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Abstract: In this paper, we define and study Hyers—Ulam stability of order 1 for Euler’s equation and
Hyers—Ulam stability of order m — 1 for the Euler—Poisson equation in the calculus of variations in
two special cases, when these equations have the form y” (x) = f(x) and y(") (x) = f(x), respectively.
We prove some estimations for |J[y(x)] — J[yo(x)]|, where y is an approximate solution and y is an
exact solution of the corresponding Euler and Euler-Poisson equations, respectively. We also give
two examples.
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1. Introduction

Hyers—Ulam stability has been the subject of many papers. Ulam stability was pro-
posed by Ulam in [1] in 1940. The first result in this direction was given in 1941 by Hyers [2].
The first authors which started the study of Hyers—Ulam stability of differential equations
was Obloza [3] and Alsina and Ger [4]. After that, many types of differential equations
were studied. First-order linear differential equations and linear differential equations of
higher order were investigated, for example, in [5-13]. Integral equations in [14-24] and
partial differential equations in [25-30] have also been studied. The books [31,32] can be
consulted for more details. The Hyers—Ulam stability of fractional differential equations
and of fractional integral equations has recently begun to be studied (see [33-42]).

In what follows, we define and study Hyers—Ulam stability of order 1 for Euler’s
equation and Hyers-Ulam stability of order m — 1 for the Euler—Poisson equation in
the calculus of variations. Section 2 is dedicated to the study of Euler’s equation, and
Section 3 is dedicated to the Euler—Poisson equation. We also establish an estimation for
[Jly(x)] — J[yo(x)]|, where y is an approximate solution and v is an exact solution for the
considered equations.

This paper is a continuation of the paper [43]. In [43], Hyers—Ulam stability of the
Euler equation in two special cases was studied when F = F(x,y’) and when F = F(y,y’).
An estimation for |J[y(x)] — J[yo(x)]| is also given in [43] for the case F = F(x,y’). This
was the first time, in [43], that the problem of Ulam stability of extremals for functionals
represented in integral form was studied. In [43], a direct method and the Laplace transform
method were used. Here, we will use Taylor’s formula.

2. Hyers-Ulam Stability of Euler’s Equation
We consider a class of functions A C C?(I,R),I C R an open interval. Let [a,b] C

I,a<b a>0.Lety € A, y =y(x) be an element in A. Let the function F : M — R,
M =1 xR?, F € C?(M). We consider the functional
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b
T = [ Flouy)dx J: AR, y€ A, Jly(x)] € R M

and the conditions
y(a) = ya, v’ (a) =y, @)

where y,, v, € R are given.

We consider the following problem in the calculus of variations (see [44]): find the
extremum of this functional. The necessary condition of extremum (see [44]) is given by
Euler’s equation

d
Fy(xuy) = o [Fy(xuy)] =0,y e Clab) 3)
Equation (3) can be represented (by derivation) in the form:

?F , 9*F , ©0*F OF )
7 -y +ay/ay'y +ay/ax_@*0’yec [a,b)]. (4)

The solutions of Equation (3) or (4) are called extremals.
We will study Hyers—Ulam stability of Equation (3) (or (4)).
Lete >0and a,b € (0,00).

We consider the following inequalities:

d
F(xyy) - o [F;, (x,y,y’)} ' <¢ yeClabl, ®)

or

a‘y7,2_y//_~_

0°F ’°F , 9°F F )
. _ < X
‘ 3y y+ 3y/ax ay‘ <e yeCla,b (6)

Definition 1. Equation (3) (or (4)) is called Hyers—Ulam stable if there is a real number ¢ > 0
such that for any solution y(x) of the inequality (5) (or (6)), there is a solution yo(x) of the
Equation (3) (or (4)) such that

y(x) = yo(x)] < c-&, Vx € [a,b].

In the following definition, we give a new notion of stability, named stability of order 1.
Definition 2. Equation (3) (or (4)) is called Hyers—Ulam stable of order 1 if there are real numbers
c1 > 0,cp > 0so that for any solution y(x) of the inequality (5) (or (6)), there is a solution yy(x)
of Equation (3) (or (4)) such that

y(x) —yo(x)| < e1-¢ Vx € [a,b],

and
[y (x) =y (x)| < c2-¢, Vx € [a,b].

y is called an approximate solution and y is called an exact solution for Equation (3) (or (4)).
In the following, we will study the case where Euler’s equation is
y'(x) = f(x), f € Cla,b], x € [a,D]. )

Remark 1. Ify = y(x) is a solution of (7), x € [a, b], then (see [45]),

y(x) = y(a) + S @) + [ s, ®
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Let e > 0. We consider the inequality
' (x) — f(x)] <& y € C*a,b]. ©)

Remark 2. A function y = y(x) is a solution of (9) if and only if there exists a function g € Cla, b]
such that

1) [g(x)| <e, Vx € [ab],
2) y'(x) = f(x) = g(x),

8(s))ds. (10)

y(x) = y(a) + = i Y

Theorem 1. (i)  For each solution y = y(x) of (9), there exists a unique solution yo = yo(x) of
(7) such that

{ vo(a) =y(a) (11)

yo(a) =y (a).

(ii)  The Equation (7) is Hyers—Ulam stable of order 1. If y is a solution of (9) and yy is a solution
of (7) satisfying conditions (11), then

) o)) < 25 v e b 1)

and
v/ (x) = yo(x)| < e(b—a). (13)

(iii) If there exists 11,1, : [a,b] — [0, c0) continuous, such that

|F(x,y1(x), 1 (x)) — F(x,y2(x),y5(x))]|
< h(x) -y (x) — y2(x) [ + L(x) |y (x) —ya(x)],

[a,b], y1,y2 € A,

then
(b—a)?

b b
()] = Jlvo(x)]| < e | n@ax e —a) [n@ax g

where y is a solution of (9) and yq is a solution of (7), both satisfying the conditions of (2).
Proof. (i) This results from Cauchy-Picard’s theorem of existence and uniqueness (see [46]).
(ii) Let y = y(x) be a solution of (9). Let yy = yo(x) be the unique solution of (7) which

verifies the corresponding Cauchy conditions of (11). We have

[y(x >—yo< >| =
v+ [

y(a) +
ly(x) —yo(x I‘/ 1,g

— )2
()~ o(x)] < L= vr e o8]

+8(E)ds —y(@) = T @) - [ I p s

/X X —
a

S
1 8(s)|ds

hence

SO

We also have .
@) =) < [ g(s)ds <e(b—a).
Thus, Equation (7) is Hyers—Ulam stable of order 1.
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(iii) If y is a solution of (9) and yy is a solution of (7), both satisfying conditions (2),

then
Ty ()] = Jlyo()]| < /ah[ll(x) [y () = yo ()| + L(x) ]y (x) — yo(x)|]dx
(ugm € (b —211)2 /ab L (x)dx +¢(b—a) /ab Ir(x)dx. (15)
O

Example 1. We consider ] : A — R, A C C%(I), [1,2] C I,

2, 5
Jly(x)] = / (y - 2xy> dx, (16)
1
and the conditions ,
y(1) =0,y'(1) = —3. (17)
The Euler equation becomes
vy +x=0. (18)

Let & > 0. We consider the inequality

ly" +x| <e (19)
We remark that
(=24 % (20)
S

is a solution of Equation (18), satisfying (17).
If y is a solution of (19) and yq is a solution of (18), both satisfying (17), then applying
Theorem 1, we get
x —1)2
() o) < X210 <

, Vx € [1,2], (1)

N ™

and
[y (x) —yo(x)| <e(x—1) <e Vxe[1,2], (22)

hence, Equation (18) is Hyers—Ulam stable of order 1.
Moreover,

@] =Tl < [

1

y’z(x) —2xy(x) — yf)z(x) +2xy0(x)‘ dx

< [0 Iy ) + ()| +221y(x) o ()]
2

g/l [s(x—l)(e(x—l)#—x”—é)+ex(x—1)2}dx—€(2€4~|_13).

3. Hyers—-Ulam Stability of the Euler-Poisson Equation

Now, we consider functionals dependent on higher derivatives.

Letn € N,n >2, A C C*(I,R),I C Rbe an open interval. Let [a,b] C I, a < b. Let
y € A, y = y(x) be an element in A. Let the function F : M — R, M = [ x R**1 | We
suppose that F is n + 2 times differentiable with respect to all arguments.

Let

b
I = [ F(x v,y ),y (), 3)
and the conditions

y(@) = ya,y' (@) = v .., y® D(a) = y&" Y, (24)
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where y,, ., . . .,yflz”*l) € R are given.

The extremals of the functional (23), given conditions (24), are the integral curves of
the Euler—Poisson equation (see [44]):

/ d !/ d2 / n d?’l /
Let ¢ > 0. We consider the inequality
d !/ dz / n d”l !
Fy dx [F ] @[Fyu] — ...+ (—1) dxh [Fy(n)} S E. (26)

We give a new notion of stability, named stability of order k,k > 1,k € N.

Definition 3. Equation (25) is called Hyers—Ulam stable of order k if there are real numbers
C1 >0,C >0, ,Cyyq > 0such that for any solution y(x) of the inequality (26) there is a
solution yo(x) of the Equation (25) such that

y(x) = yo(x)| < C1-¢ Vx € [a,b],

and
[y (x) —yo(x)| < Ca-¢ Vx € [a,b],

‘y(k)(x) — y(()k)(x)’ < Cry1-¢ Vx € [a,b].

y is called an approximate solution and vy is called an exact solution for Equation (25).
In the following, we will study the case where the Euler-Poisson equation is
™) (x) = f(x), m =2n, f € Cla,b], x € [a,b]. (27)
Remark 4. If y = y(x) is a solution of (27), then (see [45])

J/(x)ZJ/(a)+x1—!ay’(a)+---+(’z_”>1) +/ X2 o)ds. (28)

Let € > 0. We also consider the inequality

‘y("’)(x) —f(x)‘ <egVx € [a,b], y € C"[a,b]. (29)

Remark 5. A function y = y(x) is a solution of (29) if and only if there exists a function
g € Cla, b] such that

(1) |g(x)| <e Vx € [ab],
2) y"(x)— f(x) = g(x), Vx € [a,b].
Remark 6. If y = y(x) is a solution of (29), using Remark 5 and Remark 4, we have

ml

_\ym—1
y(x) = y(@) + Tty (@) -+ Gy @)+ [ G (Fs) + 8(6)ds. (30)

Theorem 2. (i)  For each solution y = y(x) of (29), there exists a unique solution yo = yo(x)
of (27) such that
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<
—
x
~— —
I
=<
AN
~—

(31)

y" a) =y (a).

(ii)  The Equation (27) is Hyers—Ulam stable of order m — 1, and if y is a solution of (29) and yq
is a solution of (27) satisfying conditions (31), then

(b—a)"

y(x) = yo(x)| < e— ==, Vx & [a,b], (32)

V) - sh] <O e o, @)
—a m—2

h///(x) — y(’)’(x)| < s(b(m)z)!,Vx € [a,b], (34)

[y D) " ()] < elb —a), Va € [a ). (35)

(iii) If there exists 11,1, - - - I : [a,b] — [0, 00) continuous, such that

F(xn (), i), " () = F(x 200, 5(), - 987 () |
<L (0)|y1(x) = ya(x)| + L (x)|vh (x) — vh(x)| + -+ zn(x)\yg'”(x) — i (x)

7

Vx € [a,b], Yy1,y2 € A, then

Ty ()] = Tlvo(x)]|
(b—a)” /bll(x)dx+e- (b—a

m! (m—1)! .

where y is a solution of (29) and yy is a solution of (27), both satisfying the conditions of (24).

) /b L(x)dx+ - +e- u ;'u)” /b @), 36)

<e-

Proof. (i) This results from Cauchy-Picard’s theorem of existence and uniqueness (see [46]).
(i) Lety = y(x) be a solution of (29). Let yp = yo(x) the unique solution of (27) satisfying
the conditions of (31). Using Remark 6, we have

—a x _ ym—1
|y<a>+xu v+t TS0+ gt

7

x _ ym-1
o) = @ - [T

hence

(X . s)m—l

o1 8 (s)|ds,

x _ ym-1
19(x) ~ 30()] = | [ s

SO

s/ax
(b—a)"

[y(x) — yo(x)| < e, x € [a,B]. @7)
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We also have

/ / _ x (X—S)m_z x (x_s)m_z <b_a)mil
ly (x) —yh(x)| = |/ Wg(S)ds g/ﬂ m—2)1 g(s)|ds < e TR

" 1" _ x (X—S)m_3 * (x_s)m—3 (b_a)m—Z
ly (x)yo(x)‘—’/a Wg(s)ds S/a (= 3)! g(s)|ds < m—2)1

‘y(m_l) (x) — ‘/ s)ds

thus the Equation (27) is Hyers—Ulam stable of order m — 1.
(iii) If y is a solution of (29), and vy is a solution of (27), both satisfying the conditions of
(24), then

()] = Ty (x)]]
b
< [ Th ) =vo) | + L)Y )=y (x)| + - 1) [y ()= ()| Jax

e 00 e OO e OO ),

m! (m—1)!

/|g )|ds < e(b —a),Vx € [a,b],

O

Example 2. We consider ] : A — R, A C C*(I,R), [0,1] C I,

1 2
)] = [ (3602 =y )ax, (38)
y(0) =0, ¥'(0) = 1,y"(0) = =6, y"'(0) = 9. (39)
The Euler—Poisson equation becomes
y!V(x) —180x% = 0. (40)
Let € > 0. We consider the inequality
y!V(x) —180x2| < e. (41)

We apply Theorem 2; therefore, for each solution y = y(x) of (41) satisfying (39), there exists
a unique solution yo = yo(x) of (40) satisfying (39) such that

y(x) = yo(x)| < 84,/ vx € [0,1], (42)

v/ (x) —yo(x)] < Vxe 0,1],
v (x) =y (x)] < 2,,Vx e [0,1],

v (x) =g’ (x)] < 1|,Vx € [0,1];

hence, Equation (40) is Hyers—Ulam stable of order 3.

Let 1 3
Yyo(x) = §x6 + X8

X% — 3X2 + X, (43)
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be the solution of Equation (40) satisfying the conditions of (39). We remark that —6 < y"(x) <

18,Vx € [0,1].
If y is a solution of (41) and yy is a solution of (40), both satisfying the conditions of (39),
then
1
()] = Tlvo()]| < [ [360x%y " — 360520 + v | x @4
1
< [ (360x%ly = yol + /" = v |1y" + i) x (45)
1 e ef¢ e(e+92)
< 2.2 4 52 B G )
_/O (36022 =+ 2 (2 +36) | dx s (46)

4. Conclusions

In this paper, we have defined and studied Hyers—Ulam stability of order 1 for Euler’s
equation y”(x) = f(x) and Hyers—Ulam stability of order m — 1 for the Euler-Poisson
equation (™) (x) = f(x), in the calculus of variations. An example is considered for each
case. Some estimations for |J[y(x)] — J[yo(x)]|, where y is a solution of (9) and y is a
solution of (7), both satisfying the conditions of (2) and where y is a solution of (29) and y
is a solution of (27), both satisfying the conditions of (24), have been established. This paper
is a continuation of the paper [43]. In [43], the Hyers—Ulam stability of Euler’s equation in
two special cases was studied when F = F(x,y’) and when F = F(y,y’). The general case
will be the subject of future works.
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