical programming
model for the upper confidence limit is as follows:

USPK = max SPK(µ, σL)
subject to

x− eL ≤ µ ≤ x + eL

(12)
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where USPK is the upper confidence limit of index SPK and

eL =
Z0.5−

√
1−α/2s√

χ2
0.5+

√
1−α/2;n−1

(13)

3. Results Confidence Interval of SPK

Mathematical programming can be applied to figure out the confidence interval of
index SPK. First, we find the lower and upper confidence limits by means of the following
three cases:

Case 1 x− eU ≤ T ≤ x + eU

For this case, we can conclude that µ = T. Based on Equations (10) and (12), the lower
and upper confidence limits are then displayed as follows:

LSPK =
1
3

Φ−1

Φ

d
s

√
χ2

0.5−
√

1−α/2;n−1

Z0.5−
√

1−α/2

 (14)

USPK =
1
3

Φ−1

Φ

d
s

√
χ2

0.5+
√

1−α/2;n−1

Z0.5−
√

1−α/2

 (15)

Case 2 T < x− eU

In this case, for any µ ≤ x + eU , SPK(µ, σU)≥SPK(x + eU , σU). Based on Equation (10),
the lower confidence limit is as follows:

LSPK =
1
3

Φ−1
{

1
2

Φ
(

USL− (x + eU)

σU

)
+

1
2

Φ
(
(x + eU)− LSL

σU

)}
(16)

Similarly, for any x − eL ≤ µ ≤ x + eL and µ ≥ x − eL, SPK(µ, σL)≤SPK(x− eL, σL).
Based on Equation (12), the upper confidence limit is then as follows:

USPK =
1
3

Φ−1
{

1
2

Φ
(

USL− (x− eL)

σL

)
+

1
2

Φ
(
(x− eL)− LSL

σL

)}
(17)

Case 3 x + eU < T

For any µ ≥ x− eU , SPK(µ, σU)≥SPK(x− eU , σU). Based on Equation (10), the lower
confidence limit is then as follows:

LSPK =
1
3

Φ−1
{

1
2

Φ
(

USL− (x− eU)

σU

)
+

1
2

Φ
(
(x− eU)− LSL

σU

)}
(18)

Similarly, for any µ ≤ x + eL, SPK(µ, σU)≥SPK(x− eU , σU). Based on Equation (12),
the upper confidence limit is as follows:

USPK =
1
3

Φ−1
{

1
2

Φ
(

USL− (x + eL)

σL

)
+

1
2

Φ
(
(x + eL)− LSL

σL

)}
(19)
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Therefore, interval [LSPK, USPK] is the 100(1− α)% confidence interval of index SPK
with α′ = 1−

√
1− α, where

LSPK =



1
3 Φ−1

{
Φ

(
d
s

√
χ2

0.5−
√

1−α/2;n−1
Z0.5−

√
1−α/2

)}
, x− eU ≤ T ≤ x + eU

1
3 Φ−1

{
1
2 Φ
(

USL−(x+eU)
σU

)
+ 1

2 Φ
(
(x+eU)−LSL

σU

)}
, T < x− eU

1
3 Φ−1

{
1
2 Φ
(

USL−(x−eL)
σL

)
+ 1

2 Φ
(
(x−eL)−LSL

σL

)}
, x + eU < T

(20)

and

USPK =



1
3 Φ−1

{
Φ

(
d
s

√
χ2

0.5+
√

1−α/2;n−1
Z0.5−

√
1−α/2

)}
, x− eU ≤ T ≤ x + eU

1
3 Φ−1

{
1
2 Φ
(

USL−(x−eL)
σL

)
+ 1

2 Φ
(
(x−eL)−LSL

σL

)}
, T < x− eU

1
3 Φ−1

{
1
2 Φ
(

USL−(x+eL)
σL

)
+ 1

2 Φ
(
(x+eL)−LSL

σL

)}
, x + eU < T

(21)

4. Fuzzy Decision Model

Fuzzy decision models based on confidence intervals have been effectively applied to
evaluations of process capability [22–24]. If the customer requests a process yield index of
c(SPK=c), then H0:SPK=c and H1:SPK 6=c can be applied to hypothesis testing. As described
by Chen [25], the α−cuts of triangular fuzzy number SPK is expressed as follows:

SPK[α] =

{
[SPK1(α), SPK2(α)], f or 0.01 ≤ α ≤ 1
[SPK1(0.01), SPK2(0.01)], f or 0 ≤ α ≤ 0.01

(22)

SPK1(α) and SPK2(α) in Equation (22) differ according to the following cases:

Case 1 x− eU ≤ T ≤ x + eU

If x− eU ≤ T ≤ x + eU , then

SPK1(α) =
1
3

Φ−1

Φ

d
s

√
χ2

0.5−
√

1−α/2;n−1

Z0.5−
√

1−α/2

 (23)

SPK2(α) =
1
3

Φ−1

Φ

d
s

√
χ2

0.5+
√

1−α/2;n−1

Z0.5−
√

1−α/2

 (24)

Case 2 T < x− eU

If T < x− eU , then

SPK1(α) =
1
3 Φ−1

{
1
2 Φ

(
USL−x

s

√
χ2

0.5−
√

1−α/2;n−1
n − Z0.5−

√
1−α/2√
n

)
+

1
2 Φ

(
x−LSL

s

√
χ2

0.5−
√

1−α/2;n−1
n +

Z0.5−
√

1−α/2√
n

)} (25)
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SPK2(α) =
1
3 Φ−1

{
1
2 Φ

(
USL−x

s

√
χ2

0.5+
√

1−α/2;n−1
n − Z0.5−

√
1−α/2√
n

)
+

1
2 Φ

(
x−LSL

s

√
χ2

0.5+
√

1−α/2;n−1
n +

Z0.5−
√

1−α/2√
n

)} (26)

Case 3 x + eU < T

If x + eU < T, then

SPK1(α) =
1
3 Φ−1

{
1
2 Φ

(
USL−x

s

√
χ2

0.5−
√

1−α/2;n−1
n +

Z0.5−
√

1−α/2√
n

)
+

1
2 Φ

(
x−LSL

s

√
χ2

0.5−
√

1−α/2;n−1
n − Z0.5−

√
1−α/2√
n

)} (27)

SPK2(α) =
1
3 Φ−1

{
1
2 Φ

(
USL−x

s

√
χ2

0.5+
√

1−α/2;n−1
n − Z0.5−

√
1−α/2√
n

)
+

1
2 Φ

(
x−LSL

s

√
χ2

0.5+
√

1−α/2;n−1
n +

Z0.5−
√

1−α/2√
n

)} (28)

Therefore, triangular fuzzy number SPK = ∆(SL, SM, SR), where SL = SPK1(0.01),
SM = SPK1(1) = SPK2(1), and SR = SPK2(0.01). Therefore, the membership function of
fuzzy number SPK is

η(x) =


0 i f x < SL
α1 i f SL ≤ x < SM
1 i f x = SM
α2 i f SM < x ≤ SR
0 i f x > SR

(29)

where αh is determined by SPKh(αh) = x, h = 1, 2. The proposed model is built on the
statistical testing rules as follows:

(1) If c < LSPK, t, then decline H0 and infer that SPK < c.
(2) If USPK < c, then decline H0 and infer that SPK > c.
(3) If LSPK ≤ c ≤ USPK, then do not decline H0 and infer that SPK = c.

The proposed model further considers two cases: c ≤ SM and c > SM.

Case 1 c ≤ SM

Based on Chen [25] and Chen et al. [26], let set AT represent the area in the graph of
η(x) and set A−R represent the area in the graph of η(x) to the left of vertical line x = c.
Figure 1 illustrates membership functions of η(x) with vertical line x = c and c ≤ SM.

Thus,
AT = { (x, α)|SPK1(α) ≤ x ≤ SPK2(α), 0 ≤ α ≤ 1} (30)

and
A−R = { (x, α)|SPK1(α) ≤ x ≤ c, 0 ≤ α ≤ a1}

where SPK1(a1) = c. We let

dT = SR − SL and d−R = c− SL (31)

Then,
d−R
dT

=
c− SL

SR − SL
(32)
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Case 2 c > SM

Similar to case 1, we let set A+
R represent the area in the graph of η(x) to the right of

vertical line x = c. Figure 2 exhibits membership functions of η(x) with vertical line x = c
and c > SM.
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Thus,
A+

R = { (x, α)|c ≤ x ≤ SPK2(α), 0 ≤ α ≤ a2} (33)

where SPK1(a2) = c. We let d+R = SR − c. Then,

d+R
dT

=
SR − c

SR − SL
(34)
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According to Yu et al. [23], let 0 < φ ≤ 0.5. The value of φ can be determined based on
accumulated production data or expert experience. Decision rules are as follows:

(1) If c ≤ SM and d−R /dT < φ, then decline H0 and infer that SPK > c. That is, the process
requires improvement.

(2) If c ≤ SM and φ ≤ d−R /dT ≤ 0.5, then do not decline H0 and infer that SPK = c. That
is, maintain the process at current quality levels.

(3) If c > SM and φ ≤ d+R /dT ≤ 0.5, then do not decline H0 and infer that SPK = c. That
is, maintain the process at current quality levels.

(4) If c > SM and d+R /dT < φ, then decline H0 and infer that SPK < c. That is, consider
reducing quality levels to reduce costs.

5. Practical Application

The output of Taiwanese machine tools comes out top in the globe, while the export
volume ranks fifth. Central Taiwan is home to an industry cluster for machine tool and
machinery industries. In addition to the production of various professional machine tools,
this cluster brings together industries focused on the processing and maintenance of various
important components [26–28]. To demonstrate the proposed approach, we consider an
axis, in which a double-linked chain is placed in a U-shaped groove. The distance tolerance
of the groove pitch for this component is 4± 0.05 (as indicated by D in Figure 3). When the
gap is too large, the sprocket is likely to break. When the gap is too small, the chain cannot
be replaced. If the customer requires that process yield index SPK1.1, then null hypothesis
H0:SPK = 1.1, alternative hypothesis H1:SPK 6= 1.1.
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The upper specification limit is USL = 4.05, and the lower specification limit is
LSL = 3.95. The observed value of a randomly-selected sample with size n = 36 is
(x1, x2, · · · , x36). Therefore,

x = 1
36

36
∑

i=1
xi = 4.012

s =

√
1

36

36
∑

i=1
(xi − 4.012)2 = 0.016
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The observed value of the estimator for process yield index SPK can be shown as follows:

ŜPK =
1
3

Φ−1
{

1
2

Φ
(

4.05− 4.012
0.016

)
+

1
2

Φ
(

4.012− 3.95
0.016

)}
= 0.873

Based on Equation (18), the value of eU with α = 0.01 is

eU =
Z0.0025 × s√

χ2
0.0025;35

=
2.807× 0.016√
16.032 = 4.003

= 0.011

Therefore,

[x− eU , x + eU ] = [4.012− 0.011, 4.012 + 0.011] = [4.001, 4.023]

Obviously, if target value T = 4 < x − eU = 4.005, then SL = LSPK = SPK1(0.01),
SM = SPK1(1), and SR = USPK = SPK2(0.01) as follows:

SL = 1
3 Φ−1

{
1
2 Φ
(

4.05−4.012
0.016

√
χ2

0.0025;35
36 − Z0.0025√

36

)
+

1
2 Φ
(

4.012−3.95
0.016

√
χ2

0.0025;35
36 + Z0.0025√

36

)}

= 1
3 Φ−1

{
1
2 Φ
(

2.375
√

16.032
36 − 2.807

6

)
+ 1

2 Φ
(

3.875
√

16.032
36 + 2.807

6

)}

= 1
3 Φ−1

{
1
2 Φ(1.117) + 1

2 Φ(3.054)
}

= 0.500

SM = 1
3 Φ−1

{
1
2 Φ
(

4.05−4.012
0.016

√
χ2

0.5;35
36

)
+ 1

2 Φ
(

4.012−3.95
0.016

√
χ2

0.5;35
36

)}

= 1
3 Φ−1

{
1
2 Φ
(

2.375
√

34.336
36

)
+ 1

2 Φ
(

3.875
√

34.336
36

)}

= 1
3 Φ−1

{
1
2 Φ(2.319) + 1

2 Φ(3.784)
}

= 0.856

SR = 1
3 Φ−1

{
1
2 Φ
(

4.05−4.012
0.016

√
χ2

0.9975;35
36 + Z0.0025√

36

)

+ 1
2 Φ
(

4.012−3.95
0.016

√
χ2

0.9975;35
36 − Z0.0025√

36

)}

= 1
3 Φ−1

{
1
2 Φ
(

2.375
√

63.076
36 + 2.807

6

)
+ 1

2 Φ
(

3.875
√

63.076
36 − 2.807

6

)}

= 1
3 Φ−1

{
1
2 Φ(3.612) + 1

2 Φ(4.661)
}

= 1.262
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According to (SL, SM, SR) = (0.500, 0.856, 1.262) in the Figure 4. Since 1.1 > SM

d+R
dT

=
SR − c

SR − SL
=

1.262− 1.1
1.262− 0.500

= 0.134
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Engineers analyze relevant production data and experience to set φ = 0.15. The
proposed model then suggests that since 1.1 > SM and d+R /dT = 0.134 < φ, the user should
reject H0 and conclude that SPK < 1.33. This means the firm can consider reducing quality
levels to reduce costs. In fact, when ŜPK = 0.856, the value of USPK with α = 0.01 is 1.262.
When the result of the statistical inference is SPK = 1.1, it is obvious that the proposed
model offers a more reasonable solution than the conventional statistical inference.

6. Conclusions

This study uses a process yield index SPK to develop a fuzzy decision model based
on confidence intervals to evaluate process quality. Process yield index SPK is superior
to other process capability indexes in its ability to reflect process capability and yield
simultaneously.

We derived the 100(1− α)% confidence region of (µ, σ) based on the independence
of sample average X and sample variance S2 under normal manufacturing conditions.
Taking the confidence region as the feasible region and process yield index SPK as the
objective function, we derived the 100(1− α)% confidence interval of index SPK to develop
a fuzzy decision model on the basis of the confidence interval. By further incorporating
expert input and accumulated data, this approach lowers the risk of misjudgment incurred
by sampling errors associated with small sample sizes. Moreover, we demonstrated the
efficacy of the proposed approach by taking an example of a machined product.
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