
����������
�������

Citation: Czibula, G.; Lupea, M.;

Briciu, A. Enhancing the Performance

of Software Authorship Attribution

Using an Ensemble of Deep

Autoencoders. Mathematics 2022, 10,

2572. https://doi.org/10.3390/

math10152572

Academic Editors: Liang Zou, Liang

Zhao and Yonghui Xu

Received: 19 June 2022

Accepted: 22 July 2022

Published: 24 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Enhancing the Performance of Software Authorship Attribution
Using an Ensemble of Deep Autoencoders

Gabriela Czibula * , Mihaiela Lupea and Anamaria Briciu

Department of Computer Science, Babeş-Bolyai University, 400347 Cluj-Napoca, Romania;
mihaela.lupea@ubbcluj.ro (M.L.); anamaria.briciu@ubbcluj.ro (A.B.)
* Correspondence: gabriela.czibula@ubbcluj.ro or gabis@cs.ubbcluj.ro; Tel.: +40-264-405327

Abstract: Software authorship attribution, defined as the problem of software authentication and res-
olution of source code ownership, is of major relevance in the software engineering field. Authorship
analysis of source code is more difficult than the classic task on literature, but it would be of great use
in various software development activities such as software maintenance, software quality analysis or
project management. This paper addresses the problem of code authorship attribution and introduces,
as a proof of concept, a new supervised classification model AutoSoft for identifying the developer of
a certain piece of code. The proposed model is composed of an ensemble of autoencoders that are
trained to encode and recognize the programming style of software developers. An extension of the
AutoSoft classifier, able to recognize an unknown developer (a developer that was not seen during the
training), is also discussed and evaluated. Experiments conducted on software programs collected
from the Google Code Jam data set highlight the performance of the proposed model in various
test settings. A comparison to existing similar solutions for code authorship attribution indicates
that AutoSoft outperforms most of them. Moreover, AutoSoft provides the advantage of adaptability,
illustrated through a series of extensions such as the definition of class membership probabilities and
the re-framing of the AutoSoft system to address one-class classification.

Keywords: software authorship attribution; natural language processing; deep learning

MSC: 68T07; 68T50

1. Introduction

Authorship attribution (AA), in its broad definition, is a field that has been extensively
studied, as the problem of document authentication and resolution of text ownership
disputes has been around for centuries. In recent decades, researchers have proposed a
number of automatic authorship attribution systems based on machine learning and deep
learning techniques, but the focus remained on the classic task based on literary texts.
The authorship attribution systems can help solve plagiarism and copyright infringement
disputes in both academic and corporate settings.

Code authorship identification, or software authorship attribution (SAA), is the process
of identifying programmers based on their distinctive programming styles. Style is based
on various factors, such as the programmer’s preferences in the way to write code, naming
of the variables, programming proficiency and experience, and the thinking process to
solve a programming task [1].

While it is true that programming languages have much less flexible grammars than
natural languages, it is widely accepted that a programmer’s coding style can still be
defined as referring to the tendencies in the expression of logic constructs, data structure
definition, variable and constant names and calls to fixed and temporary data sets [2].

It is only recently that the field of source code authorship attribution has gained attrac-
tion. The growing interest in SAA is due to the practical needs in the academic, economic
and societal fields. Plagiarism detection and ghostwriting (detection of outsourced student

Mathematics 2022, 10, 2572. https://doi.org/10.3390/math10152572 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152572
https://doi.org/10.3390/math10152572
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7852-681X
https://doi.org/10.3390/math10152572
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152572?type=check_update&version=2

Mathematics 2022, 10, 2572 2 of 27

programming assignments) are specific tasks solved with SAA in the academic field. In
the cybersecurity domain, in which both individuals and organizations are targets, the
cyber-attacks based on malicious software (adware, spyware, virus, worms, and more)
are important issues that can be prevented with the help of SAA systems. The software
engineering field benefits from SAA in solving different tasks such as software mainte-
nance, software quality analysis, software release assessment [3], project management and
plagiarism detection with important effects in the copyright and licensing issues [4].

As an important aspect in SAA, the data used for evaluation, Bogomolov et al. [4]
investigate the limitations of the existing data sets. The very good results obtained for
source codes from programming competitions, books and students’ assignments decrease
dramatically when code from real-world software projects is tested. The concept of work
context that captures specific aspects of the software project (domain, team, internal coding
conventions) was introduced and used in the evaluation of the performance of the author-
ship attribution models. In the same paper, a novel data collection technique has also been
proposed with the aim of obtaining more realistic data, with multiple authors per project
and different programming languages used. These data sets better reflect a real-world
environment, but also need language-independent models to solve the SAA task.

In the deep learning literature, autoencoders [5] are powerful models applied in
a variety of problems including image analysis [6], protein analysis [7,8], and speech
processing [9]. Autoencoders (AEs) are formed by two neural networks (an encoder
and a decoder) that are self-supervisedly trained to rebuild the input by approximating
the identity function. The input is compressed by the encoder into a hidden (latent-
space) representation, and then the decoder rebuilds the input from this representation.
An autoencoder is trained to encode as much information as possible about the class of
instances it was trained on.

In this paper, a supervised multi-class classification model, AutoSoft, for software
authorship attribution is introduced as a proof of concept. The model is composed of
an ensemble of autoencoders that are trained to encode and recognize the programming
style of software developers. Subsequently, AutoSoft will predict the author of a certain
source code fragment, based on the similarity between the given code and the information
learned (through the autoencoders) about each software developer. We are exploiting the
ability of autoencoders to encode, through their latent representations, patterns about the
coding-style of specific software developers. In this proposal, the representation of the
software programs is inspired from the Natural Language Processing (NLP) domain [10]. A
program, processed as a text (a sequence of specific tokens), is represented as a distributed
vector provided by a doc2vec model [11]. Experiments will be performed on software
programs collected from an international programming competition organized by Google
and previously used in the software authorship attribution literature. The obtained results
empirically prove our hypothesis that autoencoders are able to capture, from a computa-
tional perspective, relevant knowledge about how developers are writing their code. An
additional strength of AutoSoft is the fact that it can be extended to recognize not only the
classes of the original authors (developers) on which it was trained, but an “unknown”
class as well. AutoSoft solves the software authorship attribution task in a closed-set con-
figuration, meaning that at the testing stage the classifier identifies the author of a source
code from a set of given developers, whose programs were used in training. AutoSoft was
extended to AutoSoftext classifier with the aim of solving the multi-class classification task
and the novelty detection task at the same time. It is an open-set recognition approach [12]
to the SAA problem with an open testing space. Besides source codes authored by a set of
known developers (used in training), other (novel) codes, written by unseen developers
(unknown during training) should be classified at the testing time. The novelty detection
refers to assigning a software program that was not written by a known author to the
“unknown” class. As far as we are aware of, the approach proposed in this paper is new in
the literature regarding software authorship attribution.

To summarize, the paper is focused towards answering the following research
questions:

Mathematics 2022, 10, 2572 3 of 27

RQ1 How to design a supervised classifier based on an ensemble of autoencoders for pre-
dicting the software developer that is likely to author a certain source code, considering
the encoded coding-style for the developers?

RQ2 Does the proposed classifier improve the software authorship performance compared
to conventional classifiers from the machine learning literature?

RQ3 Could such a classification model that works in a closed-set configuration, be extended
to work in an open-set configuration, with the aim not only to recognize the classes of
developers it was trained on, but to detect an “unknown” class/developer as well?

The rest of the paper is structured as follows: Section 2 presents the relevance and
difficulty aspects of the software authorship attribution (SAA) task in the software engi-
neering field. Section 3 is dedicated to a literature review in the SAA domain. The detailed
description of AutoSoft, the proposed deep autoencoder–based classification model for rec-
ognizing the developer of a software program, is the subject of Section 4. The experimental
results and discussions are presented in Section 5. In Section 6, an extension of the AutoSoft
classifier is proposed, with the aim of identifying “unknown” instances, software programs
that are not authored by the developers on which AutoSoft has been trained. The threats to
validity of our study are exposed in Section 7. Section 8 summarizes the main contributions
of the paper and proposes directions for future work.

2. Problem Relevance and Difficulty

The software engineering field can benefit from developing efficient authorship attri-
bution systems. For example, in terms of software maintenance, existing works investigate
the possibility of automation in the assignment of developers to bugs in open source bug
repositories [13] and identification of developers that are familiar with certain parts of code
in a large project in order to make the process easier for both team members in understand-
ing each other’s work and for team leaders, when a new team member needs to be brought
up to speed [14,15].

The aspect of code ownership is also examined with respect to software quality
analysis. Bird et al. [16] defined measures of ownership related to software quality and
explored their effect on pre-release and post-release defects in two large industrial software
projects. Some works also argue for including reviewing activity when tracking code
ownership and establishing chain of responsibility [17]. The impact of code ownership and
developer experience on software quality is examined by Rahman and Devanbu [18], with
findings suggesting that the specialized experience of a developer with respect to a target
file is more valuable than generalized experience with the project.

Code authorship attribution would also be relevant for project or team managers, by
helping them in identifying the software developer who authored a certain piece of code.
This way, a team manager could identify if the code submitted by a software developer in
the team’s source code management system is indeed authored by the developer, which is
a closed-set approach to SAA. The testing space for an SAA tool can be opened, allowing to
identify as authors of software programs not only the team’s members but also unknown
developers. This open-set recognition approach to SAA is also beneficial in the software
management field. On the other hand, if a certain developer is prone to introduce bugs
in its code, then SAA would allow more rigorous testing of software components and
modules written by that developer and thus would reduce the risk of preserving software
defects in the code.

Authorship analysis of source code is more difficult than the classic task on literature,
for a number of reasons which include the restricted set of natural language stylistic
characteristics that also apply to this type of text, and, from another perspective, code
reuse, the frequent development of a program by a team of developers and not a single
programmer, and the possibility that structural and layout characteristics may be altered
by code formatters [19].

Mathematics 2022, 10, 2572 4 of 27

3. Literature Review

The section starts by reviewing the features and algorithms used by existing work in
software authorship attribution. Then, Section 3.2 describes the Google Code Jam (GCJ)
data set, whilst the software authorship attribution approaches that considered this data
set are discussed in Section 3.3.

3.1. Features and Algorithms Used in the SAA Task

Early work in the field of software authorship analysis involved using typographic
or layout characteristics of programs [20] to assess similarity between a series of authors.
In addition, early focus was on research into software forensics, a branch of software
authorship analysis that is not concerned with specifically identifying the author of a
program but their features (e.g., preference for certain data structures, programming skill
and level of expertise, formatting style, comment styles and variable name choice) [21]. One
of the earliest attempts to identify the author of a program is that of Krsul and Spafford [19],
who used a set of stylistic characteristics including layout (e.g., indentation, placement
of brackets and comments), style (e.g., mean variable length, mean comment length) and
program structure (e.g., lines of code per function, usage of data structures) metrics. They
obtained relatively good results in an experiment with 29 authors and a total of 88 files
(73% correctly identified instances) and provided an interesting discussion on classification
results as related to programmer background.

Over the years, researchers have started investigating other sets of features besides
stylistic ones, as these required a good deal of manual feature engineering, and no univer-
sally efficient set of features was discovered. Moreover, there are cases when the source
code is not available, only the binary code. Nonetheless, Rosenblum et al. [22] provided
evidence that programmer style survives the compilation process, and, given the right set
of features, the task of programmer identification can be solved to a satisfying degree.

Recent work into source-code-based authorship identification is focused on lexical
or syntactic features rather than format and layout ones, as they are more robust. In the
case of lexical features, some approaches draw inspiration from authorship attribution
tasks designed with natural language in mind. In particular, source code N-grams are
used [23–25], with byte-level N-grams as the most frequent choice [26].

Syntactic features are generally based on Abstract Syntax Trees (ASTs) derived from
source code and have proven successful in solving various authorship attribution tasks [27,28].
For SAA in different programming languages, Bogomolov et al. [4] proposed two language-
agnostic models: Random Forest Model and Neural Network Model (code2vec [29]) using
path-based representation of code generated from the AST. CroLSSim [30], a tool for detect-
ing semantically related software across various programming languages was developed
using AST-MDrep (Abstract Syntax Tree—Methods Description) features for codes and LSA
(Latent Semantic Analysis) to reduce the high-dimensional space. Finally, some studies
propose automatic feature learning using deep learning techniques [1].

Distributed representations of source code are less common in software-related tasks.
A neural model for representing snippets of code as fixed length vectors was proposed
and used to predict method names [29]. Mateless et al. [31] presented a technique to
generate package embeddings and use the obtained representations in a task of authorship
attribution with good results. Other existing work uses distributed representations of
source code to recover problem statement to coded solution [32] or assess and review
student assignments [33].

3.2. The Google Code Jam Data Set

GCJ [34] is an international programming competition organized by Google which
requires contestants to solve a series of algorithmic problems over multiple rounds in a fixed
amount of time. Contestants are free to use any programming language and development
environment they wish. In every round, a small number of problems is given, usually
between 3 and 6.

Mathematics 2022, 10, 2572 5 of 27

The Google Code Jam data set [35] is considered well-suited for the task of authorship
attribution because each program is guaranteed to be authored by a single person and,
moreover, it provides a collection of functionally equivalent programs solved by different
authors [36]. However, the GCJ data set is also seen as artificial, as its context greatly differs
from that of professionally developed software, in which multiple programmers work on
the same project under clear style guidelines, usually for longer periods of time that involve
revisions, refactorings and multiple project versions.

3.3. Related Work

An in-depth analysis of the SAA literature revealed various machine learning-based
techniques developed for identifying the author (i.e., software developers) of a certain
source code fragment. Supervised classifiers, ranging from classical to deep learning
models, have been proposed and evaluated on the GCJ data set [1,22,27,28,36–41].

Rosenblum et al. [22] propose a binary code representation based on instruction-level
and structural characteristics of programs, namely idioms (instruction sequence templates),
subgraphs from the Control Flow Graph (CFG) of a program and byte N-gram features.
The authors employ a feature selection step before using the representation to train a
Support Vector Machine classifier that obtains good results on the 2009 and 2010 GCJ sets.
In addition, 78% accuracy is achieved on the GCJ 2009 data set, 77% accuracy on the 2010
data set for 20 authors, and 51% on the GCJ 2010 data set for 191 authors.

Alrabaee et al. [39] build on the work of Rosenblum et al. [22], proposing a multi-
layered approach to malware authorship attribution which incorporates preprocessing,
syntax-based attribution and semantic-based attribution. The authors report superior re-
sults and provide more insight towards developing a formal definition of a programmer’s
style with respect to the features explored. Caliskan et al. [38] extend the idea of coding
style and use a set of approximately 120,000 layout-based, lexical and syntactic features.
On GCJ 2008–2014 subsets for C/C++ and Python programming languages, they obtain
good performances. In particular, for Python, the authors experiment with a subset of
23 programmers, on which they achieve 87.93% accuracy, and a subset of 229 programmers,
on which they achieve 53.91% accuracy (GCJ 2014). C/C++ classification is more successful,
which the authors attribute to the choice of features that do not translate well to the Python
programming language. However, they also provide scores obtained for top-5 authors
classification (an instance is considered correctly classified if the true author is in the first
five identified authors), a task which generates better results: 99.52% accuracy for 23 pro-
grammers and 75.69% for 229 programmers. Reducing the set of candidates to a small
number of candidate authors may be a more feasible task in a real-world setting; to this
point, AutoSoft (the classifier proposed in this paper) provides the possibility of computing
the probability of a test instance to belong to a certain class.

The authors of Python codes, solutions in GCJ 2018 and 2020, have been successfully
identified by Frankel and Ghosh [41] (the best accuracy in different testing configurations
was between 90% and 100%) based on a combination of AST features and N-gram data,
using Logistic Regression and a deep learning approach.

More recently, researchers have focused on deep learning models such as Long
Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory Networks (BiL-
STM) [28,37] or Convolutional Neural Networks (CNN) [1] to solve the software authorship
problem with very good results. Alsulami et al. [28] use LSTM and and BiLSTM networks
with AST-based features in a classification task involving two Python GCJ data sets with
25 and 70 authors, respectively. They obtain 96% accuracy for the 25 authors data set and
an accuracy of 88.86% for the 70 authors data set. The authors in [37] use deep repre-
sentations of TF-IDF features obtained using LSTM and GRU networks with a Random
Forest classifier in large-scale experiments on GCJ 2008–2016 subsets involving multiple
programming languages. For Python, they achieved 100% accuracy for 100 programmers,
98.92% for 150 programmers and 94.67% for 2300 programmers. Another work [1] exploited
TF-IDF and word embedding representations, but in conjunction with Convolutional Neu-
ral Networks (CNNs). For a GCJ 2008–2016 Python data set, they obtain between 72–98.8%

Mathematics 2022, 10, 2572 6 of 27

accuracy for 150 programmers and between 62.66–94.6% accuracy for 1500 programmers
in a series of experiments in which they the vary network architecture and the type of
representation used.

4. Methodology

In this section, the AutoSoft classification model for software authorship attribution
is proposed, with the goal of answering RQ1. An ensemble of deep AEs (one AE for each
author/developer) is used to learn and encode the most relevant characteristics (both struc-
tural and conceptual) of the software programs developed by the same author/developer.
Based on the low-dimensional latent representations of the programs, provided by AEs,
the classifier will be able to distinguish different authors. In the training stage, each of the
AEs is trained on the software programs written by a certain author/developer. In the
classification stage, a new software program sp will be assigned to the author/developer
corresponding to the autoencoder A if sp is highly similar to the information encoded by A
and dissimilar to the information encoded by the other autoencoders.

The task of software authorship attribution may be modelled as a multi-class classifi-
cation problem. The set of classes is a set of authors/developers DEV = {Dev1, Dev2, . . . ,
Devn}. The input instances are software programs from the set SSP = {sp1, sp2, . . . , spr},
written by the given software developers. The AutoSoft classifier will be trained on the set
SSP of software programs labeled with their author/developer and will learn to predict
the most likely software developer, dev ∈ DEV , who authored a software program spnew

unseen during training.
From a machine learning perspective, the goal is to approximate a target function

f : SSP → DEV that maps a software program sp from SSP to a certain class/developer
dev ∈ DEV .

The architecture of the AutoSoft classification model is depicted in Figure 1. The main
stages of the proposed approach are: data preprocessing and representation, training and
evaluation and they will be detailed in the next sections.

4.1. Data Preprocessing and Representation

In this stage, the software programs will be preprocessed by a lexical analyzer and
then distributed vector representations of the programs will be generated.

One of the most efficient representations of variable-length pieces of text (sentences,
paragraphs, documents) in Natural Language Processing tasks is generated by the doc2vec
(Paragraph vector) model [11]. The Authorship Attribution (AA) task for poetry was ad-
dressed in the paper [42] using doc2vec representation of poems and a deep autoen-
coder–based classification model. These distributed representations provided features
that discriminated very well between the poems’ authors. However, Natural Languages
(NL) are more complex than Programming Languages (PL) in all three aspects: vocabulary,
syntax and semantics. At the lowest preprocessing level, the lexical level, both a natural
language document and a software program, can be considered texts composed of specific
tokens: words, punctuation marks in NL and keywords, operands, constants and variables
in PL.

In the current approach, a text representation of a software program, provided by the
doc2vec model, is proposed. The doc2vec model [11] consists of a simple neural network
with one hidden layer. This neural network is designed to solve word prediction tasks;
however, the goal is not to definitively solve these tasks, but to learn fixed-length dense
vector representations for documents during the training of these networks. Two doc2vec
models are available: Distributed Memory (PV-DM), and Distributed Bag of Words (PV-
DBOW). In the PV-DM model, the paragraph vector is concatenated or averaged with
a series of word vectors, representing the context, with the paragraph vector asked to
contribute to the task of predicting the next word in that context. Thus, through this task,
the paragraph vector is learned along with the word vectors. In contrast, in the PV-DBOW
model, the paragraph vector is trained to predict words (or tokens) in small windows
randomly sampled from that paragraph.

Mathematics 2022, 10, 2572 7 of 27

Figure 1. AutoSoft classification model.

In the first step, by applying a lexical analyzer for the specific programming language,
a list of tokens will be identified for a software program. Operators, keywords, variable
names and literals are considered tokens, while comments in natural language are excluded.

The doc2vec model is trained on a corpus of software programs, considering different
sequences of N-grams of tokens to capture syntactic patterns in the codes. The input to
the model therefore consists of a list of sequential token N-grams. For instance, from
the following line of code: for i in range(5) and N = 3, the list generated and used
as input to the doc2vec model is [for i in, i in range, in range (, range (5, (
5)]. From this representation of the raw source code, hidden features of the programs
are learned and expressed as numerical values in fixed dimensional vectors. Based on
the learned features, similarities between programs (as documents) can be calculated
in the latent dimensional space generated for the corpus of programs (as documents).
After training, for a software program, the model infers a vector that is a distributed
representation, called program embedding. If sp is a software program and embed the inferring
function corresponding to the doc2vec model, the program embedding of sp is denoted by
pe, where pe = embed(sp). The program embeddings are the input data for autoencoders.

4.2. Training

The proposed classification model, AutoSoft, for software authorship attribution is an
eager inductive learning model that will be built during training (through induction) and
subsequently it will be applied (through deduction) on a testing set in order to evaluate its
predictive performance.

The AutoSoft classifier is based on n autoencoders A1, A2, . . . , An, corresponding to
the developers Dev1, Dev2, . . . , Devn. Let us denote by Si the set of programs written by the

developer Devi (i.e., SSP =
n⋃

i=1

Si). A self-supervised training of Ai on the embeddings

of the software programs from Si is performed for each autoencoder. Thus, through its

Mathematics 2022, 10, 2572 8 of 27

latent state representation, Ai will unsupervisedly learn features relevant for developer
Devi which will be useful in discriminating among different authors (developers).

A series of autoencoder architectures were examined in the experimental step. The
best results for input vectors of size 150 and 300 were obtained for an architecture which
consists of an input layer with a number of neurons equal to the dimensionality of the
input data, followed by eleven hidden layers. There are five hidden layers with 128, 32,
16, 8, and 4 neurons, two neurons on the encoding layer and five symmetric hidden layers
for decoding. Previous work [42] supports the idea that, for learned doc2vec feature
vectors, regardless of the type of source texts, the best results are obtained by performing
an initial sudden reduction of the input dimensions followed by a gradual reduction to a
two-dimensional encoding.

As far as the activation function is concerned, for all the hidden layers, the ReLU
activation function [5] is used, except for the encoding layer, for which linear activation
is used. With the linear activation function, the output size is equal to the input size (i.e.,
m neurons). Stochastic gradient descent enhanced with the Adam optimizer [5] is used to
train the network. A minibatch perspective is employed, and an early stopping criterion
based on the convergence on the validation set loss is used.

4.3. Evaluation

After the AutoSoft classifier is trained (see Section 4.2), it is tested in order to evaluate
its performance. For testing 10% from each data set, Si (∀1 ≤ i ≤ n) is used, i.e., 10%
software programs (taken for each developer Devi) which were unseen during training.

4.3.1. Classification

During the classification stage, when a new software program sp has to be classified,
AutoSoft searches for the autoencoder A that maximizes the similarity between the program
embedding pe = embed(sp) and p̃eA (the vector reconstructed by the autoencoder A for
the input pe). The similarity between two software programs sp1 and sp2 represented
by their program embeddings pe1 = embed(sp1) and pe2 = embed(sp2) is expressed as
sim(sp1, sp2) = sim(pe1, pe2) = cos(pe1, pe2), which is the cosine similarity between the
vectors pe1 and pe2, scaled to [0, 1]. If the input program embedding pe of sp is the most
similar to p̃eAi

(its reconstruction provided by the autoencoder Ai), it is very likely that sp
has a high structural and conceptual similarity to the information encoded by Ai and thus
it is highly probable to be authored/developed by Devi.

At the decision level, for each testing instance sp, AutoSoft determines the probabili-
ties p1(sp), p2(sp), . . . , pn(sp), where pi(sp) represents the probability that the software
program sp belongs to class Devi, where 1 ≤ i ≤ n. Let us denote by sim(pe, p̃eAi

) the
similarity between the embedding pe = embed(sp) and its reconstruction, p̃eAi

, through
the autoencoder Ai. The probabilities pi(sp), ∀i ∈ {1, 2, . . . , n} are defined in Formula (1):

pi(sp) =
esim(pe,p̃eAi

)

n

∑
j=1

e
sim(pe,p̃eAj

)
(1)

The probability pi(sp) is positively correlated with sim(pe, p̃eAi
). Thus,

arg max
i=1,n

pi(sp) = arg max
i=1,n

sim(pe, p̃eAi
), meaning that an instance sp, with pe as its pro-

gram embedding, will be classified by AutoSoft as being written by the author Devk such
that k = arg max

i=1,n
sim(pe, p̃eAi

).

4.3.2. Experimental Methodology

For testing, a cross-validation methodology is employed to precisely evaluate the
performance of the proposed model and account for randomness in the selection of data.
The training/validation/testing split is repeated 10 times.

Mathematics 2022, 10, 2572 9 of 27

The performance of the AutoSoft classifier on a given testing set is evaluated by first
determining Precision (denoted by Preci), Recall (Recalli) and F1-score (F1i) values for the
developer classes Devi, i ∈ {1, 2, . . . , n}. The F1-score value is computed as the harmonic
mean between the Precision and Recall values [43]. For a developer class Devi, the F1-score
is calculated using Formula (2):

F1i =
2 · Preci · Recalli
Preci + Recalli

(2)

As the data sets Si used are imbalanced (see Section 5.1), we use aggregated Precision,
Recall and F1 measures, which are computed as the weighted averages of the Preci, Recalli,
F1i values obtained for the classes. These measures are defined in the Formulas (3)–(5),
where wi represents the cardinality of Si:

Precision =

n

∑
i=1

(wi · Preci)

n

∑
i=1

wi

(3)

Recall =

n

∑
i=1

(wi · Recalli)

n

∑
i=1

wi

(4)

F1 =

n

∑
i=1

(wi · F1i)

n

∑
i=1

wi

(5)

These aggregated Precision, Recall and F1 values are averaged over the 10 runs of the
cross-validation process. The 95% confidence interval [44] is computed for the mean values.

5. Experimental Results

This section presents the experiments performed for assessing the performance of the
AutoSoft classifier, together with the results obtained and their analysis.

5.1. Data Description and Analysis

The experiments for evaluating the performance of our AutoSoft classification model
were conducted on a subset of Python programs from the 2008–2020 GCJ data set.

We have identified 16,112 distinct authors that have written at least nine programs in
Python for the Google Code Jam challenges from 2008 to 2020. From these, for the initial
experiments, the most proficient 87 programmers have been selected. The experiments are
focused on the subsets of 5 developers (each with more than 200 files), 12 developers (each
with more than 150 files) and 87 developers (each with more than 100 files).

Data set statistics for these subsets are provided in Table 1. For preprocessing the
source codes, a Python lexical analyzer [45] was employed and the library gensim [46] was
used for the doc2vec model.

Mathematics 2022, 10, 2572 10 of 27

Table 1. Data set description.

Subset

5 Developers 12 Developers 87 Developers

No. of files per developer ≥200 ≥150 ≥100

Total. no. files 1132 2357 11,089

Total. no. tokens 799,824 1,395,560 4,563,661

Median tokens per file 378.5 386 309

Median lines per file 61 65 52

Avg. no. tokens per file 706.56 592.09 411.55

Avg. no. lines per file 60.95 75.51 61.43

The average number of tokens per line ranges between 5 and 9 for 86 out of 87 authors,
with an author accruing a mean of 26.89 tokens per line due to some hard-coded lists of
values with many elements.

As it can be seen in Figure 2, attributing authorship of source code among five users is
a fairly simple task, with a representation based on unigrams managing to separate author
instances very well. We use the difficulty measure [47] to express how difficult it is to classify
the instances from a labeled data set. The overall classification difficulty is computed as the
percentage of instances from the data set for which the nearest neighbour (excluding the
class label when computing the similarity) has a different label than its true one. We define
a classification difficulty measure for each developer class that is equal to the percentage
of instances from the given developer that have a nearest neighbor (computed using the
cosine similarity between their program embeddings) an instance pertaining to a different
developer class. Consequently, it follows that classes which have a higher value of difficulty
present more challenges when classifiers attempt to identify them.

The difficulties presented below are calculated considering doc2vec vector size of 300.
Computing the difficulty of the classification task for each author in the five authors setting
confirms the low complexity of the overall task, even when using unigram representation:
the highest classification difficulty is obtained for developer Dev4, and is 0.022, and the
overall difficulty of the classification task is 0.0129.

Increasing the number of authors expectedly increases the difficulty of the task as
well, which can be seen in Figure 3. Some authors in this subset (12 authors) may be easily
distinguished, while for others it is difficult to find clear margins of separation. Figure 4
shows how the classification task difficulty varies with the value of N in N-gram size.
For the majority of developers (10 out of 12), using unigram features for representation
makes the classification of their instances more difficult than any other representation with
1 < N ≤ 8. Generally, minimum difficulty is obtained for N between 3 and 6. Therefore,
we expect that these values for N will generate better results in the overall classification
task than the basic unigram-based representation.

Figure 5 shows the value ranges for the classification difficulties with unigram rep-
resentation and 5-grams representation for the subset of 87 developers. For unigram
representation, there are 42 programmers with the classification difficulty ranging between
0 and 0.05, while, for 5-gram representation, there are 61 developers for which the clas-
sification difficulty falls into this category. Similarly, in the 5-gram representation, the
computed classification difficulty for most programmers ranges between 0 and 0.2, with
only three developers for which a difficulty between 0.3 and 0.4 is obtained ([0.3–0.35)
for two programmers and [0.35–0.4) for one programmer). In contrast, for unigram repre-
sentation, the classification difficulty reaches 0.51, with 13 developers having a difficulty
greater than 0.2 ([0.2–0.25) for 5 programmers, [0.25–0.3) for 2 programmers, [0.3–0.35) for
1 programmer, [0.35–0.4) for 2 programmers, and 1 programmer for each of the intervals
[0.4–0.45), [0.45–0.5) and [0.5–0.55)).

Mathematics 2022, 10, 2572 11 of 27

Figure 2. T-SNE visualization for the subset of five developers, unigram features and doc2vec vector
size of 300.

Figure 3. T-SNE visualization for the subset of 12 developers, unigram features and doc2vec vector
size of 300.

Mathematics 2022, 10, 2572 12 of 27

Figure 4. Classification difficulty for 12 developers with respect to N-gram size for doc2vec vector
size of 300.

For all subsets, the overall classification task difficulty is lower for N-gram size with
N > 1, indicating that coding style is better captured by learning distributed representations
over sequences of tokens, rather than unigrams.

Figure 5. Histogram of classification difficulty for 87 developers and unigram features (blue) and
5-gram features (yellow) and doc2vec vector size of 300.

5.2. Results and Discussion

The experimental results are further presented and discussed.

5.2.1. Results

Table 2 illustrates the performance of AutoSoft, in terms of Precision, Recall and F1-score,
for doc2vec vectors of sizes 150 and 300, as well as five different N-gram sizes, in the task
of differentiating between 5, 12 and 87 developers. We have experimentally determined
that the best performing doc2vec model on the considered data set is PV-DBOW, with the
specification that word-vectors are also learned in a skip-gram fashion [48]. Including this
step leads to better document representations than using the default randomized word
embeddings, becoming easier to learn the document embedding in such a way that it is
close to its more critical content words [49].

Mathematics 2022, 10, 2572 13 of 27

The values depicted in the table represent the average performance obtained during
the cross-validation, together with the 95% confidence interval of the mean.

For the subset of five developers, similar results are obtained for all N-gram sizes, with
any N > 1 generating a slight increase in performance when 150 features are considered.
For doc2vec vectors of size 300, the lowest number of misclassified instances is obtained
when using 8-gram models.

For 12 authors and a vector size of 150, the models trained on 5-gram vectors perform
better than other types of N-grams. For a vector size of 300, the N-gram size that generates
the best results is N = 3 (see Table 2).

Table 2. AutoSoft results with respect to N-gram size for subsets of 5, 12 and 87 developers. In
addition, 95% confidence intervals are used for the results.

Number of Features Performance Measure
N-Gram Size

1 3 5 6 8

5 developers

150

Precision 0.984 ± 0.008 0.993 ± 0.004 0.989 ± 0.007 0.988 ± 0.006 0.988 ± 0.005

Recall 0.982 ± 0.009 0.993 ± 0.004 0.988 ± 0.009 0.987 ± 0.008 0.988 ± 0.005

F1 0.983 ± 0.008 0.993 ± 0.004 0.988 ± 0.009 0.987 ± 0.008 0.988 ± 0.005

300

Precision 0.986 ± 0.007 0.984 ± 0.006 0.985 ± 0.007 0.991 ± 0.007 0.992 ± 0.005

Recall 0.986 ± 0.007 0.98 ± 0.008 0.985 ± 0.007 0.991 ± 0.007 0.992 ± 0.005

F1 0.986 ± 0.007 0.98 ± 0.005 0.985 ± 0.007 0.991 ± 0.007 0.992 ± 0.005

12 developers

150

Precision 0.968 ± 0.006 0.98 ± 0.005 0.984 ± 0.005 0.98 ± 0.007 0.973 ± 0.006

Recall 0.966 ± 0.007 0.979 ± 0.005 0.982 ± 0.006 0.978 ± 0.007 0.97 ± 0.007

F1 0.966 ± 0.007 0.979 ± 0.005 0.982 ± 0.006 0.978 ± 0.007 0.97 ± 0.007

300

Precision 0.977 ± 0.007 0.984 ± 0.007 0.98 ± 0.004 0.979 ± 0.005 0.978 ± 0.008

Recall 0.975 ± 0.007 0.981 ± 0.008 0.978 ± 0.005 0.977 ± 0.006 0.977 ± 0.008

F1 0.975 ± 0.007 0.981 ± 0.008 0.979 ± 0.005 0.977 ± 0.006 0.977 ± 0.008

87 developers

150

Precision 0.882 ± 0.004 0.892 ± 0.004 0.913 ± 0.004 0.911 ± 0.004 0.906 ± 0.006

Recall 0.868 ± 0.005 0.88 ± 0.004 0.901 ± 0.005 0.899 ± 0.004 0.895 ± 0.007

F1 0.866 ± 0.005 0.88 ± 0.004 0.898 ± 0.005 0.896 ± 0.004 0.889 ± 0.008

300

Precision 0.913 ± 0.003 0.918 ± 0.006 0.922 ± 0.004 0.914 ± 0.004 0.904 ± 0.007

Recall 0.902 ± 0.003 0.911 ± 0.005 0.913 ± 0.004 0.905 ± 0.006 0.894 ± 0.007

F1 0.902 ± 0.003 0.909 ± 0.007 0.913 ± 0.004 0.904 ± 0.005 0.89 ± 0.005

The benefit of employing N-grams becomes clear in the more difficult task of distin-
guishing between 87 developers. In this case, the best value for N is 5 for both vector sizes
considered. Increasing the value of N beyond 5 proves to be disadvantageous, with scores
starting to decrease.

Taking into consideration these results, we conclude that (1) using doc2vec models
trained on N-grams rather than simple unigrams is beneficial, with better results obtained
for any N > 1 in all classification settings, and (2) no particular N-gram size is most
advantageous in all cases.

Intuitively, it may be argued that N-gram size and the number of doc2vec features
should be inversely proportional; i.e., increasing the size of one provides sufficient addi-
tional information and so increasing the size of the other becomes ineffective. However,
this does not always hold. For instance, the results on the five developers subset show
that the best choices are N = 3 with a vector size of 150 and N = 8 with a vector size of
300. Therefore, the ideal N-gram size is heavily dependent on the considered data set. This
observation is also supported by the results obtained on the 87 developers subset, where
N = 5 generates the best results for both vector sizes.

Burrows and Tahaghoghi [23] identify the values of 6 and 8 for N as the most effective
in a task of source code authorship attribution that uses similarity measures and document
ranking techniques to attribute authorship. In our experiments, generally, a value of 5
for N is the most advantageous, but there are certain subsets of authors that are better

Mathematics 2022, 10, 2572 14 of 27

distinguished by 3-grams or 8-grams. However, this is not a limitation of using an N-gram
approach, since a grid search procedure may be used for determining the optimal value
for N.

5.2.2. Discussion

The AutoSoft model has been proposed in this paper for software authorship attribution
and experimentally evaluated in Section 5. The software programs were preprocessed by a
lexical analyzer to express them as sequences of specific tokens and then distributed vector
representations of the programs were generated using the doc2vec model [11] trained on
a corpus of software programs, considering different N-grams of tokens. The underlying
idea behind employing the paragraph vector model for obtaining program embeddings is
that the doc2vec model captures high level semantic information, with the use of N-grams
providing additional information about preferred syntactic patterns. Such a representation
is very likely to be able to capture features about the code structure and organization such
as code reorderings, source code control, and data dependencies.

Doc2vec models have been previously employed in the search-based software engi-
neering literature [50,51] for unsupervisedly learning conceptual-based features from the
source codes further used to express the semantics of the source code. Unlike the classical
NLP models, doc2vec also considers the semantic distance between words/tokens [52]
(e.g., public will be closer to protected than to integer) and the words/tokens order in small
contexts. Thus, the vector representation of the source code provided by a doc2vec model
trained on token N-grams (with various sizes) is likely to capture several important aspects
related to the programming style in which software developers write their source codes.
Few examples of the developer’s programming style that may be captured are as follows:
(1) the preference of a developer for iterating the elements from a data container, such as us-
ing an iterator, a range-based for statement or a for loop with indexes; (2) the preference of
the developer for writing the code in a specific programming paradigm such as imperative
or declarative (functional, logic) or object-oriented; (3) the preference for writing the code
in an iterative or recursive manner; (4) the preference for specific data types or software
libraries. Other methods able to capture more complex information about the source code
such as code2vec [29], AST, Dependency Graphs will be further envisaged.

In order to highlight the performance of AutoSoft with respect to existing classification
models (in the SAA and supervised learning domains) and to answer the research question
RQ2, we decided to perform a comparison in two directions.

First, the performance of AutoSoft is compared to those of similar classifiers developed
in the literature for code authorship attribution. An exact comparison between AutoSoft and
the related work described in Section 3.3 cannot be made since the data sets, the evaluation
methodology and the performance evaluation metrics used in the previously published
papers differ from ours. Most of the related approaches provide only the accuracy for
performance evaluation, despite the imbalanced nature of the classification. However,
considering only the magnitude of the performance metrics presented in Table 3, the best
F1-score values provided by AutoSoft (ranging between 0.902 and 0.986) outperform most of
the performances reported in the literature for the SAA task (accuracy values ranging from
0.51 to 1).

Secondly, we decided to compare AutoSoft’s performance, in terms of F1-score, with the
performance of four well-known classifiers from the classical supervised learning literature.
The classifiers used for comparison were selected based on the learning paradigm and
are known in the literature to have very good predictive performances: Support Vector
Classifiers (SVC) are based on the statistical learning theory and are large margin classifiers;
Random Forests (RF) are ensemble learners based on the bagging paradigm, among the
best classifiers from classical machine learning; Gaussian Naive Bayes (GNB) are classifiers
from the Bayesian learning framework, able to handle continuous data and with a good
performance on text classification; k-Nearest Neighbors (kNN) are classifiers from the lazy
learning paradigm. The experiments conducted for evaluating AutoSoft and the other

Mathematics 2022, 10, 2572 15 of 27

four classifiers are performed on the same GCJ data set, using the same experimental
methodology and evaluation measures (described in Section 4.3.2).

For implementing SVC, RF, GNB and kNN classifiers, the Python language and the
scikit-learn [53] machine learning library were used. For all the algorithms used in the
comparison, a grid search was applied for determining the optimal parameters.

Table 3 presents the comparison between AutoSoft and classifiers from the literature
in terms of F1-score, for various numbers of authors (5, 12, 87), various types of features
(unigrams, trigrams, 5-grams) and using distributed vector representations of size 300.
For all classifiers, the mean F1-score for the ten runs of the cross-validation is computed.
The best performance in each evaluation is highlighted. To summarize the results of the
comparison, we expressed in the last rows from Table 3 three values: (1) the number of
evaluations in which the performance of AutoSoft is higher than the performance of other
classifiers (denoted by WINS); (2) the number of evaluations in which AutoSoft is surpassed
(in terms of F1-score) by other classifiers (denoted by LOSSES); and (3) the number of
evaluations in which AutoSoft has the same performance as another classifier (denoted by
DRAWS). One observes that, in 24 out of 36 cases (66%), the comparison is won by the
AutoSoft classifier.

Table 3. Comparison between AutoSoft and classifiers from the literature in terms of F1-score, WINS,
LOSSES and DRAWS.

Type of Features Number of Authors
Classifiers

AutoSoft SVC RF GNB kNN

unigrams

5 0.986 0.993 0.981 0.963 0.975

12 0.975 0.993 0.965 0.946 0.958

87 0.902 0.953 0.735 0.841 0.854

trigrams

5 0.98 0.994 0.98 0.972 0.96

12 0.981 0.992 0.976 0.947 0.936

87 0.909 0.953 0.734 0.855 0.817

5-grams

5 0.985 0.998 0.982 0.971 0.99

12 0.979 0.99 0.976 0.935 0.983

87 0.913 0.95 0.785 0.835 0.909

AutoSoft WINS 24

AutoSoft LOSSES 11

AutoSoft DRAWS 1

The results from Table 3 reveal a surprisingly good performance of the kNN classifier.
We note that, when using 5-grams and 5 or 12 authors, kNN slightly outperforms AutoSoft.
However, kNN is outperformed by AutoSoft for 87 developers. A possible explanation is
that kNN is a lazy learner, able to find local approximations of the target function to be
learned. On the other hand, AutoSoft is an eager learner that finds, from the entire training
data set, a global approximation of the target function. Thus, it is likely that, for specific
instances, the lazy learners (kNN, in our case) would find better (local) approximations of
the target function than the (global) ones provided by an eager learner (AutoSoft, in our
case). One also observes that AutoSoft compares favorably to other classifiers from the
literature. In 7 out of 9 performed experiments (combination of N-gram size and number
of authors), AutoSoft performs as well or better than 75% of the other classifiers (3 out
of 4), being outperformed only by SVC, and by a small margin in [0.007–0.051]. In the
remaining experiments, AutoSoft has a performance higher than or equal to that of 50%
of the other classifiers, with KNN performing surprisingly well for 5-gram features. We

Mathematics 2022, 10, 2572 16 of 27

also note that, for all nine experiments depicted in Table 3, the F1 values provided by
AutoSoft exceed the average F1 scores obtained for the other classifiers. Figure 6 illustrates
this comparison, where the OX axis denotes the performed experiments and the OY axis
denotes the F1 value.

Figure 6. F1-scores obtained for AutoSoft and the average F1-scores obtained for the other classifiers in
experiments EX-Y shown in Table 3, where X = N-gram size and Y = number of developers.

To strengthen the previous analysis and for verifying the statistical significance of the
differences observed between the performance of AutoSoft and the performance of SVC,
RF, GNB and kNN classifiers, a two-tailed paired Wilcoxon signed-rank test [54,55] has
been used. The sample of F1 values obtained after evaluating AutoSoft on all experiments
depicted in Table 3 was tested against the sample of F1 values obtained for the other
classifiers (SVC, RF, GNB and kNN). A p-value of 0.01369 was obtained, confirming that
the improvement achieved by AutoSoft is statistically significant, at a significance level of
alpha = 0.05.

Table 3 also shows that AutoSoft scales well as the number of authors increases, as
opposed to some of the other classifiers. As for the N-gram size, in general, better per-
formances are obtained with N values of 3 and 5 as opposed to using unigrams, both for
AutoSoft and for most of the other classifiers. This is especially evident in the classification
task which considers 87 developers.

In conclusion, the research question RQ2 can now be answered. The performance on
the multi-class software authorship attribution task is equaled or improved by using the
proposed classifier, AutoSoft, in a majority of the cases defined for evaluation. Moreover, the
definition of AutoSoft allows the computation of the probability that a test instance (software
program) was written by a given developer, thus providing additional information that
might prove useful in real-world scenarios.

6. Extension of the AutoSoft Classifier

One of the major advantages of our AutoSoft proposal is that the classification model
can be easily extended to recognize not only the set of original authors (developers) on
which it was trained, but an “unknown” class as well. More specifically, if the testing
instance (source code) does not resemble the programming style of either of the developers,
then it will be assigned to an additional class (the “unknown” class). From a practical
perspective, such an extension would help a project manager to detect a source code that
was not developed by any of his/her team members.

From a theoretical perspective, our aim is to extend a multi-class classifier that works
in a closed-set configuration to a classifier which classifies instances from an open testing
space. In an open-set configuration, the classifier solves the multi-class classification task
and the novelty detection (represented by an “unknown” class) at the same time.

Let us consider the theoretical model introduced in Section 4. The classical AutoSoft
model was designed to classify any source code (received during testing) as written by

Mathematics 2022, 10, 2572 17 of 27

one of the software developers Dev1, Dev2, . . . , Devn on which it was trained. This hap-
pens even if the testing instance (source code) was not developed by any of the authors
considered in training.

Thus, we aim to extend the decision-making process during the classification stage
(Section 4.3.1) to include the probability of classifying a testing instance (software program)
sp as belonging to an “unknown” class (i.e., other than the given Dev1, Dev2, . . . , Devn
classes). Introducing the extended classifier, AutoSoftext, we try to answer the research
question RQ3.

The training step of AutoSoftext is the same as the training of the original AutoSoft
classifier, described in Section 4.2.

The classification stage described in Section 4.3.1 will be extended, by including a prior
step for deciding the likelihood (denoted by punknown(sp)) that the software program sp
belongs to the “unknown” class. The intuition behind the decision of classifying the author
of sp as an “unknown” one is the following: if the program embedding pe = embed(sp)
is “distant” enough from each of the autoencoders A1, A2, . . . , An (corresponding to the
developers Dev1, Dev2, . . . , Devn), then it is likely to have an unknown author (that was
not encountered during the training). The embedding pe of a certain software program
is considered to be “distant enough” from an autoencoder A if the loss of A for the input
vector pe is greater than a certain threshold τ.

6.1. Classification Stage for the AutoSoftext Classifier

Let us denote by li(sp) the loss of the autoencoder Ai assigned to the i-th software
developer for the embedding pe = embed(sp) of the testing instance sp. By τi, we denote the
threshold used for deciding if the structure of pe does not resemble that of the instances of
class Devi encoded by Ai and by disti(sp) = li(sp)− τi the “distance” between sp and Ai.

The probability punknown(sp) is defined as shown in Formula (6):

punknown(sp) = 0.5 +

j

∏
i=1

disti(sp)

2 ·
j

∏
i=1

(li(sp) + τi)

, (6)

where

j =

{
n if disti(sp) ≥ 0 ∀i ∈ [1, n];
min
i=1,n
{i|disti(sp) < 0} otherwise.

It can be easily proved that 0 ≤ punknown(sp) ≤ 1 for each testing instance sp. More-
over, punknown(sp) is greater than 0.5 if and only if disti(sp) ≥ 0 , ∀i, 1 ≤ i ≤ n (or,
equivalently, li(sp) ≥ τi, ∀i, 1 ≤ i ≤ n), i.e., sp belongs to the “unknown” class. Otherwise,
if punknown(sp) < 0.5, it follows that sp belongs to one of the classes Dev1, Dev2, . . . , Devn.
In this case, the decision-making process described in Section 4.3.1 will be applied for
deciding the output class.

Thus, the classification for the testing instance sp is decided as shown in Algorithm 1.

6.2. Evaluation of AutoSoftext

In the following, we evaluate the performance of AutoSoftext on predicting the “un-
known” class. For this purpose, the problem is modelled as a binary classification task, in
which the goal is to decide if the author of a certain software program sp belongs to the
original set of authors (Original = {Dev1, Dev2, . . . , Devn}) on which AutoSoftext has been
trained, or it belongs to an “unknown” class.

We decided to evaluate the binary classification task (classification in two classes:
“orginal” vs. “unknown”), since our aim is to highlight the ability of our AutoSoftext model
to detect the “unknown” class. Subsequently, after it has been decided that the testing
instance does not belong to the “unknown” class, the author from the original set will be

Mathematics 2022, 10, 2572 18 of 27

identified as for the AutoSoft classifier (see Section 4.3.1), and this performance has been
already evaluated in Section 5.

Algorithm 1 Classification for the testing instance sp, considering an additional “unknown”
class.

function CLASSIFY(n, A, sp)
Require:

n —the number of original software developers
A —the set of n trained autoencoders
sp —the testing instance (software program) to be classified

Ensure:
return the predicted class c ∈ {1, . . . , n} ∪ {“unknown”}

if punknown(sp) ≥ 0.5 then
c← “unknown”

else
// The output class c belongs to {1, 2, . . . , n}
// The decision-making process from Section 4.3.1 is applied for deciding
// the output class c ∈ {1, 2, . . . , n}

end if
return c

end function

6.2.1. Testing

In our binary classification task, the positive class is represented by the set of original
authors, i.e., Original, while the negative class is represented by the “unknown” class.

A testing set consists of test instances from theOriginal set, specifically the 10% testing
set used in the multi-class classification experiment. Additionally, a number of instances
from the “unknown” class are included. They are represented by codes of authors whose
instances were not included in the training of the doc2vec model and the training of the
ensemble of autoencoders. Instead, the program embeddings of these codes are inferred
from the existent doc2vec model trained on the Original authors’ instances. In addition,
10% of the total instances of an “unknown” developer are randomly selected.

A confusion matrix is computed for each testing set, with the following values: TP
(true positives—the codes developed by “original” authors and predicted correctly), FP
(false positives—the codes classified incorrectly as written by “original” developers), TN
(true negatives—the codes written by “unknown” authors and recognized as such) and
FN (false negatives—the codes developed by “original” authors but classified as written by
“unknown” developers). The performance of the AutoSoftext model on a certain testing data
set is then evaluated with respect to a series of measures based on these confusion matrix
values (TP, TN, FP and FN) used for binary classification performance evaluation: accuracy,
precision, recall, F-score (F1) and specificity.

To account for the randomness involved in the selection of the testing data sets, the
testing is repeated 10 times. The obtained values for the performance measures are then
averaged over the 10 runs, and a 95% CI of the average value is computed. Experimentally,
we found that the best threshold τi for an autoencoder Ai is calculated using Formula (7):

τi = µi + 2 · σi, (7)

where µi is the mean, and σi represents the standard deviation of the losses for the training
instances written by the developer Devi.

Table 4 presents the results of the AutoSoftext model with respect to two N-gram sizes
on seven different tasks involving the set ofOriginal developers (n = 5) and seven different
“unknown” developers. The five developers included in theOriginal set are the developers
constituting the five developer subsets presented in Section 5.1.

Mathematics 2022, 10, 2572 19 of 27

Table 4. AutoSoftext results with respect to N-gram size for seven “unknown” authors and anOriginal
set with n = 5. In addition, 95% confidence intervals are used for the results.

Developer N-Gram Type
Performance Measures

Accuracy Precision Recall F1 Specificity

Devu1
unigrams 0.904 ± 0.015 0.926 ± 0.012 0.965 ± 0.013 0.945 ± 0.009 0.537 ± 0.082

5-grams 0.974 ± 0.006 0.977 ± 0.007 0.994 ± 0.005 0.993 ± 0.003 0.858 ± 0.046

Devu2
unigrams 0.921 ± 0.014 0.947 ± 0.01 0.965 ± 0.013 0.956 ± 0.008 0.587 ± 0.087

5-grams 0.988 ± 0.006 0.993 ± 0.004 0.994 ± 0.005 0.993 ± 0.003 0.947 ± 0.033

Devu3
unigrams 0.891 ± 0.011 0.917 ± 0.006 0.965 ± 0.013 0.94 ± 0.007 0.333 ± 0.055

5-grams 0.979 ± 0.009 0.983 ± 0.01 0.994 ± 0.005 0.988 ± 0.005 0.867 ± 0.083

Devu4
unigrams 0.89 ± 0.016 0.911 ± 0.01 0.965 ± 0.013 0.937 ± 0.009 0.4 ± 0.074

5-grams 0.977 ± 0.008 0.98 ± 0.007 0.994 ± 0.005 0.987 ± 0.005 0.872 ± 0.046

Devu5
unigrams 0.871 ± 0.011 0.896 ± 0.007 0.965 ± 0.013 0.929 ± 0.007 0.2 ± 0.063

5-grams 0.965 ± 0.009 0.968 ± 0.01 0.994 ± 0.005 0.981 ± 0.005 0.762 ± 0.079

Devu6
unigrams 0.924 ± 0.017 0.948 ± 0.009 0.965 ± 0.013 0.956 ± 0.01 0.679 ± 0.054

5-grams 0.992 ± 0.005 0.997 ± 0.003 0.994 ± 0.005 0.996 ± 0.003 0.984 ± 0.016

Devu7
unigrams 0.899 ± 0.014 0.922 ± 0.011 0.965 ± 0.013 0.943 ± 0.008 0.483 ± 0.078

5-grams 0.97 ± 0.009 0.972 ± 0.007 0.994 ± 0.005 0.983 ± 0.003 0.817 ± 0.046

As it can be seen, the AutoSoftext is able to recognize the positive class (the instances
belonging to the Original set) very well, for both unigram and 5-gram representations.
However, there is a significant difference in the ability of the AutoSoftext classifier to rec-
ognize the negative class in the two test settings. It is evident that, when using a 5-grams
doc2vec model trained on the Original set instances, the representation is much more spe-
cific to the coding style of this developer group. In contrast, using a unigram representation,
inferred “unknown” class doc2vec vectors are very similar to Original set ones.

The performance of AutoSo f text in the unigram setting is hindered especially by the
high number of false positives—the instances written by “unknown” authors but classified
as written by “original” developers. One explanation may be that it is more difficult for the
developer style to be captured in terms of unigrams. In this case, the part of the doc2vec
vocabulary common to all developers would be much larger, therefore overshadowing the
contribution of the fewer distinguishing features in building the document representations.
While distinguishing unigrams are mostly limited to variable and constant names, and,
to a lesser extent, libraries used, N-grams may be able to capture particularities in the
expression of logic constructs or the definition of data structures and their subsequent
use (see Section 4.1 for examples of N-grams given a fragment of code). Consequently,
the autoencoders manage to better encode each developer’s style given representations
based on sequences of tokens rather than ones based on single tokens. This conclusion is
also supported by the results obtained in the multi-class setting, where any N > 1 leads
to an increase in performance with respect to the results obtained using unigram-based
representations. With a better delimited style for the “original” developers that follows the
use of a representation based on 5-grams, the number of false positives thus decreases.

This can also be seen in Figure 7. A side-by-side visualization of all Original and
“unknown” instances for a given run for unigrams and 5-grams representation shows the
efficiency of the latter one in distinguishing between the two classes.

Mathematics 2022, 10, 2572 20 of 27

Figure 7. T-SNE visualization for all Original (n = 5) and “unknown” instances in a random state
with respect to N-gram size.

6.2.2. Comparison to OneClassSVM

We note that the classical models (SVC, RF, GNB, kNN) used in Section 5.2.2 are not
able to distinguish an “unknown” class. Instead, to evaluate the performance of AutoSoftext,
we use One-Class SVM classifiers [56,57], specifically the OneClassSVM implementation
from the scikit-learn library [53], which is the only model we have found that tackles a
similar problem to ours. One-Class Support Vector Machines (OSVM)-based algorithms
are broadly used for one-class classification [58].

The main idea of OSVMs is to construct a hyper-plane around the data (in a feature
space) in such a way that the distance from the hyper-plane to the origin is maximal and
regions that contain no data are separated. In other words, OSVM’s employ a strategy of
mapping the given data into a feature space corresponding to the chosen kernel, with a
goal of separating this data from the origin with maximum margin. Thus, a binary function
that takes the value “+1” in a “small” region that captures most of the data points, and “−1”
elsewhere is learned [56].

We adapt the OSVM methodology to mirror that of AutoSoftext. The motivation for
this adaptation is twofold. First, as the default OSVM implementation is designed for use
in binary classification contexts, an adaptation was needed to fit our multi-class setting.
This was achieved by training an OSVM model for each class/developer, and obtaining
a prediction from each of these trained models for a given test instance. Secondly, to
obtain a valid comparison between AutoSoftext and the OSVM classifier, the methodology
was modified in such a way that it followed the steps of the AutoSoftext model. Thus, we
proposed an ensemble of OSVM classifiers to mirror the ensemble of autoencoders. Then,
much like the program embedding, pe was considered to belong to the “unknown” class if
it was “distant” enough from each of the autoencoders in the ensemble, it is considered to
be authored by an unknown author by the OSVM-based ensemble of classifiers if it lies
outside the class boundaries for each of the trained OSVM models.

Similar methodologies were employed to detect and classify scars, marks and tattoos
found in forensic images [59] and for text genre identification in web pages [60]. Differ-
ences between these approaches and ours reside in the fact that, in [59], the test instance
can belong to multiple classes, while, in [60], the instance is labeled according to the
most confident classifier that identifies the instance as belonging to the genre on which it
was trained.

Mathematics 2022, 10, 2572 21 of 27

Specifically, we train five OSVM models, one for each developer from theOriginal set
(n = 5). The decision for each instance is then taken as follows: if any of the OSVM models
return a “+1” label (that signifies membership to the positive class), then the instance is
considered to be written by one of the developers in the Original set; else, if all OSVM
models return a “−1” label, the instance is considered to belong to the “unknown” class.

Table 5 shows that the AutoSoftext model compares favorably to the OSVM classifier
in most cases. AutoSoftext always obtains a higher Recall than the OSVM classifier, which
surpasses our model in terms of Precision and Speci f icity in 6 out of 7 cases. That is, the
OSVM classifier manages to better recognize the “unknown” instances, an improvement
that comes at the expense of misclassifying positive class instances. Moreover, for 5-grams
features, the difference in the performance of AutoSoftext and OSVM with respect to classi-
fication of “unknown” instances is relatively similar, with good performance obtained for
the AutoSoftext in addition to almost perfect Recall.

In conclusion, RQ3 can now be answered. The proposed extension to the AutoSoft
model, AutoSoftext, can be used to recognize whether a given test instance was written by
an original developer (from a given set), or by some “unknown” developer. AutoSoftext

obtains good performance in the binary classification task, and compares favorably with
existing one-class classification models such as One-Class Support Vector Machines.

The AutoSo f text model is proposed as proof of concept supporting the hypothesis that
the AutoSo f t model introduced in Section 4 for solving the software authorship attribution
task in a closed-set configuration can easily be transformed to address the SAA problem
in an open-set configuration as well. More experiments to validate this hypothesis are
beyond the scope of this paper and are marked as future work, including an analysis
of the performance of AutoSo f text when the number of developers in the Original set is
increased, and the subsequent comparison with the OSVM classifier. Such a change in
the experimental setting would be best served by an extensive discussion with regard to
aspects such as: choice of train and testing instances from the Google Code Jam dataset,
and, from a broader perspective, the coding context and the subsequent programming
style variability.

The first of these aspects refers primarily to an investigation into the number of
instances needed to efficiently learn a developer’s programming style. However, this may
also imply a discussion on programmer proficiency, experience, and skill, as in the Google
Code Jam data set, developers that have more programs included either participated in
more rounds, providing high-quality solutions to advance, or entered the contest in multiple
years. The coding context and programming style variability are connected aspects, as in
the current formulation, for a testing instance to be identified as belonging to an “unknown”
developer, the programming style found within must be significantly different from that
of a given number of developers (those in the Original set). This raises the question of
how much variability can be found in programming style in particular coding contexts—a
contest like Google Code Jam, student assignments for computer science classes or real
world teams working on industry projects. For instance, programming style variability
in solutions to contest-like coding problems is different from that in student assignments
(which may also be restricted to having the same structure, particular classes, etc.) and,
perhaps even more obviously, from code produced in corporate contexts. The number of
authors from the Original set, then, should be chosen in concordance with this expected
variability, perhaps through experimental determination. Such experiments and discussion,
while extremely interesting, are outside the scope of this paper.

Mathematics 2022, 10, 2572 22 of 27

Table 5. Comparison between AutoSoftext and OSVM with respect to N-gram size for seven “un-
known” authors and an Original set with n = 5.

Developer Performance Measure
Unigrams 5-Grams

AutoSoftext OSV M AutoSoftext OSV M

Devu1

Accuracy 0.904 0.783 0.974 0.763

Precision 0.926 0.91 0.977 1

Recall 0.965 0.829 0.994 0.724

F1 0.945 0.842 0.985 0.839

Speci f icity 0.537 0.505 0.858 1

Devu2

Accuracy 0.921 0.815 0.988 0.756

Precision 0.947 0.956 0.993 1

Recall 0.965 0.829 0.994 0.724

F1 0.956 0.887 0.993 0.839

Speci f icity 0.587 0.707 0.947 1

Devu3

Accuracy 0.891 0.808 0.979 0.756

Precision 0.917 0.948 0.983 1

Recall 0.965 0.829 0.994 0.724

F1 0.94 0.884 0.988 0.839

Speci f icity 0.333 0.647 0.867 1

Devu4

Accuracy 0.89 0.786 0.977 0.761

Precision 0.911 0.916 0.98 1

Recall 0.965 0.829 0.994 0.724

F1 0.937 0.87 0.987 0.839

Speci f icity 0.4 0.517 0.872 1

Devu5

Accuracy 0.871 0.797 0.965 0.758

Precision 0.896 0.933 0.968 1

Recall 0.965 0.829 0.994 0.724

F1 0.929 0.877 0.981 0.839

Speci f icity 0.2 0.569 0.762 1

Devu6

Accuracy 0.924 0.824 0.992 0.763

Precision 0.948 0.961 0.997 1

Recall 0.965 0.829 0.994 0.724

F1 0.956 0.889 0.996 0.839

Speci f icity 0.679 0.795 0.984 1

Devu7

Accuracy 0.899 0.842 0.97 0.761

Precision 0.922 0.986 0.972 1

Recall 0.965 0.829 0.994 0.724

F1 0.943 0.9 0.983 0.839

Speci f icity 0.483 0.922 0.817 1

Mathematics 2022, 10, 2572 23 of 27

7. Threats to Validity

The experimental evaluation and analysis of our AutoSoft classifier may be influenced
by some threats to validity and biases that may affect the obtained results. The issues which
may have affected the experimental results and their analysis are further discussed.

Regarding construct validity [61], the performance of our AutoSoft model for authorship
attribution has been extensively assessed using evaluation metrics used in the literature
for imbalanced multi-class classification. For reducing the threats to construct validity,
throughout our experiments, we followed best practices in building and evaluating ML
models such as: model validation has been used in the training, cross-validation and
statistical analysis were employed for a more precise evaluation of AutoSoft.

In what concerns internal validity, it is about internal parameters and experimental
settings which could influence the experimental results. As any eager supervised classifier
that is built during training, the AutoSoft model strongly depends on internal hyperparame-
ters such as: the architecture used for the autoencoders (layers, neurons on each layer, latent
space dimensionality, activation functions, etc.), the optimization algorithm used during
the training stage, etc. For minimizing threats to internal validity, various autoencoder
architectures and hyperparameters settings were examined in the experimental step for
hyperparameters tuning, and the resulting model has been cross-validated.

Regarding the threats to external validity, namely the extent to which the results
obtained by AutoSoft may be generalized, we have chosen a public data set that has
been previously employed in the literature for software authorship attribution. Still,
the experimental evaluation has to be further extended to other data sets, open source
projects written in different programming languages (Java, C++, Python), to achieve better
generalization. Closed-source projects should also be considered for evaluating AutoSoft’s
performance, to test if the findings of the current study are still valid.

In what concerns reliability, the methodology used for data collection, the AEs archi-
tectures used for training the AutoSoft model as well as the testing methodology have been
detailed in Section 4 in order to allow the reproducibility of the results. The data used
in the experiments is a subset of data found at [35], publicly available at [62]. As far as
the experimental methodology is concerned, we applied cross-validation by repeating the
same experiment and provided a statistical analysis by computing confidence intervals for
the obtained performance measures, in order to increase the precision of the results. For
ensuring a better interpretation of the results and the validity of the conclusions, AutoSoft
has been extensively evaluated by considering various numbers of authors and type of
features. In addition, the statistical significance of the improvement achieved by AutoSoft
has been confirmed through a statistical test.

8. Conclusions and Future Work

To solve the problem of software authorship attribution, the AutoSoft classification
model, based on an ensemble of deep AEs (one AE for each author/developer), was intro-
duced. The representation of the software programs was inspired from the NLP domain.
A lexical analysis followed by the program embedding step (doc2vec model) provides a
distributed representation of a software program, representation that captures contextual,
syntactic and semantic aspects of the code, as a text. The deep autoencoders applied to
program embeddings proved to uncover relevant hidden features of the software programs
that successfully distinguished the authors/developers. The decision in classification (the
predicted developer of a testing software program) is based on the probabilities calculated
using the cosine similarities between the program embedding and the reconstructions
provided by the autoencoders. AutoSoft is the answer to RQ1 proposed as the first step of
research in the paper.

From a theoretical perspective, the advantages of AutoSoft model can be summarized
as follows:

(1) Its generality is based on the fact that it contains only one language-dependent
component: a lexical analyzer. Therefore, this classification model can be used for author-

Mathematics 2022, 10, 2572 24 of 27

ship attribution of any texts: software programs in programming languages or documents
in natural languages.

(2) The calculated probabilities can be applied not only to predict the most likely
author of a software program, but also to find the most probable and close 2–3 authors,
information used further to compare the work of different authors.

(3) AutoSoft was easily extended to AutoSoftext classifier with the aim of identifying
also “unknown” instances, i.e., software programs that are not authored by the given
(original) developers. Thus, the research question RQ3 was answered.

(4) AutoSoft classifier can be adapted to solve the co-authorship attribution problem.
Given an unseen program, significantly higher probabilities for a subset of developers
compared with the others will predict a group of co-authors.

In contrast, the limitations of the AutoSoft model can be identified as the following:
(1) the dependence on the quality of the trained doc2vec model, with all that it entails: the
number of instances needed in the training corpus, as well as the search for the optimal
model parameter values; (2) the requirement for each considered developer in the training
set to have enough training instances such that the autoencoder manages to learn the
developer’s programming style; and (3) the AutoSoft training and classification stages
have a duration directly proportional to the number of initial authors considered, with
a higher ratio than other models. However, each of these limitations can be addressed.
First, while using a model like doc2vec to learn document representations incurs an extra
step, the benefits of capturing high level semantic and contextual information that eludes
simpler Bag-of-Words models are evident, especially when a higher number of authors is
considered. Additionally, by using a metric such as the difficulty measure, described in
Section 5.1, the quality of the resulting doc2vec representations can be easily evaluated.
Secondly, the disadvantage of the larger number of training instances needed by the
autoencoder can be compensated by the fact that, as opposed to the classic multi-class
models considered, a focus on individual authors can provide important insights into
their programming style, both in a focused context, of assessing particularities of one
developer, and in a larger one, with the possibility of finer-grained distinctions in developer
groups. Finally, we address the third point by marking performance as a more important
aspect than training time. In the proposed context, we value the richness of information
provided by the AutoSoft model in comparison to other models from the literature, such
as class membership probabilities, and the flexibility in adapting AutoSoft to a series of
tasks, some of which were described in Section 6 and some proposed as future research
directions in the next paragraphs. Nonetheless, the inclusion of precursory steps to the
multi-class classification, such as the proposed extension that differentiates between original
and unknown instances, may reduce the time needed for the multi-class classification step,
as only original instances should be further fed to the AutoSoft model.

With the goal of answering the research question RQ2, the performance of AutoSoft was
evaluated and compared with other supervised classifiers in the experiments conducted
on a subset of Python programs from the 2008–2020 Google Code Jam data set. The
comparative results illustrated in Table 3 showed that AutoSoft (with an F1-score ranging
from 0.902 to 0.986) performs similarly or better than most of the classifiers (Random
Forests, Gaussian Naive Bayes and k-Nearest Neighbors classifiers), being outperformed
only by a Support Vector Classifier.

In conclusion, all the research questions stated at the beginning of the paper were
answered.

As further work, we aim at solving the co-authorship problem by adapting the clas-
sification decision of AutoSoft model. Another future direction is to use in AutoSoft the
representation of software programs based on another NLP technique, Latent Semantic
Indexing (LSI) [63], which is language-independent. LSI vector space is a latent, low-
dimensional space that captures the semantic and conceptual content of texts.

The evaluation of both classification models on real data, open source projects written
in different programming languages—Java, C++ and Python—is also a future purpose.

Mathematics 2022, 10, 2572 25 of 27

Author Contributions: Conceptualization, G.C., M.L. and A.B.; methodology, G.C., M.L. and A.B.;
software, A.B.; validation, G.C., M.L. and A.B.; formal analysis, G.C., M.L. and A.B.; investiga-
tion, G.C., M.L. and A.B.; resources, G.C., M.L. and A.B.; data curation, A.B.; writing—original
draft preparation, G.C.; writing—review and editing, G.C., M.L. and A.B.; visualization, G.C., M.L.
and A.B.; funding acquisition, G.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by a grant of the Ministry of Research, Innovation and Digitiza-
tion, CNCS/CCCDI—UEFISCDI, project number PN-III-P4-ID-PCE-2020-0800, within PNCDI III.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers for
their useful suggestions and comments that helped to improve the paper and the presentation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Abuhamad, M.; Rhim, J.S.; AbuHmed, T.; Ullah, S.; Kang, S.; Nyang, D. Code authorship identification using convolutional

neural networks. Future Gener. Comput. Syst. 2019, 95, 104–115. [CrossRef]
2. Sallis, P.; Aakjaer, A.; MacDonell, S. Software forensics: Old methods for a new science. In Proceedings of the 1996 International

Conference Software Engineering: Education and Practice, Dunedin, New Zealand, 24–27 January 1996; pp. 481–485.
3. Tian, Q.; Fang, C.C.; Yeh, C.W. Software Release Assessment under Multiple Alternatives with Consideration of Debuggers;

Learning Rate and Imperfect Debugging Environment. Mathematics 2022, 10, 1744. [CrossRef]
4. Bogomolov, E.; Kovalenko, V.; Rebryk, Y.; Bacchelli, A.; Bryksin, T. Authorship attribution of source code: A language-agnostic

approach and applicability in software engineering. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece, 23–28 August 2021;
pp. 932–944.

5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
6. Le, Q. Building high-level features using large scale unsupervised learning. In Proceedings of the 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8595–8598.
7. Teletin, M.; Czibula, G.; Codre, C. AutoSimP: An Approach for Predicting Proteins’ Structural Similarities Using an Ensemble

of Deep Autoencoders. In Knowledge Science, Engineering and Management; Douligeris, C., Karagiannis, D., Apostolou, D., Eds.;
Springer International Publishing: Cham, Switzerland, 2019; pp. 49–54.

8. Czibula, G.; Albu, A.I.; Bocicor, M.I.; Chira, C. AutoPPI: An Ensemble of Deep Autoencoders for Protein–Protein Interaction
Prediction. Entropy 2021, 23, 643. [CrossRef]

9. Deng, J.; Zhang, Z.; Marchi, E.; Schuller, B. Sparse autoencoder-based feature transfer learning for speech emotion recognition.
In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva,
Switzerland, 2–5 September 2013; pp. 511–516.

10. Tatar, D.; Czibula, G.S.; Mihis, A.D.; Mihalcea, R. Textual Entailment as a Directional Relation. J. Res. Pract. Inf. Technol. 2009,
41, 53–64.

11. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st International Conference
on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1188–1196.

12. Chuanxing, G.; Sheng-Jun, H.; Songcan, C. Recent Advances in Open Set Recognition: A Survey. IEEE Trans. Pattern Anal. Mach.
Intell. 2021, 43, 3614–3631.

13. Anvik, J.; Hiew, L.; Murphy, G.C. Who should fix this bug? In Proceedings of the 28th International Conference on Software
Engineering, Shanghai, China, 20–28 May 2006; pp. 361–370.

14. Fritz, T.; Ou, J.; Murphy, G.C.; Murphy-Hill, E. A degree-of-knowledge model to capture source code familiarity. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering, Cape Town, South Africa, 2–8 May 2010; Volume 1,
pp. 385–394.

15. Girba, T.; Kuhn, A.; Seeberger, M.; Ducasse, S. How developers drive software evolution. In Proceedings of the Eighth
International Workshop on Principles of Software Evolution (IWPSE’05), Lisbon, Portugal, 5–6 September 2005; pp. 113–122.

16. Bird, C.; Nagappan, N.; Murphy, B.; Gall, H.; Devanbu, P. Don’t touch my code! Examining the effects of ownership on software
quality. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, Szeged, Hungary, 5–9 September 2011; pp. 4–14.

http://doi.org/10.1016/j.future.2018.12.038
http://dx.doi.org/10.3390/math10101744
http://dx.doi.org/10.3390/e23060643

Mathematics 2022, 10, 2572 26 of 27

17. Thongtanunam, P.; McIntosh, S.; Hassan, A.E.; Iida, H. Revisiting code ownership and its relationship with software quality in
the scope of modern code review. In Proceedings of the 38th International Conference on Software Engineering, Austin, TX, USA,
14–22 May 2016; pp. 1039–1050.

18. Rahman, F.; Devanbu, P. Ownership, experience and defects: A fine-grained study of authorship. In Proceedings of the 33rd
International Conference on Software Engineering, Honolulu, HI, USA, 21–28 May 2011; pp. 491–500.

19. Krsul, I.; Spafford, E.H. Authorship analysis: Identifying the author of a program. Comput. Secur. 1997, 16, 233–257. [CrossRef]
20. Oman, P.W.; Cook, C.R. Programming style authorship analysis. In Proceedings of the 17th Conference on ACM Annual

Computer Science Conference, Kentucky, Louisville, 21–23 February 1989; pp. 320–326.
21. Spafford, E.H.; Weeber, S.A. Software forensics: Can we track code to its authors? Comput. Secur. 1993, 12, 585–595. [CrossRef]
22. Rosenblum, N.; Zhu, X.; Miller, B.P. Who wrote this code? Identifying the authors of program binaries. In European Symposium on

Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2011; pp. 172–189.
23. Burrows, S.; Tahaghoghi, S.M. Source code authorship attribution using n-grams. In Proceedings of the Twelth Australasian

Document Computing Symposium, Melbourne, Australia, 10 December 2007; pp. 32–39.
24. Frantzeskou, G.; Stamatatos, E.; Gritzalis, S.; Katsikas, S. Source code author identification based on n-gram author profiles. In

IFIP International Conference on Artificial Intelligence Applications and Innovations; Springer: Boston, MA, USA, 2006; pp. 508–515.
25. Tennyson, M.F. A Replicated Comparative Study of Source Code Authorship Attribution. In Proceedings of the 2013 3rd

International Workshop on Replication in Empirical Software Engineering Research, Baltimore, MD, USA, 9 October 2013;
pp. 76–83. [CrossRef]

26. Frantzeskou, G.; Stamatatos, E.; Gritzalis, S.; Chaski, C.E.; Howald, B.S. Identifying authorship by byte-level n-grams: The source
code author profile (SCAP) method. Int. J. Digit. Evid. 2007, 6, 1–18.

27. Ullah, F.; Jabbar, S.; AlTurjman, F. Programmers’ de-anonymization using a hybrid approach of abstract syntax tree and deep
learning. Technol. Forecast. Soc. Chang. 2020, 159, 120186. [CrossRef]

28. Alsulami, B.; Dauber, E.; Harang, R.; Mancoridis, S.; Greenstadt, R. Source code authorship attribution using long short-term
memory based networks. In European Symposium on Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 65–82.

29. Alon, U.; Zilberstein, M.; Levy, O.; Yahav, E. Code2vec: Learning Distributed Representations of Code. CoRR. 2018. Available
online: http://xxx.lanl.gov/abs/1803.09473 (accessed on 15 March 2021).

30. Ullah, F.; Naeem, M.R.; Naeem, H.; Cheng, X.; Alazab, M. CroLSSim: Cross-language software similarity detector using hybrid
approach of LSA-based AST-MDrep features and CNN-LSTM model. Int. J. Intell. Syst. 2022, 2022, 1–28. [CrossRef]

31. Mateless, R.; Tsur, O.; Moskovitch, R. Pkg2Vec: Hierarchical package embedding for code authorship attribution. Future Gener.
Comput. Syst. 2021, 116, 49–60. [CrossRef]

32. Mou, L.; Li, G.; Zhang, L.; Wang, T.; Jin, Z. Convolutional neural networks over tree structures for programming language
processing. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016;
pp. 1287–1293.

33. Piech, C.; Huang, J.; Nguyen, A.; Phulsuksombati, M.; Sahami, M.; Guibas, L. Learning program embeddings to propagate
feedback on student code. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 1093–1102.

34. Google. Google Code Jam Competition. Available online: https://codingcompetitions.withgoogle.com/codejam (accessed on 15
September 2021).

35. Petrik, J. GCJ Data Set. Available online: https://github.com/Jur1cek/gcj-dataset (accessed on 15 September 2021).
36. Simko, L.; Zettlemoyer, L.; Kohno, T. Recognizing and Imitating Programmer Style: Adversaries in Program Authorship

Attribution. Proc. Priv. Enhancing Technol. 2018, 2018, 127–144. [CrossRef]
37. Abuhamad, M.; AbuHmed, T.; Mohaisen, A.; Nyang, D. Large-scale and language-oblivious code authorship identification. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19
October 2018; pp. 101–114.

38. Caliskan-Islam, A.; Harang, R.; Liu, A.; Narayanan, A.; Voss, C.; Yamaguchi, F.; Greenstadt, R. De-anonymizing programmers via
code stylometry. In Proceedings of the 24th USENIX Security Symposium (USENIX Security 15), Washington, DC, USA, 12–14
August 2015; pp. 255–270.

39. Alrabaee, S.; Saleem, N.; Preda, S.; Wang, L.; Debbabi, M. Oba2: An onion approach to binary code authorship attribution. Digit.
Investig. 2014, 11, S94–S103. [CrossRef]

40. Caliskan, A.; Yamaguchi, F.; Dauber, E.; Harang, R.E.; Rieck, K.; Greenstadt, R.; Narayanan, A. When Coding Style Survives
Compilation: De-anonymizing Programmers from Executable Binaries. In Proceedings of the 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, CA, USA, 18–21 February 2018; pp. 1–13.

41. Frankel, S.F.; Ghosh, K. Machine Learning Approaches for Authorship Attribution using Source Code Stylometry. In Proceedings
of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 3298–3304.
[CrossRef]

42. Briciu, A.; Czibula, G.; Lupea, M. A deep autoencoder-based classification model for supervised authorship attribution. Procedia
Comput. Sci. 2021, 192, 119–128. [CrossRef]

43. Gu, Q.; Zhu, L.; Cai, Z. Evaluation Measures of the Classification Performance of Imbalanced Data Sets. In Computational
Intelligence and Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 461–471.

http://dx.doi.org/10.1016/S0167-4048(97)00005-9
http://dx.doi.org/10.1016/0167-4048(93)90055-A
http://dx.doi.org/10.1109/RESER.2013.12
http://dx.doi.org/10.1016/j.techfore.2020.120186
http://xxx.lanl.gov/abs/1803.09473
http://dx.doi.org/10.1002/int.22813
http://dx.doi.org/10.1016/j.future.2020.10.020
https://codingcompetitions.withgoogle.com/codejam
https://github.com/Jur1cek/gcj-dataset
http://dx.doi.org/10.1515/popets-2018-0007
http://dx.doi.org/10.1016/j.diin.2014.03.012
http://dx.doi.org/10.1109/BigData52589.2021.9671332
http://dx.doi.org/10.1016/j.procs.2021.08.041

Mathematics 2022, 10, 2572 27 of 27

44. Brown, L.; Cat, T.; DasGupta, A. Interval Estimation for a proportion. Stat. Sci. 2001, 16, 101–133. [CrossRef]
45. Freegle1643. Python Lexical Analyzer. Available online: https://github.com/Freegle1643/Lexical-Analyzer (accessed on 18

September 2021).
46. Rehurek, R.; Sojka, P. Gensim–Python framework for vector space modelling. NLP Centre Fac. Inform. Masaryk Univ. Brno Czech

Repub. 2011, 3, 2.
47. Boetticher, G.D. Advances in Machine Learning Applications in Software Engineering; IGI Global: Hershey, PA, USA, 2007.
48. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their

compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.
49. Lau, J.H.; Baldwin, T. An Empirical Evaluation of doc2vec with Practical Insights into Document Embedding Generation. In

Proceedings of the 1st Workshop on Representation Learning for NLP, Berlin, Germany, 11 August 2016 ; pp. 78–86.
50. Miholca, D.L.; Czibula, G. Software Defect Prediction Using a Hybrid Model Based on Semantic Features Learned from the

Source Code. In Proceedings of the Knowledge Science, Engineering and Management: 12th International Conference, KSEM
2019, Athens, Greece, 28–30 August 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 262–274. [CrossRef]

51. Miholca, D.L.; Czibula, G.; Tomescu, V. COMET: A conceptual coupling based metrics suite for software defect prediction.
Procedia Comput. Sci. 2020, 176, 31–40. [CrossRef]

52. Le, Q.V.; Mikolov, T. Distributed Representations of Sentences and Documents. Comput. Res. Repos. (CoRR) 2014, 1–9. [CrossRef]
53. Scikit-learn. Machine Learning in Python. Available online: http://scikit-learn.org/stable/ (accessed on 1 December 2021).
54. King, A.P.; Eckersley, R.J. Chapter 6—Inferential Statistics III: Nonparametric Hypothesis Testing. In Statistics for Biomedical

Engineers and Scientists; Academic Press: Cambridge, MA, USA, 2019; pp. 119–145.
55. Google. Online Web Statistical Calculators. Available online: https://astatsa.com/WilcoxonTest/ (accessed on 1 February 2022).
56. Schölkopf, B.; Williamson, R.C.; Smola, A.J.; Shawe-Taylor, J.; Platt, J.C. Support vector method for novelty detection. Adv. Neural

Inf. Process. Syst. 1999, 12, 582–588.
57. Tax, D.M.; Duin, R.P. Support vector data description. Mach. Learn. 2004, 54, 45–66. [CrossRef]
58. Khan, S.S.; Madden, M.G. One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014,

29, 345–374. [CrossRef]
59. Heflin, B.; Scheirer, W.; Boult, T.E. Detecting and classifying scars, marks, and tattoos found in the wild. In Proceedings of the

2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 23–27
September 2012; pp. 31–38.

60. Pritsos, D.A.; Stamatatos, E. Open-set classification for automated genre identification. In European Conference on Information
Retrieval; Springer: Berlin/Heidelberg, Germany, 2013; pp. 207–217.

61. Runeson, P.; Höst, M. Guidelines for Conducting and Reporting Case Study Research in Software Engineering. Empir. Softw. Eng.
2009, 14, 131–164. [CrossRef]

62. Briciu, A. AutoSoft Data. Available online: https://github.com/anamariabriciu/AutoSoft (accessed on 14 April 2022).
63. Maletic, J.; Marcus, A. Using latent semantic analysis to identify similarities in source code to support program understanding. In

Proceedings of the 12th IEEE Internationals Conference on Tools with Artificial Intelligence (ICTAI 2000), Vancouver, BC, Canada,
15 November 2000; pp. 46–53. [CrossRef]

http://dx.doi.org/10.1214/ss/1009213286
https://github.com/Freegle1643/Lexical-Analyzer
http://dx.doi.org/10.1007/978-3-030-29551-6_23
http://dx.doi.org/10.1016/j.procs.2020.08.004
http://dx.doi.org/10.1145/2740908.2742760
http://scikit-learn.org/stable/
https://astatsa.com/WilcoxonTest/
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
http://dx.doi.org/10.1017/S026988891300043X
http://dx.doi.org/10.1007/s10664-008-9102-8
https://github.com/anamariabriciu/AutoSoft
http://dx.doi.org/10.1109/TAI.2000.889845

	Introduction
	Problem Relevance and Difficulty
	Literature Review
	Features and Algorithms Used in the SAA Task
	The Google Code Jam Data Set
	Related Work

	Methodology
	Data Preprocessing and Representation
	Training
	Evaluation
	Classification
	Experimental Methodology

	Experimental Results
	Data Description and Analysis
	Results and Discussion
	Results
	Discussion

	Extension of the AutoSoft Classifier
	Classification Stage for the AutoSoftext Classifier
	Evaluation of AutoSoftext
	Testing
	Comparison to OneClassSVM

	Threats to Validity
	Conclusions and Future Work
	References

