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Abstract: In this paper, we define and study Hyers–Ulam stability of order 1 for Euler’s equation and
Hyers–Ulam stability of order m− 1 for the Euler–Poisson equation in the calculus of variations in
two special cases, when these equations have the form y′′(x) = f (x) and y(m)(x) = f (x), respectively.
We prove some estimations for |J[y(x)]− J[y0(x)]|, where y is an approximate solution and y0 is an
exact solution of the corresponding Euler and Euler-Poisson equations, respectively. We also give
two examples.
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1. Introduction

Hyers–Ulam stability has been the subject of many papers. Ulam stability was pro-
posed by Ulam in [1] in 1940. The first result in this direction was given in 1941 by Hyers [2].
The first authors which started the study of Hyers–Ulam stability of differential equations
was Obloza [3] and Alsina and Ger [4]. After that, many types of differential equations
were studied. First-order linear differential equations and linear differential equations of
higher order were investigated, for example, in [5–13]. Integral equations in [14–24] and
partial differential equations in [25–30] have also been studied. The books [31,32] can be
consulted for more details. The Hyers–Ulam stability of fractional differential equations
and of fractional integral equations has recently begun to be studied (see [33–42]).

In what follows, we define and study Hyers–Ulam stability of order 1 for Euler’s
equation and Hyers–Ulam stability of order m − 1 for the Euler–Poisson equation in
the calculus of variations. Section 2 is dedicated to the study of Euler’s equation, and
Section 3 is dedicated to the Euler–Poisson equation. We also establish an estimation for
|J[y(x)]− J[y0(x)]|, where y is an approximate solution and y0 is an exact solution for the
considered equations.

This paper is a continuation of the paper [43]. In [43], Hyers–Ulam stability of the
Euler equation in two special cases was studied when F = F(x, y′) and when F = F(y, y′).
An estimation for |J[y(x)]− J[y0(x)]| is also given in [43] for the case F = F(x, y′). This
was the first time, in [43], that the problem of Ulam stability of extremals for functionals
represented in integral form was studied. In [43], a direct method and the Laplace transform
method were used. Here, we will use Taylor’s formula.

2. Hyers–Ulam Stability of Euler’s Equation

We consider a class of functions A ⊆ C2(I,R), I ⊆ R an open interval. Let [a, b] ⊂
I, a < b, a ≥ 0. Let y ∈ A, y = y(x) be an element in A. Let the function F : M −→ R,
M = I ×R2, F ∈ C2(M). We consider the functional
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J[y(x)] =
∫ b

a
F
(
x, y, y′

)
dx, J : A→ R, y ∈ A, J[y(x)] ∈ R, (1)

and the conditions
y(a) = ya, y′(a) = y′a, (2)

where ya, y′a ∈ R are given.
We consider the following problem in the calculus of variations (see [44]): find the

extremum of this functional. The necessary condition of extremum (see [44]) is given by
Euler’s equation

F′y
(
x, y, y′

)
− d

dx

[
F′y′
(
x, y, y′

)]
= 0, y ∈ C2[a, b]. (3)

Equation (3) can be represented (by derivation) in the form:

∂2F
∂y′2
· y′′ + ∂2F

∂y′∂y
· y′ + ∂2F

∂y′∂x
− ∂F

∂y
= 0, y ∈ C2[a, b]. (4)

The solutions of Equation (3) or (4) are called extremals.
We will study Hyers–Ulam stability of Equation (3) (or (4)).
Let ε > 0 and a, b ∈ (0, ∞).
We consider the following inequalities:∣∣∣∣F′y(x, y, y′

)
− d

dx

[
F′y′
(
x, y, y′

)]∣∣∣∣ ≤ ε, y ∈ C2[a, b], (5)

or ∣∣∣∣ ∂2F
∂y′2
· y′′ + ∂2F

∂y′∂y
· y′ + ∂2F

∂y′∂x
− ∂F

∂y

∣∣∣∣ ≤ ε, y ∈ C2[a, b]. (6)

Definition 1. Equation (3) (or (4)) is called Hyers–Ulam stable if there is a real number c > 0
such that for any solution y(x) of the inequality (5) (or (6)), there is a solution y0(x) of the
Equation (3) (or (4)) such that

|y(x)− y0(x)| ≤ c · ε, ∀x ∈ [a, b].

In the following definition, we give a new notion of stability, named stability of order 1.

Definition 2. Equation (3) (or (4)) is called Hyers–Ulam stable of order 1 if there are real numbers
c1 > 0, c2 > 0 so that for any solution y(x) of the inequality (5) (or (6)), there is a solution y0(x)
of Equation (3) (or (4)) such that

|y(x)− y0(x)| ≤ c1 · ε, ∀x ∈ [a, b],

and ∣∣y′(x)− y′0(x)
∣∣ ≤ c2 · ε, ∀x ∈ [a, b].

y is called an approximate solution and y0 is called an exact solution for Equation (3) (or (4)).

In the following, we will study the case where Euler’s equation is

y′′(x) = f (x), f ∈ C[a, b], x ∈ [a, b]. (7)

Remark 1. If y = y(x) is a solution of (7), x ∈ [a, b], then (see [45]),

y(x) = y(a) +
x− a

1!
y′(a) +

∫ x

a

x− s
1!

f (s)ds. (8)
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Let ε > 0. We consider the inequality∣∣y′′(x)− f (x)
∣∣ ≤ ε, y ∈ C2[a, b]. (9)

Remark 2. A function y = y(x) is a solution of (9) if and only if there exists a function g ∈ C[a, b]
such that

(1) |g(x)| ≤ ε, ∀x ∈ [a, b],
(2) y′′(x)− f (x) = g(x), ∀x ∈ [a, b].

Remark 3. If y = y(x) is a solution of (9), using Remark 2 and Remark 1, we have

y(x) = y(a) +
x− a

1!
y′(a) +

∫ x

a

x− s
1!

( f (s) + g(s))ds. (10)

Theorem 1. (i) For each solution y = y(x) of (9), there exists a unique solution y0 = y0(x) of
(7) such that {

y0(a) = y(a)
y′0(a) = y′(a).

(11)

(ii) The Equation (7) is Hyers–Ulam stable of order 1. If y is a solution of (9) and y0 is a solution
of (7) satisfying conditions (11), then

|y(x)− y0(x)| ≤ ε
(b− a)2

2
, ∀x ∈ [a, b] (12)

and ∣∣y′(x)− y′0(x)
∣∣ ≤ ε(b− a). (13)

(iii) If there exists l1, l2 : [a, b] −→ [0, ∞) continuous, such that∣∣F(x, y1(x), y′1(x)
)
− F

(
x, y2(x), y′2(x)

)∣∣
≤ l1(x) · |y1(x)− y2(x)|+ l2(x)

∣∣y′1(x)− y′2(x)
∣∣, ∀x ∈ [a, b], y1, y2 ∈ A,

then

|J[y(x)]− J[y0(x)]| ≤ ε · (b− a)2

2

∫ b

a
l1(x)dx + ε(b− a)

∫ b

a
l2(x)dx, (14)

where y is a solution of (9) and y0 is a solution of (7), both satisfying the conditions of (2).

Proof. (i) This results from Cauchy–Picard’s theorem of existence and uniqueness (see [46]).
(ii) Let y = y(x) be a solution of (9). Let y0 = y0(x) be the unique solution of (7) which

verifies the corresponding Cauchy conditions of (11). We have

|y(x)− y0(x)| =∣∣∣∣y(a) +
x− a

1!
y′(a) +

∫ x

a

x− s
1!

( f (s) + g(s))ds− y(a)− x− a
1!

y′(a)−
∫ x

a

x− s
1!

f (s)ds
∣∣∣∣,

hence

|y(x)− y0(x)| =
∣∣∣∣∫ x

a

x− s
1!

g(s)ds
∣∣∣∣ ≤ ∫ x

a

∣∣∣∣ x− s
1!

g(s)
∣∣∣∣ds,

so

|y(x)− y0(x)| ≤ ε
(b− a)2

2
, ∀x ∈ [a, b].

We also have ∣∣y′(x)− y′0(x)
∣∣ ≤ ∫ x

a
g(s)ds ≤ ε(b− a).

Thus, Equation (7) is Hyers–Ulam stable of order 1.
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(iii) If y is a solution of (9) and y0 is a solution of (7), both satisfying conditions (2),
then

|J[y(x)]− J[y0(x)]| ≤
∫ b

a

[
l1(x) · |y(x)− y0(x)|+ l2(x)

∣∣y′(x)− y′0(x)
∣∣]dx

(12),(13)
≤ ε · (b− a)2

2

∫ b

a
l1(x)dx + ε(b− a)

∫ b

a
l2(x)dx. (15)

Example 1. We consider J : A −→ R, A ⊆ C2(I), [1, 2] ⊂ I,

J[y(x)] =
∫ 2

1

(
y′

2 − 2xy
)

dx, (16)

and the conditions
y(1) = 0, y′(1) = −1

3
. (17)

The Euler equation becomes
y′′ + x = 0. (18)

Let ε > 0. We consider the inequality∣∣y′′ + x
∣∣ ≤ ε. (19)

We remark that

y0(x) = − x3

6
+

x
6

(20)

is a solution of Equation (18), satisfying (17).
If y is a solution of (19) and y0 is a solution of (18), both satisfying (17), then applying

Theorem 1, we get

|y(x)− y0(x)| ≤ ε
(x− 1)2

2
≤ ε

2
, ∀x ∈ [1, 2], (21)

and ∣∣y′(x)− y′0(x)
∣∣ ≤ ε(x− 1) ≤ ε, ∀x ∈ [1, 2], (22)

hence, Equation (18) is Hyers–Ulam stable of order 1.
Moreover,

|J[y(x)]− J[y0(x)]| ≤
∫ 2

1

∣∣∣y′2(x)− 2xy(x)− y′
2

0 (x) + 2xy0(x)
∣∣∣ dx

≤
∫ 2

1

∣∣y′(x)− y′0(x)
∣∣∣∣y′(x) + y′0(x)

∣∣+ 2x|y(x)− y0(x)| dx

≤
∫ 2

1

[
ε(x− 1)

(
ε(x− 1) + x2 +

1
3

)
+ εx(x− 1)2

]
dx =

ε(2ε + 13)
4

.

3. Hyers–Ulam Stability of the Euler–Poisson Equation

Now, we consider functionals dependent on higher derivatives.
Let n ∈ N, n ≥ 2, A ⊆ C2n(I,R), I ⊆ R be an open interval. Let [a, b] ⊂ I, a < b. Let

y ∈ A, y = y(x) be an element in A. Let the function F : M −→ R, M = I ×Rn+1 . We
suppose that F is n + 2 times differentiable with respect to all arguments.

Let

J[y(x)] =
∫ b

a
F
(

x, y(x), y′(x), . . . , y(n)(x)
)

dx, (23)

and the conditions

y(a) = ya, y′(a) = y′a, . . . , y(2n−1)(a) = y(2n−1)
a , (24)
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where ya, y′a, . . . , y(2n−1)
a ∈ R are given.

The extremals of the functional (23), given conditions (24), are the integral curves of
the Euler–Poisson equation (see [44]):

F′y −
d

dx
[F′y′ ] +

d2

dx2 [F
′
y′′ ]− . . . + (−1)n dn

dxn [F
′
y(n) ] = 0. (25)

Let ε > 0. We consider the inequality∣∣∣∣F′y − d
dx

[F′y′ ] +
d2

dx2 [F
′
y′′ ]− . . . + (−1)n dn

dxn [F
′
y(n) ]

∣∣∣∣ ≤ ε. (26)

We give a new notion of stability, named stability of order k, k ≥ 1, k ∈ N.

Definition 3. Equation (25) is called Hyers–Ulam stable of order k if there are real numbers
C1 > 0, C2 > 0, · · · , Ck+1 > 0 such that for any solution y(x) of the inequality (26) there is a
solution y0(x) of the Equation (25) such that

|y(x)− y0(x)| ≤ C1 · ε, ∀x ∈ [a, b],

and ∣∣y′(x)− y′0(x)
∣∣ ≤ C2 · ε, ∀x ∈ [a, b],

· · · ∣∣∣y(k)(x)− y(k)0 (x)
∣∣∣ ≤ Ck+1 · ε, ∀x ∈ [a, b].

y is called an approximate solution and y0 is called an exact solution for Equation (25).

In the following, we will study the case where the Euler–Poisson equation is

y(m)(x) = f (x), m = 2n, f ∈ C[a, b], x ∈ [a, b]. (27)

Remark 4. If y = y(x) is a solution of (27), then (see [45])

y(x) = y(a) +
x− a

1!
y′(a) + · · ·+ (x− a)m−1

(m− 1)!
y(m−1)(a) +

∫ x

a

(x− s)m−1

(m− 1)!
f (s)ds. (28)

Let ε > 0. We also consider the inequality∣∣∣y(m)(x)− f (x)
∣∣∣ ≤ ε, ∀x ∈ [a, b], y ∈ Cm[a, b]. (29)

Remark 5. A function y = y(x) is a solution of (29) if and only if there exists a function
g ∈ C[a, b] such that

(1) |g(x)| ≤ ε, ∀x ∈ [a, b],
(2) y(m)(x)− f (x) = g(x), ∀x ∈ [a, b].

Remark 6. If y = y(x) is a solution of (29), using Remark 5 and Remark 4, we have

y(x) = y(a) + x−a
1! y′(a) + · · ·+ (x−a)m−1

(m−1)! y(m−1)(a) +
∫ x

a
(x−s)m−1

(m−1)! ( f (s) + g(s))ds. (30)

Theorem 2. (i) For each solution y = y(x) of (29), there exists a unique solution y0 = y0(x)
of (27) such that
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y0(a) = y(a)
y′0(a) = y′(a)
· · ·
y(m−1)

0 (a) = y(m−1)(a).

(31)

(ii) The Equation (27) is Hyers–Ulam stable of order m− 1, and if y is a solution of (29) and y0
is a solution of (27) satisfying conditions (31), then

|y(x)− y0(x)| ≤ ε
(b− a)m

m!
, ∀x ∈ [a, b], (32)

∣∣y′(x)− y′0(x)
∣∣ ≤ ε

(b− a)m−1

(m− 1)!
, ∀x ∈ [a, b], (33)

∣∣y′′(x)− y′′0 (x)
∣∣ ≤ ε

(b− a)m−2

(m− 2)!
, ∀x ∈ [a, b], (34)

· · · ∣∣∣y(m−1)(x)− y(m−1)
0 (x)

∣∣∣ ≤ ε(b− a), ∀x ∈ [a, b]. (35)

(iii) If there exists l1, l2, · · · ln : [a, b] −→ [0, ∞) continuous, such that∣∣∣F(x, y1(x), y′1(x), · · · , y(n)1 (x)
)
− F

(
x, y2(x), y′2(x), · · · , y(n)2 (x)

)∣∣∣
≤ l1(x)|y1(x)− y2(x)|+ l2(x)

∣∣y′1(x)− y′2(x)
∣∣+ · · ·+ ln(x)

∣∣∣y(n)1 (x)− y(n)2 (x)
∣∣∣,

∀x ∈ [a, b], ∀y1, y2 ∈ A, then

|J[y(x)]− J[y0(x)]|

≤ ε · (b− a)m

m!

∫ b

a
l1(x)dx + ε · (b− a)m−1

(m− 1)!

∫ b

a
l2(x)dx + · · ·+ ε · (b− a)n

n!

∫ b

a
ln(x), (36)

where y is a solution of (29) and y0 is a solution of (27), both satisfying the conditions of (24).

Proof. (i) This results from Cauchy–Picard’s theorem of existence and uniqueness (see [46]).
(ii) Let y = y(x) be a solution of (29). Let y0 = y0(x) the unique solution of (27) satisfying

the conditions of (31). Using Remark 6, we have

|y(x)− y0(x)| =∣∣∣∣∣y(a) +
x− a

1!
y′(a) + · · ·+

∫ x

a

(x− s)m−1

(m− 1)!
( f (s) + g(s))ds

−y(a)− x− a
1!

y′(a)− · · · −
∫ x

a

(x− s)m−1

(m− 1)!
f (s)ds

∣∣∣∣∣,
hence

|y(x)− y0(x)| =
∣∣∣∣∣
∫ x

a

(x− s)m−1

(m− 1)!
g(s)ds

∣∣∣∣∣ ≤
∫ x

a

∣∣∣∣∣ (x− s)m−1

(m− 1)!
g(s)

∣∣∣∣∣ds,

so

|y(x)− y0(x)| ≤ ε
(b− a)m

m!
, ∀x ∈ [a, b]. (37)
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We also have

∣∣y′(x)− y′0(x)
∣∣ = ∣∣∣∣∣

∫ x

a

(x− s)m−2

(m− 2)!
g(s)ds

∣∣∣∣∣ ≤
∫ x

a

∣∣∣∣∣ (x− s)m−2

(m− 2)!
g(s)

∣∣∣∣∣ds ≤ ε
(b− a)m−1

(m− 1)!
,

∣∣y′′(x)− y′′0 (x)
∣∣ = ∣∣∣∣∣

∫ x

a

(x− s)m−3

(m− 3)!
g(s)ds

∣∣∣∣∣ ≤
∫ x

a

∣∣∣∣∣ (x− s)m−3

(m− 3)!
g(s)

∣∣∣∣∣ds ≤ ε
(b− a)m−2

(m− 2)!
,

· · · ∣∣∣y(m−1)(x)− y(m−1)
0 (x)

∣∣∣ = ∣∣∣∣∫ x

a
g(s)ds

∣∣∣∣ ≤ ∫ x

a
|g(s)|ds ≤ ε(b− a), ∀x ∈ [a, b],

thus the Equation (27) is Hyers–Ulam stable of order m− 1.
(iii) If y is a solution of (29), and y0 is a solution of (27), both satisfying the conditions of

(24), then

|J[y(x)]− J[y0(x)]|

≤
∫ b

a

[
l1(x)|y(x)−y0(x)|+ l2(x)

∣∣y′(x)−y′0(x)
∣∣+· · ·+ ln(x)

∣∣∣y(n)(x)−y(n)0 (x)
∣∣∣]dx

(ii)
≤ ε · (b− a)m

m!

∫ b

a
l1(x)dx + ε · (b− a)m−1

(m− 1)!

∫ b

a
l2(x)dx + · · ·+ ε · (b− a)n

n!

∫ b

a
ln(x).

Example 2. We consider J : A −→ R, A ⊆ C4(I,R), [0, 1] ⊂ I,

J[y(x)] =
∫ 1

0

(
360x2y− y′′

2
)

dx, (38)

y(0) = 0, y′(0) = 1, y′′(0) = −6, y′′′(0) = 9. (39)

The Euler–Poisson equation becomes

yIV(x)− 180x2 = 0. (40)

Let ε > 0. We consider the inequality∣∣∣yIV(x)− 180x2
∣∣∣ ≤ ε. (41)

We apply Theorem 2; therefore, for each solution y = y(x) of (41) satisfying (39), there exists
a unique solution y0 = y0(x) of (40) satisfying (39) such that

|y(x)− y0(x)| ≤ ε
1
4!

, ∀x ∈ [0, 1], (42)

∣∣y′(x)− y′0(x)
∣∣ ≤ ε

1
3!

, ∀x ∈ [0, 1],

∣∣y′′(x)− y′′0 (x)
∣∣ ≤ ε

1
2!

, ∀x ∈ [0, 1],

∣∣y′′′(x)− y′′′0 (x)
∣∣ ≤ ε

1
1!

, ∀x ∈ [0, 1];

hence, Equation (40) is Hyers–Ulam stable of order 3.
Let

y0(x) =
1
2

x6 +
3
2

X3 − 3X2 + X, (43)
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be the solution of Equation (40) satisfying the conditions of (39). We remark that −6 ≤ y′′(x) ≤
18, ∀x ∈ [0, 1].

If y is a solution of (41) and y0 is a solution of (40), both satisfying the conditions of (39),
then

|J[y(x)]− J[y0(x)]| ≤
∫ 1

0

∣∣∣360x2y− y′′
2 − 360x2y0 + y′′

2

0

∣∣∣dx (44)

≤
∫ 1

0

(
360x2|y− y0|+

∣∣y′′ − y′′0
∣∣∣∣y′′ + y′′0

∣∣)dx (45)

≤
∫ 1

0

[
360x2 · ε

24
+

ε

2

( ε

2
+ 36

)]
dx =

ε(ε + 92)
4

. (46)

4. Conclusions

In this paper, we have defined and studied Hyers–Ulam stability of order 1 for Euler’s
equation y′′(x) = f (x) and Hyers–Ulam stability of order m − 1 for the Euler–Poisson
equation y(m)(x) = f (x), in the calculus of variations. An example is considered for each
case. Some estimations for |J[y(x)]− J[y0(x)]|, where y is a solution of (9) and y0 is a
solution of (7), both satisfying the conditions of (2) and where y is a solution of (29) and y0
is a solution of (27), both satisfying the conditions of (24), have been established. This paper
is a continuation of the paper [43]. In [43], the Hyers–Ulam stability of Euler’s equation in
two special cases was studied when F = F(x, y′) and when F = F(y, y′). The general case
will be the subject of future works.
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