New Z-Eigenvalue Localization Set for Tensor and Its Application in Entanglement of Multipartite Quantum States
Abstract
:1. Introduction
2. Preliminaries
2.1. Preliminaries for Tensors
2.2. Tensor Representation of Quantum States
3. New -Eigenvalue Localization Set and the Bounds for -Spectral Radius
4. The Geometric Measure of Entanglement of Multipartite Pure States
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ni, Q.; Qi, L.; Wang, F. An eigenvalue method for the positive definiteness identification problem. IEEE Trans. Automat. Control. 2008, 53, 1096–1107. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.; Qi, L.; Zhou, G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 2009, 31, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Michael, K.N. On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 2014, 62, 362–385. [Google Scholar]
- Lathauwer, L.; Moor, B.; Vandewalle, J. On the best rank-1 and rank-(R1,R2, …,RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 2000, 21, 1324–1342. [Google Scholar] [CrossRef]
- Panagakis, Y.; Kossaifi, J.; Chrysos, G.G.; Oldfield, J.; Nicolaou, M.A.; Anandkumar, A.; Zafeiriou, S. Tensor methods in computer vision and deep learning. Proc. IEEE 2021, 109, 863–890. [Google Scholar] [CrossRef]
- Kolda, T.G.; Mayo, J.R. Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 2011, 32, 1095–1124. [Google Scholar] [CrossRef] [Green Version]
- Kolda, T.G.; Mayo, J.R. An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 2014, 35, 1563–1581. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.-F.; Dai, Y.-H.; Nie, J. All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 2014, 35, 1582–1601. [Google Scholar] [CrossRef]
- Chen, L.; Han, L.; Zhou, L. Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 2016, 37, 290–319. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Han, L.; Yin, H.; Zhou, L. A homotopy method for computing the largest eigenvalue of an irreducible nonnegative tensor. J. Comput. Appl. Math. 2019, 355, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Chen, H.; Chen, Y. Tensor Eigenvalues and Their Applications; Springer: Singapore, 2018. [Google Scholar]
- Wei, Y.; Ding, W. Theory and Computation of Tensors; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Wang, G.; Zhou, G.; Caccetta, L. Z-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst. Ser. B 2017, 22, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computing and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the einstein podolsky rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Filip, R. Overlap and entanglement-witness measurements. Phys. Rev. A 2002, 65, 062320. [Google Scholar] [CrossRef] [Green Version]
- Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 1996, 77, 1413–1415. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 1996, 223, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shimony, A. Degree of entanglement. Ann. N. Y. Acad. Sci. 1995, 755, 675. [Google Scholar] [CrossRef]
- Wei, T.-C.; Goldbart, P.M. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 2003, 68, 042307. [Google Scholar] [CrossRef] [Green Version]
- Tamaryan, S.; Sudbery, A.; Tamaryan, L. Duality and the geometric measure of entanglement of general multiqubit w states. Phys. Rev. A 2010, 81, 052319. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Qi, L.; Zhang, G. Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A 2016, 93, 012304. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Liu, J.; Qin, Q. The geometric measure of entanglement of multipartite states and the Z-eigenvalue of tensors. Quntum. Inf. Process. 2022, 21, 102. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, G.; Ni, G. How entangled can a multi-party system possibly be? Phys. Lett. A 2018, 382, 1465–1471. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.; Flammia, S.T.; Eisert, J. Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 2009, 102, 190501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derksen, H.; Makam, V. Highly entangled tensors. Linear Multilinear A 2022, 70, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Teng, P. Accurate calculation of the geometric measure of entanglement for multipartite quantum states. Quntum. Inf. Process. 2017, 16, 181. [Google Scholar] [CrossRef] [Green Version]
- Friedland, S.; Kemp, T. Most boson quantum states are almost maximally entangled. Proc. Amer. Math. Soc. 2018, 146, 5035–5049. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.; Pearson, K.; Zhang, T. Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl. 2013, 438, 4166–4182. [Google Scholar] [CrossRef]
- Qi, L. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef] [Green Version]
- Lim, L. Singular values and eigenvalues of tensors: A variational approach. In Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 13–15 December 2005; pp. 129–132. [Google Scholar]
- Li, C.; Li, Y. An eigenvalue localization set for tensors with applications to determine the positive (semi-)definiteness of tensors. Linear Multilinear A 2016, 64, 587–601. [Google Scholar] [CrossRef]
- Hbener, R.; Kleinmann, M.; Wei, T.-C.; González-Guillén, C.; Gühne, O. Geometric measure of entanglement for symmetric states. Phys. Rev. A 2009, 80, 032324. [Google Scholar] [CrossRef]
- Wei, T.-C.; Severini, S. Matrix permanent and quantum entanglement of permutation invariant states. J. Math. Phys. 2010, 51, 092203. [Google Scholar] [CrossRef] [Green Version]
- Ors, R.; Dusuel, S.; Vidal, J. Equivalence of critical scaling laws for many-body entanglement in the lipkin-meshkov-glick model. Phys. Rev. Lett. 2008, 101, 025701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, M.; Markham, D.; Murao, M.; Owari, M.; Virmani, S. The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 2009, 50, 122104. [Google Scholar] [CrossRef] [Green Version]
- Comon, P.; Golub, G.; Lim, L.-H.; Mourrain, B. Symmetric tensors and symmetric tensor rank. SIAM. J. Matrix. Anal. A 2008, 30, 1254–1279. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.; Pearson, K.; Zhang, T. On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 2009, 350, 416–422. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, L.; Jiang, Z.; Liu, J.; Qin, Q. New Z-Eigenvalue Localization Set for Tensor and Its Application in Entanglement of Multipartite Quantum States. Mathematics 2022, 10, 2624. https://doi.org/10.3390/math10152624
Xiong L, Jiang Z, Liu J, Qin Q. New Z-Eigenvalue Localization Set for Tensor and Its Application in Entanglement of Multipartite Quantum States. Mathematics. 2022; 10(15):2624. https://doi.org/10.3390/math10152624
Chicago/Turabian StyleXiong, Liang, Zhanfeng Jiang, Jianzhou Liu, and Qi Qin. 2022. "New Z-Eigenvalue Localization Set for Tensor and Its Application in Entanglement of Multipartite Quantum States" Mathematics 10, no. 15: 2624. https://doi.org/10.3390/math10152624
APA StyleXiong, L., Jiang, Z., Liu, J., & Qin, Q. (2022). New Z-Eigenvalue Localization Set for Tensor and Its Application in Entanglement of Multipartite Quantum States. Mathematics, 10(15), 2624. https://doi.org/10.3390/math10152624