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Abstract: This paper seeks to establish a framework which operationalizes cognitive traits as a
portion of the predefined mastery level, the highest level expected to successfully perform all of the
relevant tasks of the target trait. This perspective allows us to use and interpret the cognitive trait
levels in relative quantities (e.g., %s) of the mastery level instead of relative standings (i.e., rankings)
on an unbounded continuum. To facilitate the proposed perspective, this paper presents an analytical
framework that has support on the [0, 1] trait continuum with truncated logistic link functions. The
framework provides a solution to cope with the chronic question of “relative standings or magnitudes
of learning outcome?” in measuring cognitive traits. The proposed framework is articulated relative
to the traditional models and is illustrated with both simulated and empirical datasets within the
Bayesian framework, estimated with the Markov chain Monte Carlo method.
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1. Introduction

The primary interest of the social and behavioral sciences is typically the traits of
human beings, where the developments of tools to model these traits are of critical theo-
retical and practical interest. Messick defined a trait as “a relatively stable characteristic
of a person . . . which is consistently manifested to some degree when relevant, despite
considerable variation in the range of setting and circumstances” [1]. According to [2], the
social and behavioral sciences encounter two major domains of human traits: cognitive and
affective. In the cognitive domain, researchers would like to model a wide range of traits:

Various classes of cognitive and neuropsychological functioning, including intelli-
gence, broad ability domains, and more focused domains (e.g., abstract reasoning and
categorical thinking; academic achievement; attention; cognitive ability; executive function;
language; learning and memory; motor and sensorimotor functions and lateral preferences;
and perception and perceptual organization/integration) [3] (p. 155).

In the affective domain, on the other hand, the researchers are customarily interested
in feelings or emotions, such as attitude or self-efficacy. Although the field of psychometrics
covers both of the domains, in educational measurement or learning science specifically,
the traits in the cognitive domain have been of primary interest.

Ref. [4], for example, defined the primary goal of educational and psychological
measurement as “the determination of how much of such a latent ability (trait) a person
possesses” (p. 3). They continued, “The underlying idea here is that, if one could physically
ascertain the ability of a person, this ruler would be used to tell how much ability a given
person has, the ability of several persons could be compared” (p. 3). As such, the current
work will be framed largely within the cognitive domain.

A cognitive trait has been conceptualized as an ability or proficiency to perform relevant
tasks to some degree (e.g., [4]). What does it mean to have the ability to do relevant tasks?
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What does it mean to have the ability to recall the brand of the phone you are using, to
compute 2 + 2, or to ride a bicycle? One natural answer could be “to have an ability is to
know how to do some relevant tasks to some degree”. To have the ability to name the brand
of a phone is to know how to name the brand of a phone, to have the ability to compute
2 + 2 is to know how to solve 2 + 2, and to have the ability to ride a bicycle is to know how
to ride a bicycle. In other words, a cognitive trait (i.e., the ability to do or knowledge how
to do) is manifested in performing the relevant tasks identified, regardless of whether the
target knowledge is related to knowledge-how or knowledge-that.

From the observations of the performance of related tasks, we infer the levels of the
target cognitive trait, that is, “how much ability a learner has acquired (or possessed) to
perform relevant tasks?” Therefore, to appropriately infer a cognitive trait level, the features
of the trait and their interdependencies should be agreed among the relevant experts and
carefully melted into these tasks. In other words, the domain (i.e., a complete list) of tasks
must be pre-defined to measure (especially, to measure) a cognitive trait.

Given a domain of tasks for a cognitive trait, we can naturally assume there is a
cognitive trait level that is expected to perform all of those tasks successfully. This, as the
highest expected level, should be called the mastery level. Under the same logic, there is a
level that is expected where one fails at all of those tasks, which is the lowest-level, and
which should be called the ignorance level. Then, the levels between these two boundaries
represent the sizes of the portions (parts) of the mastery. This induces an analytical frame-
work that maps the trait levels on a bounded continuum from the lowest level to the highest
(i.e., mastery) level. Consider an instrument of measurement (an examination or test) for a
problem-solving trait: “For any number from 1 to 9, find the number that makes 10 when
added to the given number” [5]. Let us further assume that there are only 10 tasks (i.e., the
10 tasks are the domain of the tasks) for the trait. Ignoring the measurement error and bias
for the moment, if a person fails to solve all of the 10 tasks, we would infer that this person
is at the lowest trait level. Likewise, if a person successfully solves all of the 10 tasks (again
temporarily ignoring the issue of measurement error and bias), we would conclude that
this person is at the mastery level.

To model the connections between the levels of cognitive (or affective) domain traits
(constructs or latent variables) and the observations from relevant tasks (items or indicators),
latent variable models (LVMs) are especially useful. LVMs include the factor models
(FMs), structural equation models (SEMs), and item response theory models (IRTMs). In
traditional LVMs, the trait levels have typically been assumed to be on the unbounded real
line continuum (i.e., from negative infinity to positive infinity), with a midpoint of zero.
This assumption, however, may be more due to the nature of the mathematical model
being employed than a theoretical belief that the levels of a trait can keep decreasing or
increasing indefinitely.

Although the traditional analytical framework has been proved to be useful in analyz-
ing the relationship among constructs or to measure the relative standing levels of cognitive
traits for the single point, group comparison, and/or summative assessment purposes, it
has limitations in continuous (i.e., longitudinal) and/or individually adaptive assessments,
such as formative assessment, the learning growth model, or real-time learning analytics
in the digital environment. Suppose that someone’s trait level is estimated as −1.5, with
an unbounded real line continuum. Although the (unbounded) continuum value is useful
for placing and differentiating the individuals’ relative location (i.e., ranking), it does not
directly provide information on the level of achievement or acquisition compared to a
mastery level before making additional efforts (some additional transformation techniques
will be discussed later in this paper).

In fact, researchers have proposed several options that better conceptualize and repre-
sent trait estimates differently. Perhaps the most popular, and simplistic, transforms the
latent variable estimates to a distribution with a designated mean and standard deviation
(e.g., µ = 100 and σ = 15, as for some intelligence test scores). Within the IRTM arena,
ref. [6] suggested a method using the number of correct scores as the basis for the item
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characteristic curves (ICCs) rather than the trait score; however, this approach was not
further developed, because the ICCs were dependent on the set of items included in a test
(i.e., test-specific). Reference [7] suggested a domain score that is an expected number-
correct score, derived by transforming an examinee’s IRTM trait estimate via a weighted
sum of each ICC. The authors argued that the domain scores are preferable in the context of
student qualification. Although this domain score approach enhances the interpretation of
the assessment result, it is still an indirect interpretation of the trait estimates and requires
transformations with IRT estimation results. More complex approaches, within IRTMs, Item
Maps, or Wright Maps [8] have been used to display both the person parameter (i.e., trait
level) and the item difficulty parameter estimates along a common scale. Based on this
approach, one can interpret a trait estimate of −1.5 as an examinee being expected to have
a 0.5 probability of correctly answering an item whose difficulty is at −1.5 on the normal
continuum (low difficulty). This interpretation, however, primarily describes the relation
between the trait and items (again, the expected probability of correct answer) rather than
the trait estimate itself, and it is still an indirect characterization/conceptualization of what
the person parameter means.

Several LVMs to conceive of the latent variables as bounded have also been suggested,
such as the Beta-Binomial model [9]. In this model, the person parameter represents a true
score in the [0, 1] metric with a Beta prior distribution, and the model is used as a method
for classifying the accuracy of the IRTMs [10]. Diagnostic classification models (DCMs;
ref. [11]), which provide each subject with a profile detailing the attributes (latent variables),
can also model latent categories. These models, however, are based on discrete traits—such
as dichotomous (0 = no-mastery status or 1 = mastery status) or polytomous (0/1/2/ . . . )
variables—to represent the stages of mastery and provide the expected probabilities of
stage mastery. Another popular assessment modeling technique, Bayesian networks (BNs;
ref. [12]), represent a set of latent variables and their conditional dependencies with a
directed acyclic graph (DAG). However, in the same way as with CDMs, the BNs also model
the latent variables as discrete, and provide probability estimates for each latent category.

For formative assessment, learning growth, or adaptive learning systems, which have
rapidly gained in popularity in recent years, the researchers, practitioners, educators,
and learners are in dire need of a new analytical framework that supports more direct
and intuitive uses and interpretations of ‘the magnitude of learning outcomes and its
changes.’ To help in the communication between the observations from the tasks and the
trait continuum of interest in such uses and demands, therefore, it would be useful to have
an analytical framework that facilitates the trait levels on the [0, 1] continuum as follows:

(1) Assigning zero (0) to the lower boundary (the lowest or ignorance level): a trait level
as an expected proportion of the succeeded tasks out of all of the tasks is 0 (or 0%);

(2) Assigning unit (1) to the upper boundary (the highest or mastery level): a trait level
for an expected proportion of the succeeded tasks out of all of the tasks is 1 (or 100%);

(3) Assigning a number between the 0 and 1 boundaries: a trait level as an expected
proportion of the succeeded tasks out of all of the tasks.

This paper proposes an analytical framework for measuring cognitive traits (so-called,
Cognitive Trait Model) based on truncated logistic functions to serve this purpose. First,
analytical specifications of the traditional and proposed models are presented. Second, the
various psychometric aspects of the proposed models are illustrated, alongside those of the
traditional models. Third, a simulated dataset and an empirical dataset are analyzed to
illustrate and evaluate the proposed model, using a Markov chain Monte Carlo (MCMC)
estimation method [13]. Lastly, this paper concludes with a discussion and suggested
future works.

2. Developments
2.1. Traditional Models

Let yij be the observed data of the ith person on the jth item (or task), and without loss
of generality, let the possible values for each yij be 1 (indicating successful completion of
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a task, a correct answer to an item, etc.) and 0 (indicating failure to complete a task, an
incorrect answer to an item, etc.). IRTMs [14,15], widely used LVMs, can be expressed as a
version of:

Pr(yij = 1|θi, aj, bj, cj) = cj + (1− cj)Ψ(aj(θi − bj)), (1)

where θi represents the level (score) of a cognitive trait for person i. The symbols aj, bj, and
cj represent the parameters for item j. Specifically, aj is often referred to as the slope or
discrimination parameter for the item, because it relates to how well an item differentiates
(or discriminates) among the people with lower and higher values along the θ continuum.
The symbol bj represents the location parameter for the jth item, often referred to as the
difficulty parameter for item j. Finally, cj is often referred to as the pseudo-guessing parameter,
reflecting the probability that even the least capable person will occasionally give a correct
response, that is, Pr

(
yij = 1|θ

)
> 0, due to guessing (e.g., the probability of giving a correct

response by probability is 0.25 on a selected-response item with four possible choices). The
symbol Ψ, referred to as link function (or item response function in the context of IRTMs), is a
monotonically increasing function that maps θ to the probability of yij = 1.

In traditional LVMs, the cumulative normal distribution function (i.e., normal ogive
function) and the logistic function are popular choices for Ψ, with the latter being more
common for IRTMs. In the case of choosing Ψ in Equation (1) to be a logistic function, this
yields the familiar three-parameter logistic (3PL) IRTM [15]:

Pr(yij = 1|θi, aj, bj, cj) = cj + (1− cj)×
exp(aj(θi − bj))

1 + exp(aj(θi − bj))
. (2)

Setting cj = 0, effectively assuming that guessing on items cannot yield a correct
answer, yields the two-parameter logistic (2PL) IRTM [14]:

Pr(yij = 1|θi, aj, bj) =
exp(aj(θi − bj))

1 + exp(aj(θi − bj))
. (3)

Finally, assuming all of the items have the same ability to discriminate among individ-
uals, setting aj = 1 yields the one-parameter logistic (1PL) IRTM or Rasch model [16]:

Pr(yij = 1|θi, bj) =
exp(θi − bj)

1 + exp(θi − bj)
. (4)

Whether logistic function or cumulative normal distribution function (i.e., normal
ogive function), all of the models in Equations (2)–(4) are supported on an entire real
number line for θ. In other words, the support (the set of θ points where the function is
not zero-valued) of these functions is from −∞ to +∞. (for information on defining the
latent distribution by assuming some non- or semi-parametric form, and simultaneously
estimating the distribution with item parameters, see [17].

2.2. Proposed Models

In order to derive link functions supported on the [0, 1] continuum, that is, the levels
of a cognitive trait assumed to be on a bounded 0 to 1 continuum (0 ≤ θ ≤ 1), one can
analytically transform the traditional 2-parameter logistic (2PL) IRTM function as follows.
First, let z be the function from Equation (3):

z =
exp(aj(θi − bj))

1 + exp(aj(θi − bj))
(5)

Subtracting 0.5 from z shifts the function to the left,

exp(aj
(
θi − bj

)
)

1 + exp(aj
(
θi − bj

)
)
− 1

2
. (6)



Mathematics 2022, 10, 2651 5 of 21

Creating a function that passes through the point (bj, 0) with the upper horizontal
asymptote 0.5 and lower horizontal asymptote −0.5. Next, multiplying the shifted function
by a factor δ stretches/shrinks the function in Equation (6) vertically:

δ

(
exp(aj

(
θi − bj

)
)

1 + exp(aj
(
θi − bj

)
)
− 1

2

)
. (7)

Lastly, adding a constant ε shifts the above function vertically:

δ

(
exp(aj

(
θi − bj

)
)

1 + exp(aj
(
θi − bj

)
)
− 1

2

)
+ ε. (8)

The resulting function in Equation (8) now passes through the point (bj, ε), with new
horizontal asymptotes +0.5δ + ε and −0.5δ + ε.

In order to make the above function in Equation (8) bounded on [0, 1], values for δ
and ε must be found so the function equals 0 when θ = 0 and the function equals 1 when
θ = 1. Substituting accordingly yields the system of two equations:

δ

(
exp(−ajbj)

1 + exp(−ajbj)
− 1

2

)
+ ε = 0

δ

(
exp(aj(1− bj))

1 + exp(aj(1− bj))
− 1

2

)
+ ε = 1

(9)

with unknowns δ and ε. Solving this system results in the following:

δ =
(1 + exp(aj(1− bj)))(1 + exp(ajbj))

exp(aj)− 1
,

ε =
1
2

δ−
(1 + exp(aj(1− bj)))

exp(aj)− 1
.

(10)

After substituting (10) in for δ and ε into the function in Equation (8), the function can
be simplified as:

1− exp(aj × θi)

1 + exp(aj
(
θi − bj

)
)
×

1 + exp(aj
(
1− bj

)
)

1− exp(aj)
. (11)

The resulting function (11) is a monotonically increasing link function with respect
to θi with [0, 1] support. Finally, paralleling the 3PL IRTM in Equation (2), a pseudo-
guessing parameter γj may be incorporated back into the function, yielding the desired
three-parameter cognitive trait model (3P CTM):

Pr(yij = 1|θi, αj, β j, γj) = γj + (1− γj)×
1− exp(αj × θi)

1 + exp(αj(θi − β j))
×

1 + exp(αj(1− β j))

1− exp(αj)
. (12)

In the 3P CTM, I is the person index (i = 1, . . . , n), j is the item index (j = 1, . . . , J), αj
is a CTM slope or discrimination parameter (similar to the a parameter in the traditional
model), βj is a CTM location (or difficulty) parameter (similar to the b parameter in the
traditional 2PL and 3PL IRTMs), and γj is a CTM pseudo-guessing parameter for item j.

Further parallels to IRTMs may also be derived. Setting γj = 0 yields a two-parameter
cognitive trait model (2P CTM):

Pr(yij = 1|θi, αj, β j) =
1− exp(αj × θi)

1 + exp(αj(θi − β j))
×

1 + exp(αj(1− β j))

1− exp(αj)
. (13)
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In addition, setting αj to an arbitrary positive value, such as αj = 10, yields a one-
parameter cognitive trait model (1P CTM):

Pr(yij = 1|θi, β j
)
=

1− exp(10× θi)

1 + exp(10×
(
θi − β j

)
)
×

1 + exp(10× (1− β j))

1− exp(10)
. (14)

For someone who wants the value fitted to Beta(2, 2) cdf instead of 10, use 9.3827
which is estimated with fminsearch in MATLAB (2020). All of the 1, 2, and 3P CTMs are
not undefined when αj = 0. Pr(yij = 1|θi, αj, β j, γj) in 3P CTM Equation (12) converges to
θi + γj, and Pr

(
yij = 1|θi, αj, β j

)
in 2P CTM Equation (13) converges to θi as αj approaches

to 0, according to L’Hôpital’s rule (e.g., Larson et al., 1999).
Figure 1 depicts a selection of 2P CTM Task Characteristic Curves (Item Characteristic

Curves (ICCs) in the context of IRTMs) based on Equation (13). One of the well-known
and attractive features of IRTMs is that the item location and person parameters can
be presented on the same scale. For the proposed CTMs, the difficulty of an item also
represents a location along the latent continuum, in this case from 0 to 1. As such, βj = 0
represents the lowest location for item j, that is, the easiest item that everyone is expected
to answer correctly, while βj = 1 represents the highest location for item j, that is, the most
difficult item, expected to be correctly answered only by a person at the mastery level.
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Figure 1. The top panel illustrates 2-Parameter Cognitive Trait Model Item Characteristic Curves (2P
CTM ICCs) over different β values (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) when α = 10. The bottom
panel illustrates 2P CTM ICCs over different α values (1, 5, 10, 20, 50, 100) when β = 0.

The second technical facet is the CTM discrimination parameter αj, which describes
how well an item can differentiate between the people with traits below the item location
and those with traits above the item location. Figure 2 depicts 2P CTM link function based
on Equation (13), showing the different item discriminations. As with the traditional IRTMs,
the discrimination parameter of the proposed model also reflects the steepness of the link
function, such that the greater the value of αj, the steeper the curve, and hence the better
the item can discriminate at that location along the θ continuum. Conversely, the lower the
value of αj, the flatter the curve, and hence the less effectively the item can discriminate,
because the probability of a correct response at low trait levels is similar to that at high
trait levels.
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Figure 2. 2-Parameter Cognitive Trait Model Item Characteristic Curves over different α values (5, 10,
15, 20, 25) when β = 0.5.

The third component of the link function is the pseudo-guessing parameter γj, which
conventionally characterizes the probability of the least capable person obtaining the correct
answer due to guessing. Figure 3 depicts several 3P CTM link functions, based on Equation
(12), constructed to show the different pseudo-guessing parameters. In the traditional
3PL models, this parameter represents the height of the lower asymptote of an ICC, and
it shows the probability of yij = 1 for a person with a very low (lower asymptote) trait
score. For the 3P CTM, however, γj represents the probability of getting a correct response
when a person is at the lowest boundary, Pr(yij = 1|θi = 0), without introducing a low-left
asymptote concept. Table 1 summarizes the types and interpretations of the scores over the
different models.
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Figure 3. 3-Parameter Cognitive Trait Model Item Characteristic Curves over different α values (5, 10,
15, 20, 25) and γ values (0, 0.05, 0.1, 0.15, 0.2) when β = 0.5.

Table 1. Trait Level Interpretations over Different Measurement Models.

Classical Test Theory
Model

Diagnostic
Classification Model

Logistic
IRT Model and Factor

Model
Cognitive Trait Model

Type Continuous Discrete Continuous Continuous

Range 0 to total score 0 or 1 (−∞, +∞) [0, 1]

Interpretation of 0 All answers were
wrong No-mastery status Mean of trait *

Ignorance level: The level of trait at
which none of the tasks are expected

to be successfully performed.

Interpretation of 0.5 Half of answers were
correct

50% chance of
mastery status **

Half SD above mean of
trait *

Half of the mastery: The level of trait
at which 50% of the tasks are
expected to be successfully

performed

Interpretation of 1 All answers
were correct Mastery status One SD above mean of

trait *

Mastery level; The level of trait at
which all of the tasks are expected to

be successfully performed

* 50% chance of answering correctly for the item difficulty value equal to the score 0 for 1, 2PL IRTMs; ** Probability
of mastery status.
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2.3. Likelihood Function and Markov Chain Monte Carlo Estimator

In the same way as those used in the traditional models, the likelihood function of
the proposed models can be defined analytically without great difficulty. Furthermore,
by virtue of previous work developing the estimator for the traditional model, it can be
relatively straightforward to develop the Marginal Maximum Likelihood (MML; ref. [18])
estimator and other Bayesian estimates (expected a posteriori [EAP], maximum a posteriori
[MAP]; refs. [17,19,20]), and MCMC for the proposed models.

During the last few decades, the MCMC estimation option has become an explosively
popular technique for estimating a variety of statistical models, including IRTMs. Most im-
portantly, this simulation-based estimation option enables one to simultaneously estimate
both the items’ and the subjects’ parameters. Recently, in the context of IRTMs, this MCMC
estimation has proved to be useful by providing great flexibility in dealing with a variety of
modeling situations, including polytomous responses [21], nominal responses [22], missing
data [21], hierarchical models [23], and so forth. For a more thorough treatments of the
MCMC estimation in other psychometric models, see [24].

Beyond these modeling flexibilities, most importantly, an MCMC estimator can simul-
taneously estimate both the item and the person parameters, so that all of the parameter
estimates appropriately reflect the estimation uncertainties of the other parameters. Fur-
thermore, the MCMC estimation for the proposed models is as straightforward as the
traditional model cases, as will be shown using the general purpose and freely available
MCMC software, WinBUGS [25] to estimate both the person and the item parameters for
the proposed models.

2.4. MCMC Specifications

The joint density specification for MCMC estimation of a 3P CTM can be expressed as:

n

∏
i=1

J

∏
j=1

Pr(yij|θi, αj, β j, γj)Pr(θi|a∗θ , b∗θ )Pr(αj|µα, σ2
α)Pr(β j|a∗β, b∗β)Pr(γj|a∗γ, b∗γ), (15)

where
yij|θi, αj, β j, γj ∼ Bern[Pr(yij = 1|θi, αj, β j, γj)], (16)

Pr(yij = 1|θi, αj, β j, γj) = γj + (1− γj)×
1− exp(αj × θi)

1 + exp(αj(θi − β j))
×

1 + exp(αj(1− β j))

1− exp(αj)
, (17)

θi ∼ Beta(a∗θ , b∗θ ), (18)

αj ∼ N+(µα, σ2
α) or LN(µa, σ2

a ), (19)

β j ∼ Beta(a∗β, b∗β), and (20)

γj ∼ Beta(a∗γ, b∗γ). (21)

Several aspects of the above specification are worth addressing. First, in contrast with
the traditional IRT model, the proposed models assume that the latent variable follows
a Beta distribution, with two hyper-parameters a∗θ and b∗θ . These two parameters can be
determined empirically or purposefully by a researcher. Note that, while the standard Beta
distribution with a [0, 1] support interval can be easily generalized to an arbitrary interval
using a linear transformation, the standard Beta distribution is adapted in this paper for
modeling the person and the location parameter specifically with a [0, 1] interval. Note
also that the traditional models (e.g., 2PL) would allow the discrimination parameter to be
negative for fitting items with incorrectly scored. However, the CTM α parameter settings
in Equation (21) only allow positive slopes. Unlike the traditional IRTMs, the CTMs only
allow a positive slope, and as such cannot detect the aberrant items that are negatively
related to the construct.



Mathematics 2022, 10, 2651 11 of 21

Many practical applications of the traditional models specify arbitrary values for the
hyper-parameters to resolve the location and scale indeterminacies; the most popular choice
is a normal mean = 0 and variance = 1 for the MML or MCMC estimators. Likewise, the
CTMs also require one to specify values for a∗θ and b∗θ , such as a∗θ = 2 and b∗θ = 2. If these
hyper-parameters are unknown, these can also be handled by hyper-prior distribution(s).
For the discrimination parameters in (21), recognize that αj is often used to specify a prior
distribution that is restricted to the positive real line either with N+ (a normal distribution
truncated to the positive real line distribution) or with LN (a log-normal distribution).
Again, the hyper-parameters µα and σ2

α are determined by the researcher, and the dis-
tributional specification of the discrimination parameter for the proposed models is the
same as that of the traditional IRTMs. While the traditional models assume an unbounded
continuum for the difficulty or location parameter, for the proposed model β j, it is con-
tinuous but is bounded (from 0 to 1). Therefore, as seen in Equation (17), it is natural to
adapt a [0, 1] continuous distribution, such as a standard Beta distribution, where a∗β and
b∗β are the hyper-parameters that can be specified by the researcher. Therefore, similar to
the traditional models, the difficulty and the person parameters are also located on the
same [0, 1] continuum for the proposed models. Finally, in the traditional models, the
pseudo-guessing parameters are the lower asymptote parameters and reflect the probability
of a correct answer on the item when the proficiency is very low. For the proposed models,
the pseudo-guessing parameters γj are also bounded by 0 and 1, and the Beta distribution
can be the natural choice, as seen in Equation (21) with the two hyper-parameters, a∗γ and a∗γ.
The next section of the paper illustrates the simultaneous estimation of the person and item
parameters for the CTMs, using the MCMC estimator within the WinBUGS software [25].

3. Illustrations
3.1. Illustration with a Simulated Dataset

In this part of the illustration, I analyzed a simulated item responses dataset to evaluate
the parameter replicability of the proposed models. In other words, I investigated how well
the proposed model parameters are replicated, using a simulated dataset generated from
the known item and person parameters. The details of these analysis steps are as follows.

First, generate 1000 person parameters from Beta(2, 2) distribution. Second, using
the generated person parameters and the 20 items parameter values in Table 1, compute
the probability of getting the right answer for all of the items using Equation (13). Third,
generate the 20 item response data for each person as:{

yij = 1 if Pr(yij = 1|θi, αj, β j) > Uni(0, 1)
yij = 0 if Pr(yij = 1|θi, αj, β j) ≤ Uni(0, 1)

, (22)

where Uni (0, 1) is a uniform distribution ranges from 0 to 1. Then, fit the 2P CTM in Equa-
tion (13) with the following prior distribution specifications (assuming prior independence
among the parameters):

θi ∼ Beta(2, 2), (23)

αj ∼ LN(7.5, 0.1),
β j ∼ Beta(2, 2).

(24)

Identical to the empirical data illustration case, I used the same Beta(2, 2) for the prior
distributions of both the θ and β parameters, and these prior distributions for the latent
variable and item parameters. A log-normal distribution LN(7.5, 0.1) is also used for each
αj prior distribution (Appendix A gives the WinBUGS code for this analysis). The model
was run with three chains with different starting values which are determined by the
software. The first 2000 iterations were discarded as burn-in. Each chain was run for 3000
more iterations after burn-in, yielding 9000 iterations for use in summarizing the marginal
distributions for all of the parameters. Convergence under the MCMC estimation has a
different meaning than under the ML methods: a Markov chain is considered converged
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when it becomes stationary, and this can be examined visually with trace plots and the
diagnostic statistics developed by Brooks–Gelman–Rubin (BGR; ref. [26]).

In the outputs, no chain gets stuck in certain areas of the parameter space for all of the
parameters, and all three chains of each parameter are mixed together. In other words, in
this simulation data analysis, no trace plot of Markov chain was found unstationary after
the burn-in period. Another way to visually inspect the convergence is the BGR diagnostic
statistic. This ANOVA-type diagnostic compares within- and among-chain variance, and
WinBUGS displays the BGR diagnostic statistic (red-line) when the “bgr diag” button is
pressed in the “Sample monitor tool”. The values around 1 indicate convergence, with 1.1
considered an acceptable limit [26,27]. The BGR diagnostic statistic also showed satisfactory
convergence as the ratio (red) curves for all of the parameters approach 1. The marginal
densities for the parameters are mostly unimodal and asymmetric, although some are
asymmetric. Due to the space limitations, these trace plots are not provided in this paper.
The results in their entirety can be requested from the author of this paper.

Table 2 gives the summary statistics of the marginal distributions for the item pa-
rameters and the first twenty person parameters. Table 2 also includes the true values for
the item and person parameters. I examined the following summary statistics regarding
the parameter replicability for the 2P CTM with the simulation data. First, I examined
the correlation between the true parameter values and the point (i.e., the median of the
marginal density) estimates. Second, for evaluating the bias of point estimates, I employed
mean bias (MB) and mean relative bias (MRB) as:

MB = ∑NP
i=1[ρ̂i − ρi]/NP, (25)

MRB = ∑NP
i=1[(ρ̂i − ρi)/ρi]/NP, (26)

where ρi was the true value of ith parameter; ρ̂i was the ith parameter point estimate
given the estimation method converged; and NP was the number of parameters. Third, for
evaluating the point estimates, I examined the root mean squared error (RMSE) with the
following definitions:

RMSE =
[
∑NP

i=1 (ρ̂i − ρi)
2/NP

]1/2
. (27)

Table 2. Simulation Data Marginal Density Summary Statistics.

Para. True Mean Median SD Para. True Mean Median SD Para. True Mean Median SD

α1 5.000 5.166 5.083 0.600 β1 0.100 0.107 0.107 0.060 θ1 0.320 0.287 0.286 0.072
α2 5.000 4.784 4.717 0.704 β2 0.200 0.163 0.172 0.071 θ2 0.281 0.270 0.268 0.069
α3 5.000 4.316 4.289 0.753 β3 0.300 0.211 0.227 0.079 θ3 0.133 0.157 0.152 0.060
α4 5.000 4.105 4.137 0.837 β4 0.400 0.302 0.322 0.077 θ4 0.814 0.729 0.732 0.067
α5 5.000 3.674 3.873 1.221 β5 0.500 0.544 0.533 0.083 θ5 0.261 0.233 0.230 0.070
α6 5.000 3.389 3.438 0.927 β6 0.600 0.667 0.636 0.097 θ6 0.429 0.506 0.508 0.075
α7 5.000 3.465 3.376 0.541 β7 0.700 0.856 0.857 0.081 θ7 0.109 0.123 0.118 0.056
α8 5.000 4.690 4.662 0.759 β8 0.800 0.796 0.781 0.073 θ8 0.439 0.411 0.409 0.075
α9 5.000 4.736 4.690 0.373 β9 0.900 0.944 0.953 0.042 θ9 0.566 0.662 0.663 0.071
α10 5.000 5.480 5.413 0.463 β10 1.000 0.937 0.944 0.044 θ10 0.419 0.321 0.319 0.073
α11 10.000 9.890 9.733 1.060 β11 0.100 0.063 0.062 0.037 θ11 0.344 0.352 0.349 0.076
α12 10.000 11.740 11.680 1.458 β12 0.200 0.187 0.190 0.025 θ12 0.641 0.755 0.758 0.068
α13 10.000 10.120 10.090 0.968 β13 0.300 0.304 0.305 0.016 θ13 0.764 0.761 0.765 0.064
α14 10.000 10.790 10.760 0.962 β14 0.400 0.391 0.391 0.013 θ14 0.863 0.862 0.867 0.055
α15 10.000 9.271 9.262 0.826 β15 0.500 0.480 0.480 0.013 θ15 0.935 0.893 0.899 0.051
α16 10.000 10.940 10.910 0.969 β16 0.600 0.600 0.600 0.012 θ16 0.748 0.762 0.764 0.065
α17 10.000 9.936 9.911 1.017 β17 0.700 0.721 0.720 0.019 θ17 0.637 0.615 0.616 0.075
α18 10.000 9.509 9.487 1.147 β18 0.800 0.831 0.825 0.034 θ18 0.492 0.542 0.543 0.076
α19 10.000 10.600 10.500 1.352 β19 0.900 0.900 0.895 0.040 θ19 0.303 0.316 0.314 0.073
α20 10.000 12.460 12.250 1.358 β20 1.000 0.957 0.961 0.029 θ20 0.642 0.570 0.571 0.076
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As seen in Table 3, the MB values are low (i.e., less than 0.1) for all three parameters.
The MB values for the β and θ parameters are especially low (i.e., less than 0.01). All three
of the parameters’ MRB values are also low (i.e., less than 0.05; that is, the bias size relative
to a parameter value is less than 5%). The β and θ parameters’ RMSE values are also
low (i.e., less than 0.05). The RMSE values (i.e., 0.962; more than 0.05) of the α parameter
shows the parameter estimation is relatively unstable than the β and θ parameters. It is
recommended that readers evaluate the proposed model by noting the instability of the α
parameter estimation. Lastly, the correlations between the true parameter values and the
estimates are high (i.e., greater than 0.947) for all three parameters. In Figure 4, the scatter
plots of true person trait values versus the 2P CTM estimates are shown, that also represent
a linear relationship between the true values and the estimates.

Table 3. Statistics for the Parameter Replicability Analysis.

Parameter NP MB MRB RMSE Pearson’s r

α 20 −0.087 −0.040 0.962 0.968
β 20 −0.002 −0.032 0.050 0.987
θ 1000 −0.004 0.021 0.071 0.947
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Table 4 also provides several interesting aspects of the person parameter estimates
among the different models. First, θTrue is highly correlated with all of the other three
estimates with similar degrees (i.e., around 0.94 coefficients). Second, the Spearman’s rho
coefficient between θ̂2PL and θ̂2PTL is perfect as 1. In other words, the rank order between the
two model estimates is exactly the same in the simulated data case (especially for these 20
items). Third, θ̂2PTL is highly correlated (i.e., >0.99) with θ̂CP, but the correlation coefficients
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are less than those between θ̂2PL and θ̂2PTL. That means, although θ̂CP and θ̂2PL are both a
score from 0 to 1 and highly correlated, θ̂2PL and θ̂2PTL are more statistically similar.

Table 4. Correlation Table of the Simulation Data Person Parameter Estimates.

θTrue θ̂CP θ̂2PL θ̂2PTL

θTrue

Pearson’s r 1.000 0.944 ** 0.944 ** 0.947 **
Spearman’s

rho 1.000 0.945 ** 0.947 ** 0.947 **

θ̂CP

Pearson’s r 0.944 ** 1.000 0.993 ** 0.995 **
Spearman’s

rho 0.945 ** 1.000 0.996 ** 0.995 **

θ̂2PL

Pearson’s r 0.944 ** 0.993 ** 1.000 0.997 **
Spearman’s

rho 0.947 ** 0.996 ** 1.000 1.000 **

θ̂2PTL

Pearson’s r 0.947 ** 0.995 ** 0.997 ** 1.000

Spearman’s
rho 0.947 ** 0.995 ** 1.000 ** 1.000

** Correlation is significant at the 0.01 level (2-tailed); θTrue is the true trait given 2P CTM is correct model; θ̂CP is
the correct answer ratio (i.e., the number of correctly answered items/the total number of items) estimate; θ̂2PL is
2PL estimate; θ̂2PTL is 2P CTM estimate.

The interpretation of the high correlations between the parameters of the two model
frameworks is as follows. CTM’s link function was analytically derived by transforming
IRTM’s link function, the logistic function. Therefore, it is quite natural that the parameters
of the two models have similar properties and are highly correlated. However, because
the individual parameter in CTM has a certain value in the 0 to 1 bounded continuum,
the ‘conceptualization’ and ‘interpretation’ of the parameter are different. Thus, the usage
would be different for the different purposes of the assessments, such as summative vs.
formative assessments. These different usages will be described in more detail in the
discussion section.

Note that both θ̂2PL and θ̂2PTL are based on LVMs, and θ̂CP is an average of the
observed variables. For example, in the simulation dataset, the 809th and 231st subjects’
θ̂CP are both 0.8 (80% correct). However, the θ̂2PTL are different as 0.8064 (interpreted as
80.640% of the mastery level, or the trait level at which 80.64% of the tasks are expected
to correctly be answered) for the 809th subject with a response vector {1, 1, 1, 1, 0, 1, 1,
1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0} and 0.7741 (interpreted as 77.41% of the mastery level,
or the trait level at which 77.41% of the tasks are expected to correctly answered) for the
231st subject with a response vector {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0}.
This means that, although the averages of the observed variables (θ̂CP) are the same, the
LVM-based estimates (θ̂2PTL) can be different, because θ̂2PTL is taking into account the
different characteristics (i.e., difficulties and/or discriminations) of the items (see Table 2
for the population item difficulty parameter values). For the 211st subject with a response
vector {1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, θ̂2PL = −1.284 and θ̂2PTL = 0.2037.
The θ̂2PL value of −1.284 provides a relative standing information as “1.284 SD below
than average”. However, the θ̂2PTL value of 0.2037 can be interpreted as “20.37% of the
mastery level, or the trait level at which 20.37% of the tasks are expected to be correctly
answered”. In sum, this simulated dataset analysis demonstrates that it is possible not only
to satisfactorily estimate all of the item and person parameters, but also to successfully
replicate the proposed 2P CTM parameters.

3.2. Illustration with an Empirical Dataset

To illustrate the proposed models, I analyzed the item responses data originally
provided by [28]. These were responses from 1000 examinees to five dichotomously scored
items on the Section 6 of the Law School Admissions Test (LSAT). There are two reasons
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for choosing this example as follows. First of all, this example has been used in a wide
variety of LVMs, especially IRTM studies. Second, all of the items were in the multiple
choice format with five response options. Therefore, the 3P CTM in Equation (12) can be
demonstrated with this dataset.

For the MCMC estimation, the model was fitted with the following prior distribution
specifications (assuming prior independence among the parameters):

θi ∼ Beta(2, 2), (28)

αj ∼ LN(5, 10), (29)

β j ∼ Beta(2, 2), and (30)

γj ∼ Beta(7, 25). (31)

The same Beta(2, 2) is used for both the θ and β parameters’ prior distributions, to
reflect a moderately strong and symmetric belief on the parameters around 0.5. Obviously,
other a priori knowledge and empirical evidences of the θ and β distributions can be
incorporated by choosing different values of the shape parameters. Beta(2, 2) is symmetric
with 0.5 mean, variance as (α∗ × β∗)/

{
(α∗ + β∗)2 × (α∗ + β∗ + 1)

}
= 4/80 = 0.05, and it

is flatter than the normal distributions (i.e., less informative or relatively diffuse than the
normal prior). Given the assumption that the chance of having a correct response increases
monotonically with latent trait, using a log-normal normal distribution, αj ∼ LN(5, 10),
which is also relatively diffuse, ensures that each αj > 0.

Because the assessment is a five-response option multiple choice format, as a moderately
informative prior out of several distributions, Beta(7, 25) has been adapted as the prior
distribution of γ. Beta(7, 25) mode is (α∗− 1)/(α∗+ β∗− 2) = 6/30 = 0.2, mean is α∗/(α∗+
β∗) = 7/32 = 0.21875, and the variance is (α∗ × β∗)/

{
(α∗ + β∗)2 × (α∗ + β∗ + 1)

}
=

175/33792 ≈ 0.00517. Note that Beta(7, 25) is a Beta distribution for reflecting the five
choices item pseudo-guessing parameter (i.e., 1/Number of Choices = 1/5 = 0.2). Other Beta
distributions could be adapted to model the multiple choice items, e.g., Beta distributions
with mode as (α∗ − 1)/(α∗ + β∗ − 2) = 1/Number of Choices. Note that the sensitivity
analysis of the prior selection on the estimates would be an important issue in MCMC. In
general, the prior sensitivity is a function of the data size, i.e., a prior selection will be more
influential to the estimates as the data size gets smaller.

The WinBUGS code for this analysis is given in Appendix A. The model was run with
five chains. The first 1000 iterations were discarded as burn-in, and each chain was run
for 1000 more iterations after burn-in, yielding 5000 iterations for use in summarizing the
marginal distributions for all of the parameters. The trace plot (i.e., chain history) is a plot
of the MCMC iteration number against the value of the draw of the parameter at each
iteration. In the chain history, no chain gets stuck in certain areas of the parameter space,
and all five chains of each parameter are mixed together. In this dataset result, the ratio
(red) curves for all of the parameters approach to 1. In the MCMC outputs, the marginal
densities are mostly unimodal and asymmetric, with some of them are asymmetric. Due
to space limitations, the chain history and BGR diagnostic plots are not provided in this
manuscript. The results in their entirety can be requested from the author of this paper.
Accordingly, Table 5 contains the summary statistics of the marginal distributions for the
item parameters and the first five-person parameters. The overall analysis of the results
not only shows that the 3P CTM (all of the item and person parameters) can be estimated
satisfactorily with the LSAT data, but also shows that one can straightforwardly analyze
the proposed models via the MCMC estimation option with conventional MCMC software,
such as WinBUGS (Appendix A gives the code for this analysis).
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Table 5. LSAT Data Marginal Density Summary Statistics.

3PL IRTM 3P CTM

Parameter Mean Median SD 2.5% Perc. 97.5% Perc. Parameter Mean Median SD 2.5% Perc. 97.5% Perc.

A1 1.08 1.03 0.31 0.65 1.83 α1 8.86 8.60 8.60 1.70 6.52
a2 0.96 0.88 0.42 0.47 2.04 α2 1.25 0.95 0.95 1.17 0.02
a3 1.41 1.26 0.65 0.62 3.26 α3 2.61 2.18 2.18 2.44 0.06
a4 0.84 0.79 0.29 0.46 1.54 α4 1.98 1.96 1.96 1.42 0.03
a5 0.85 0.83 0.22 0.49 1.36 α5 5.21 5.19 5.19 1.03 3.33
b1 −2.50 −2.45 0.52 −3.64 −1.59 β1 0.08 0.08 0.08 0.04 0.01
b2 −0.58 −0.61 0.43 −1.38 0.30 β2 0.43 0.42 0.42 0.21 0.08
b3 0.34 0.33 0.24 −0.11 0.84 β3 0.67 0.70 0.70 0.18 0.21
b4 −1.10 −1.09 0.42 −1.94 −0.27 β4 0.35 0.32 0.32 0.20 0.05
b5 −2.13 −2.06 0.51 −3.29 −1.27 β5 0.13 0.11 0.11 0.08 0.02
c1 0.26 0.25 0.10 0.10 0.47 γ1 0.33 0.33 0.33 0.10 0.16
c2 0.26 0.25 0.10 0.09 0.49 γ2 0.38 0.39 0.39 0.05 0.26
c3 0.23 0.22 0.08 0.09 0.37 γ3 0.20 0.19 0.19 0.07 0.09
c4 0.25 0.25 0.09 0.09 0.46 γ4 0.45 0.47 0.47 0.07 0.29
c5 0.27 0.26 0.10 0.10 0.48 γ5 0.44 0.44 0.44 0.10 0.26
θ1 −1.75 −1.75 0.75 −3.26 −0.26 θ1 0.14 0.12 0.12 0.09 0.02
θ2 −1.75 −1.76 0.75 −3.22 −0.26 θ2 0.14 0.13 0.13 0.08 0.02
θ3 −1.74 −1.72 0.74 −3.21 −0.30 θ3 0.14 0.13 0.13 0.08 0.02
θ4 −1.36 −1.35 0.77 −2.89 0.12 θ4 0.19 0.17 0.17 0.11 0.03
θ5 −1.36 −1.35 0.77 −2.91 0.12 θ5 0.19 0.17 0.17 0.11 0.03

For the guessing parameters in Table 5, the CTM guessing parameters tend to be bigger
than those from the PL model. This result also clearly shows the differences between the
corresponding parameters of the two models. In the case of the PL model, the guessing
parameter value (c1 = 0.26) can be interpreted as the probability of getting the right answer
for the first item is 0.26 for someone whose latent trait level is negatively very low (theoreti-
cally, it requires the low-left asymptote concept). In the case of the CTM, the CTM guessing
parameter estimate (γ1 = 0.33) can be straightforwardly interpreted as the probability of
getting the right answer for the first item is 0.33 for a person at the lowest (a trait level for
0% chance of successfully completing any task) level.

Table 6 also provides the association measures of the person parameter estimates
among the different models. Note that all of Spearman’s rho coefficients between the IRTM
and CTM estimates are high (i.e., >0.85), but those are not perfect 1 as in Table 4. In other
words, the ranking information between the two models (i.e., 2PL IRTM and 2P CTM; 3PL
IRTM and 3P CTM) are not exactly same for this empirical data simulation dataset. This
difference would be due to the difference in the number of items (i.e., 20 items vs. 5 items).
In sum, this simulated dataset analysis demonstrates that it is possible to satisfactorily
estimate all of the 3P CTM parameters.

Table 6. Correlation Table of the LSAT Data Person Parameter Estimates.

θ̂2PL θ̂2PTL θ̂3PL θ̂3PTL

θ̂2PL

Pearson’s r 1.000 0.953 ** 0.985 ** 0.940 **
Spearman’s

rho 1.000 0.869 ** 0.948 ** 0.922 **

θ̂2PTL

Pearson’s r 0.953 ** 1.000 0.987 ** 0.986 **
Spearman’s

rho 0.869 ** 1.000 0.896 ** 0.918 **

θ̂3PL

Pearson’s r 0.985 ** 0.987 ** 1.000 0.980 **
Spearman’s

rho 0.948 ** 0.896 ** 1.000 0.957 **

θ̂3PTL

Pearson’s r 0.940 ** 0.986 ** 0.980 ** 1.000
Spearman’s

rho 0.922 ** 0.918 ** 0.957 ** 1.000

** Correlation is significant at the 0.01 level (2-tailed).
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4. Discussion

This paper makes several contributions to psychometrics. First, this paper proposes a
perspective of operationalizing the quantity of a cognitive domain trait (such as knowledge,
skill, ability, expertise, intelligence, achievement, competence, and proficiency) as a level
between two boundaries. (i.e., the lowest ignorance level and the highest mastery level).
This perspective enables us to conceptualize and interpret the trait levels as a relative
magnitude to the mastery level, instead of relative standings on an unbounded continuum.
The perspective makes us rethink the question of “relative standings or magnitudes?” on
cognitive trait levels and provides an option to cope with it. The placement of a person
parameter’s boundaries as 0 and 1 allows us to conceptualize a person’s ability level, based
on the construction’s 0 (ability level where no tasks can be performed correctly) and 1
(ability level where all tasks are performed correctly). Thus, such conceptualization of
the person parameter value facilitates the usages and interpretations in domain mastery
and/or learning growth over time/stimulus of a person. This new framework will be able
to better respond to the demands of digital assessments, which require th e interpretation
and analysis of individual growth and change beyond inter-individual comparisons, such
as formative assessment, learning progression/growth, or adaptive learning systems.

Second, for the above point of view, this paper presents an analytical framework for
cognitive domain traits: cognitive trait models (CTM) which have supports on the [0, 1]
latent continuum using truncated logistic functions. After illustrating how the new model
parameters can be estimated and replicated via the MCMC estimation method within a
Bayesian framework, the second primary contribution becomes possible. Specifically, it is
possible to simultaneously estimate both the item and the person parameters by making
minor modifications of the MCMC specifications of the traditional model (two illustrations
were exemplified, with program syntaxes provided). The implementation illustrations
provide modeling accessibility to applied researchers who are interested in adopting the
proposed models.

Third, due to the popularity of the logistic function family, the above contributions
of this paper have great potential to be extended beyond psychometrics. Since initially
introduced by [29], the logistic function and variants of it have proved useful for modeling
a wide variety of phenomena in diverse research domains, such as population ecology [30],
technological innovation infusion [31], biological and genetics [32], artificial neural net-
works [33,34], and nonlinear growth processes [35,36]. Due to such a wide range of
applications of the logistic function family, the proposed framework with [0, 1] support
may have great potential to provide theoretically and/or practically sound analytical option
in diverse fields.

Note that, as articulated earlier, the link function of CTM is analytically derated
from the IRTMs’ logistic function. Therefore, the mathematical/analytical properties
of the two model frameworks are similar. However, because the person parameters of
CTM are bound to 0 and 1, the interpretations and usages are different from those of
the IRTMs. The CTM is useful for criterion/domain-referenced and/or within-person
comparisons, such as formative assessment, learning analytics, and learning progression
model applications. In addition, the IRTMs, as is already well known, are useful for the
use and interpretation of norm-referenced or summative assessment/testing, with the
primary purpose of operationalizing the differences between the subjects. It is important to
understand the difference between the two modeling frameworks, and accordingly to use
them appropriately for the purposes of making relevant interpretations.

It should be noted that the proposed framework requires the clarity and stability
of the mastery level, which is a cognitive level where all of the tasks are expected to be
successfully performed. Therefore, the meanings and interpretations of the CTM model
parameters are subject to the degree of identification and specifications of the domain of
the tasks (as the traditional framework does). Note that the interpretations and inferences
of the CTMs also require the assumption of “random samples from the domain of tasks”, as
the other traditional frameworks do. In the proposed framework, because the trait quantity
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is a number from the 0 to 1 continuum, the uncertainties of the domain of tasks (especially
in the top range) would impact the whole metric of a trait. Analytical investigations,
adjustments, and treatments for such issues (for example, more difficult or easy tasks are
added to the domain; equating or vertical scaling) remain as future research topics.

Although the applicability of the proposed models is imminent for the traits in the
cognitive domain, it is not imminent for the traits in the affective domain (e.g., beliefs
or attitudes; ref. [2]). In the affective domain, a negative estimate from the traditional
models could be more useful to conceptualize or interpret. An attempt to integrate the
proposed framework into the affective domain induces bounded affective continuums, such
as from “completely not believe” to “completely believe”, or from “completely disagree”
to “completely agree”. Such applications would require a substantial amount of theoretic
considerations for each affective trait, and remains as future work for the experts.

In the last few decades, IRTMs [6] based on the logistic function with unbounded
support have been popular measurement models in the educational and psychological
domain. Although this study focuses on introducing a new conceptualization of the trait
level itself, the proposed models can be considered as a type of IRTM, so called Truncated
Logistic IRTMs (i.e., 1, 2, 3PTL IRTMs). From this point of view, the straightforward con-
nection between the person and item difficulty parameters (i.e., when θ = β, the probability
of getting an item right is always 0.5) is lost in CTMs. In other words, the probability of
getting an item right when θ = β depends on α in the CTMs. Considering the CTMs as a
type of IRTM would lead to a need for IRTM-specific features and analyses, such as test
characteristic curves (TCCs), item information functions (IIFs), test information functions
(TIFs), standard error of measurement (SEM), or model-parameter invariance investigation,
etc. [37,38]. In particular, the TCC and TIF for the CTMs will be useful improvements,
because they allow us to investigate the relationship between observations and trait levels
at the level of the task domain, not at the item level. Furthermore, a didactic presentation
with a walkthrough of the modification on the original and the transformed sigmoid with
other dataset examples would be beneficial to someone who would like to understand
more details of the analytic characteristics of the CTM. Such extensions and articulations
are left to future research.

Beyond the conceptualization and interpretability of the model parameters, other
modeling aspects (e.g., the robustness of the parameter invariance, model fits, sample or
item size requirements) should be further evaluated for someone who is considering the
new models.

It would be interesting to investigate how the CTM trait levels are numerically different
from the DCM or the Beta-Binomial model [9] estimates. Note that other traditional LVMs
(such as IRTMs, DCMs, or FMs) and CTMs are not within a nested structure. Therefore, the
comparisons of these aspects would require an intense series of investigations (e.g., Monte
Carlo simulation studies varying several conditions: ground truth models for generating
data, sample sizes, and/or number of tasks, etc.) which also remain subject to future work.
Lastly, the traditional psychometric modeling options have been vigorously extended,
including multi-latent traits, polytomous observables, longitudinal, and multi-level/nested
structure, etc. [39]. As this paper has sought to demonstrate, one may implement these
extensions for the proposed analytical framework by virtue of the Bayesian framework,
which is flexible in dealing with a variety of modeling situations. Such developments are
eagerly awaited.
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Appendix A. WinBUGS Codes for 1P, 2P, and 3P Cognitive Trait Models

# 3P CTM
model

{
for (i in 1: n) {

for (j in 1: J) {
p[I, j] <- gamma[j] + (1-gamma[j])*(1-exp(alpha[j]*theta[i]))/(1+exp

(alpha[j]*(theta[i]-beta[j])))*(1+exp(alpha[j]*(1-beta[j])))/(1-exp(alpha[j]))
Y[i, j] ~ dbern(p[I, j])

}
theta[i] ~ dbeta(2, 2)

}
# Priors

for (j in 1:J) {
alpha[j] ~ dlnorm(5, 0.1)
beta[j] ~ dbeta(2, 2)
gamma[j] ~dbeta(7,25)

}
}

# 2P CTM
model

{
for (i in 1: n) {
for (j in 1: J) {

p[i, j] <- (1-exp(alpha[j]*theta[i]))/(1+exp(alpha[j]*(theta[i]-beta[j])))
*(1+exp(alpha[j]*(1-beta[j])))/(1-exp(alpha[j]))

Y[I, j] ~ dbern(p[i, j])
}
theta[i] ~ dbeta(2, 2)

}
for (j in 1:J) {

alpha[j] ~ dlnorm(5, 0.1) # dlnorm(7.5, 1) for the Simulation Data
beta[j] ~ dbeta(2, 2)

}
}
# 1P CTM
model

{
for (i in 1: n) {
for (j in 1: J) {

p[i, j] <- (1-exp(alpha[j]*theta[i]))/(1+exp(alpha[j]*(theta[i]-beta[j])))
*(1+exp(alpha[j]*(1-beta[j])))/(1-exp(alpha[j]))

Y[I, j] ~ dbern(p[i, j])
}
theta[i] ~ dbeta(2, 2)

}
for (j in 1:J) {

alpha[j] <- 10
beta[j] ~ dbeta(2, 2)

}
}
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