General Relativistic Space-Time with η1-Einstein Metrics
Abstract
:1. Background and Motivations
- (i)
- If , then the Ricci soliton is said to be shrinking.
- (ii)
- for , then it is said to be expanding.
- (iii)
- If , then it is implied to be steady.
2. GRS with TFVF
3. Emergence of -Einstein Solitons on GRS
4. -Einstein Soliton with Dust Fluid GRS
5. -Einstein Soliton on Dark Fluid GRS
6. -Einstein Soliton Admitting Radiation Era in GRS
7. Conclusions Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–261. [Google Scholar]
- Topping, P. Lecture on the Ricci Flow; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Pigola, S.; Rigoli, M.; Rimoldi, M.; Setti, A. Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2011, 5, 757–799. [Google Scholar] [CrossRef]
- Barros, A.; Ribeiro, E., Jr. Some characterizations for compact almost ricci solitons. Proc. Am. Math. Soc. 2012, 140, 1033–1040. [Google Scholar] [CrossRef]
- Barros, A.; Batista, R.; Ribeiro, E., Jr. Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh Math. 2014, 174, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.T.; Kimura, M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 2009, 61, 205–212. [Google Scholar] [CrossRef]
- Catino, G.; Mazzieri, L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 6694. [Google Scholar] [CrossRef] [Green Version]
- Blaga, A.M. On Gradient η-Einstein Solitons. Kragujev. J. Math. 2018, 42, 229237. [Google Scholar] [CrossRef]
- Ali, M.; Ahsan, Z. Ricci solitons and symmetries of space time manifold of general relativity. J. Adv. Res. Class. Mod. Geom. 2014, 1, 75–84. [Google Scholar]
- Blaga, A.M. Solitons and geometrical structures in a perfect fluid space-time. Rocky Mt. J. Math. 2020, 50, 41–53. [Google Scholar] [CrossRef]
- Venkatesha; Kumara, H.A. Ricci solitons and geometrical structure in a perfect fluid spacetime with TFVF. Afr. Math. 2019, 30, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, Z.; Siddiqui, S.A. Concircular curvature tensor and fluid space-times. Int. J. Theor. Phys. 2009, 48, 3202–3212. [Google Scholar] [CrossRef]
- Blaga, A.M.; Chen, B.Y. Harmonic forms and generalized solitons. arXiv 2021, arXiv:2107.04223. [Google Scholar]
- Chaki, M.; Ray, C. Spacetimes with covariant constant energy momentum tensor. Int. J. Theor. Phys. 1996, 35, 1027–1032. [Google Scholar] [CrossRef]
- Blaga, A.M.; Özgür, C. Almost η-Ricci and Almost η-Yamabe Solitons with Torse-Forming Potential Vector Field. Quaest. Math. 2022, 45, 143–163. [Google Scholar] [CrossRef]
- Cao, H.D.; Sun, X.; Zhang, Y. On the structure of gradient Yamabe solitons. arXiv 2011, arXiv:1108.6316v2. [Google Scholar] [CrossRef]
- Dey, S.; Roy, S. ∗-η-Ricci Soliton within the framework of Sasakian manifold. J. Dyn. Syst. Geom. Theor. 2020, 18, 163–181. [Google Scholar] [CrossRef]
- Dey, S.; Sarkar, S.; Bhattacharyya, A. ∗-η Ricci soliton and contact geometry. Ric. Mat. 2021. [Google Scholar] [CrossRef]
- Ganguly, D.; Dey, S.; Ali, A.; Bhattacharyya, A. Conformal Ricci soliton and Quasi-Yamabe soliton on generalized Sasakian space form. J. Geom. Phys. 2021, 169, 104339. [Google Scholar] [CrossRef]
- Ganguly, D.; Dey, S.; Bhattacharyya, A. On trans-Sasakian 3-manifolds as η1-Einstein solitons. Carpathian Math. Publ. 2021, 13, 460–474. [Google Scholar] [CrossRef]
- Roy, S.; Dey, S.; Bhattacharyya, A.; Hui, S.K. ∗-Conformal η-Ricci Soliton on Sasakian manifold. Asian-Eur. J. Math. 2022, 15, 2250035. [Google Scholar] [CrossRef]
- Roy, S.; Dey, S.; Bhattacharyya, A. A Kenmotsu metric as a conformal η-Einstein soliton. Carpathian Math. Publ. 2021, 13, 110–118. [Google Scholar] [CrossRef]
- Sarkar, S.; Dey, S.; Chen, X. Certain results of conformal and ∗-conformal Ricci soliton on para-cosymplectic and para-Kenmotsu manifolds. Filomat 2021, 35, 5001–5015. [Google Scholar] [CrossRef]
- Singh, A.; Kishor, S. Some types of η-Ricci Solitons on Lorentzian para-Sasakian manifolds. Facta Univ. 2018, 33, 217–230. [Google Scholar] [CrossRef]
- Cho, J.T.; Sharma, R. Contact Geometry and Ricci Solitons. Int. J. Geom. Methods Mod. Phys. 2010, 7, 951–960. [Google Scholar] [CrossRef]
- Mnaev, M. Almost Ricci-like solitons with torse-forming vertical potential of constant length on almost contact B-metric manifolds. J. Geom. Phys. 2021, 168, 104307. [Google Scholar] [CrossRef]
- asheed, N.M.; Al-Amr, M.O.; Az-Zo’bi, E.A.; Tashtoush, M.A.; Akinyemi, L. Stable Optical Solitons for the Higher-Order Non-Kerr NLSE via the Modified Simple Equation Method. Mathematics 2021, 9, 1986. [Google Scholar] [CrossRef]
- Singkibud, P.; Sabir, Z.; Al Nuwairan, M.; Sadat, R.; Ali, M.R. Cubic autocatalysis-based activation energy and thermophoretic diffusion effects of steady micro-polar nano-fluid. Microfluid. Nanofluid. 2022, 26, 50. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.L.; Roy, S.; Dey, S.; Bhattacharyya, A. Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton. Symmetry 2022, 14, 594. [Google Scholar] [CrossRef]
- Li, Y.L.; Alkhaldi, A.H.; Ali, A.; Laurian-Ioan, P. On the Topology of Warped Product Pointwise Semi-Slant Submanifolds with Positive Curvature. Mathematics 2021, 9, 3156. [Google Scholar] [CrossRef]
- Yang, Z.C.; Li, Y.L.; Erdoǧdub, M.; Zhu, Y.S. Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane. J. Geom. Phys. 2022, 104513, 1–23. [Google Scholar] [CrossRef]
- Li, Y.L.; Dey, S.; Pahan, S.; Ali, A. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on Paracontact geometry. Open Math. 2022, 20, 1–20. [Google Scholar] [CrossRef]
- Li, Y.L.; Ganguly, D.; Dey, S.; Bhattacharyya, A. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7, 5408–5430. [Google Scholar] [CrossRef]
- Li, Y.L.; Abolarinwa, A.; Azami, S.; Ali, A. Yamabe constant evolution and monotonicity along the conformal Ricci flow. AIMS Math. 2022, 7, 12077–12090. [Google Scholar] [CrossRef]
- Li, Y.L.; Khatri, M.; Singh, J.P.; Chaubey, S.K. Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms. Axioms 2022, 11, 324. [Google Scholar] [CrossRef]
- O’Neill, B. Semi-Riemannian Geometry with Apllications to Relativity; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Zeldovich, Y.B. The equation of state of ultrahigh densities and its relativistics limitations. Sov. Phys. J. Exp. Theor. Phys. 1962, 14, 1143–1147. [Google Scholar]
- Chavanis, P.H. Cosmology with a stiff matter era. Phys. Rev. D 2015, 92, 103004. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H. Partially relativistic self-graviting Bose-Einstein condensates with stiff equation of state. Eur. Phys. J. Plus 2015, 130, 181. [Google Scholar] [CrossRef]
- Yano, K. On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 1944, 20, 340–345. [Google Scholar] [CrossRef]
- Mirzoyan, V.A. Ricci semisymmetric submanifolds (Russian). Itogi Nauki Tekhniki. Ser. Probl. Geom. 1991, 23, 29–66. [Google Scholar]
- Pokhariyal, G.P.; Mishra, R.S. The curvature tensor and their relativistic significance. Yokohoma Math. J. 1970, 18, 105–108. [Google Scholar]
- Prasad, B. A pseudo projective curvature tensor on a Riemannian manifold. Bull. Calcutta Math. Soc. 2002, 94, 163–166. [Google Scholar]
- Ishii, Y. On conharmonic transformations. Tensor N. S. 1957, 7, 73–80. [Google Scholar]
- Mantica, C.A.; Suh, Y.J. Pseudo Q-symmetric Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 2013, 10, 1350013. [Google Scholar] [CrossRef]
- Srivastava, S.K. General Relativity and Cosmology; Prentice-Hall of India Private Limited: New Delhi, India, 2008. [Google Scholar]
- Al-Dayel, I.; Deshmukh, S.; Vîlcu, G.-E. Trans-Sasakian static spaces. Results Phys. 2021, 31, 105009. [Google Scholar] [CrossRef]
- Ahsan, Z. Tensors: Mathematics of Differential Geometry and Relativity; PHI Learning Pvt. Ltd.: Delhi, India, 2017. [Google Scholar]
- Roy, S.; Dey, S.; Bhattacharyya, A. Conformal Einstein soliton within the framework of para-Kähler manifold. Differ. Geom. Dyn. Syst. 2021, 23, 235–243. [Google Scholar]
- Stephani, H. General Relativity—An Introduction to the Theory of Gravitational Field; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Dey, S.; Roy, S. Characterization of general relativistic spacetime equipped with η-Ricci-Bourguignon soliton. J. Geom. Phys. 2022, 178, 104578. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Mofarreh, F.; Dey, S.; Roy, S.; Ali, A. General Relativistic Space-Time with η1-Einstein Metrics. Mathematics 2022, 10, 2530. https://doi.org/10.3390/math10142530
Li Y, Mofarreh F, Dey S, Roy S, Ali A. General Relativistic Space-Time with η1-Einstein Metrics. Mathematics. 2022; 10(14):2530. https://doi.org/10.3390/math10142530
Chicago/Turabian StyleLi, Yanlin, Fatemah Mofarreh, Santu Dey, Soumendu Roy, and Akram Ali. 2022. "General Relativistic Space-Time with η1-Einstein Metrics" Mathematics 10, no. 14: 2530. https://doi.org/10.3390/math10142530
APA StyleLi, Y., Mofarreh, F., Dey, S., Roy, S., & Ali, A. (2022). General Relativistic Space-Time with η1-Einstein Metrics. Mathematics, 10(14), 2530. https://doi.org/10.3390/math10142530