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Abstract: Metastasis detection in lymph nodes via microscopic examination of histopathological
images is one of the most crucial diagnostic procedures for breast cancer staging. The manual
analysis is extremely labor-intensive and time-consuming because of complexities and diversities
of histopathology images. Deep learning has been utilized in automatic cancer metastasis detection
in recent years. Due to the huge size of whole-slide images, most existing approaches split each
image into smaller patches and simply treat these patches independently, which ignores the spatial
correlations among them. To solve this problem, this paper proposes an effective spatially sensitive
learning framework for cancer metastasis detection in whole-slide images. Moreover, a novel spatial
loss function is designed to ensure the consistency of prediction over neighboring patches. Specifically,
through incorporating long short-term memory and spatial loss constraint on top of a convolutional
neural network feature extractor, the proposed method can effectively learn both the appearance
of each patch and spatial relationships between adjacent image patches. With the standard back-
propagation algorithm, the whole framework can be trained in an end-to-end way. Finally, the regions
with high tumor probability in the resulting probability map are the metastasis locations. Extensive
experiments on the benchmark Camelyon 2016 Grand Challenge dataset show the effectiveness of
the proposed approach with respect to state-of-the-art competitors. The obtained precision, recall,
and balanced accuracy are 0.9565, 0.9167, and 0.9458, respectively. It is also demonstrated that the
proposed approach can provide more accurate detection results and is helpful for early diagnosis of
cancer metastasis.

Keywords: deep learning; convolutional neural network; long short-term memory; spatial constraint;
cancer metastasis detection

MSC: 68 Computer science

1. Introduction

Cancer is currently one of the major causes of death for people all over the world. It is
estimated that 14.5 million people have died of cancer, and by 2030, this figure is expected
to exceed 28 million. The most common cancer in women is breast cancer. Every year,
2.1 million people around the world are diagnosed with breast cancer according to the
World Health Organization (WHO) [1]. Due to the high rate of mortality, considerable
efforts have been made in recent decades to detect breast cancer from histological images
so as to improve survival through early breast cancer detection or through breast tissue
diagnosis.

Because lymph nodes are the first site of breast cancer metastasis, the metastasis
identification of lymph nodes is one of the most essential criteria for early detection [2].
In order to analyze the characteristics of tissues, pathologists examine the tissue slices
under a microscope [3]. The tissue slices are traditionally directly observed with the
histopathologist’s naked eye, and visual data are assessed manually based on prior medical
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knowledge. The manual analysis is highly time consuming and labor intensive due to the
diversities of histopathological images, especially for tiny lymph nodes. At the same time,
depending on the histopathologist’s expertise, workload, and current mood, the manual
diagnostic procedure is subjective and has limited repeatability. In addition, in the face of
escalating diagnostic demands with increased cancer incidence, there is a serious shortage
of pathologists [4]. Hundreds of biopsies must be diagnosed daily by pathologists, thus it is
almost impossible to thoroughly examine entire slides. However, if only regions of interest
are investigated, the chance of incorrect diagnosis may increase. To this end, in order to
increase the efficiency and reliability of pathological examination, it is required to develop
automatic detection techniques. Therefore, computer aided diagnosis (CAD) is established
to improve the consistency, efficiency, and sensitivity of metastasis identification [5].

However, automated metastasis identification in sentinel lymph nodes from a whole-
slide image (WSI) is extremely challenging for the following reasons. First, hard imitations
in normal tissues usually look similar in morphology to metastatic areas, which leads to
many false positives. Second, there is a great variety of biological structures and textures of
metastatic and background areas. Third, the varied circumstances of histological image
processing (for example, staining, cutting, sampling, and digitization) enhance the vari-
ations of the appearance of the image. This usually happens as tissue samples are taken
at different time points or from different patients. Last but not least, WSIs are incredibly
huge, approximately 100,000 pixels × 200,000 pixels, and may not be directly input into
any existing methods for cancer identification. Another problem for automatic detection
algorithms is how to analyze such a large pixel image effectively.

Artificial intelligence (AI) technologies have developed rapidly in recent years and
achieve outstanding breakthroughs, especially in computer vision, image processing and
analysis. In histopathological diagnosis, AI has also exhibited potential advantages. With
the help of AI-assisted diagnostic approaches, valuable information about diagnostics
may be speedily extracted from big data, alleviating the workload of pathologists. At
the same time, AI-aided diagnostics have more objective analysis capabilities and can
avoid subjective discrepancies of manual analysis. To a certain extent, artificial intelligence
helps not only to improve work efficiency but also to reduce the rate of misdiagnosis by
pathologists.

In the past few decades, much work on breast histology image recognition has been
done. Early research used hand-made features to capture tissue properties in specific
areas for automatic detection [6–8]. However, hand-made features are not sufficiently
discriminative to describe a wide variety of shapes and textures. With the emergence of
powerful computers, deep learning technology has made remarkable progress in a variety
of domains, including natural language understanding, speech recognition, computer
vision, and image processing [9]. These methods have also been successfully employed
in various modalities of medical images for classification, detection, and segmentation
tasks [10–12]. Recently, deep convolutional neural networks (CNNs) have been utilized to
detect cancer metastases that can learn more effective feature representation and obtain
higher detection accuracy in a data-driven approach [13–15]. As the size of WSI is extremely
huge, most studies first extracted tiny patches (for example, 256 pixels × 256 pixels) from
WSI, then deep CNN was trained to categorize these tiny patches to be tumorous or
normal. The probability map was subsequently produced at the patch level and used
for the metastasis identification of the original WSI. The spatial relationships were not
explicitly modeled, as the patches were independently extracted and trained. Consequently,
the predictions from adjacent regions may not be consistent in the inference stage.

In summary, the research problem in this paper is:

• Is it possible to further improve the performance of cancer metastasis detection through
efficiently modeling and exploring the spatial structure information of image patches
in WSIs?

The main contributions of this paper are:
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• This paper proposes a new spatially sensitive learning architecture that integrates
CNN and long short-term memory (LSTM) in a unified framework to automatically
detect the metastasis locations, as shown in Figure 1.

• Inspired by the observation that adjacent regions are interrelated, an LSTM layer
is employed to explicitly describe the spatial correlation, at the same time, spatial
constraint is also imposed on the loss function to further improve performance.

• Unlike previous approaches, the proposed model not only takes into account the
appearance of each patch, but the spatial information between adjacent areas is also
embedded into the framework to make better predictions.

Figure 1. Overview of the proposed framework. CNN and LSTM are two important components
of this framework. When a grid of patches is input, the CNN feature extractor will encode every
patch as a given-length vector representation. Given the grid of patch representations, the LSTM
component models the spatial relationships between adjacent patches and outputs the probability of
every patch being tumorous. In addition, spatial constraint is also imposed on the loss function to
further improve the performance.

The rest of this paper is organized as follows. Section 2 provides an overview of the
relevant literature. In Section 3 we describe the proposed approach in detail. Section 4
demonstrates the experimental results and comparisons. Finally, this paper is summarized
in Section 5.

2. Related Work

In this section, the approaches to breast cancer diagnosis are briefly reviewed.
In earlier years, most approaches employed hand-crafted features for cancer metastasis

detection. In Reference [6], authors distinguished the malignant from the benign based
on several hand-crafted textural features. Some studies merged two or more hand-crafted
features to enhance the accuracy of detection. In Reference [7], graph, haralick, local binary
patterns (LBP), and intensity features were used for cancer identification of H&E stained
histopathological images. In Reference [8], histopathological images were represented
via fusing color histograms, LBP, SIFT, and some kernel features, and the significance of
these pattern features was also studied. However, it takes considerable effort to design
and validate the hand-made features. In addition, the properties of tissues with great
variations in morphology and texture cannot properly be represented. Therefore, the
detection performance of these methods based on hand-crafted features is poor.

In Reference [16], authors developed a deep learning system to study the stromal
properties of breast tissues associated with tumor for classifying whole slide images (WSIs).
Authors in Reference [13] utilized AlexNet to categorize breast cancer in histopathological
images to be malignant or benign. Authors in Reference [14] developed two distinct CNN
architectures to classify breast cancer of pathology images. Single-task CNN was applied to
identify malignant tumors. Multi-task CNN was used for analyzing the properties of benign
and malignant tumors. The hybrid CNN unit designed in Reference [15] could fully exploit
the global and local features of images, and thus obtained superior prediction performance.
In Reference [17,18], authors proposed a dense and fast screening architecture (ScanNet)
to identify metastatic breast cancer in WSIs. Several methods based on transfer learning
are also proposed to detect breast cancer [19–21]. However, these above approaches deal
with each patch of an image individually. In reality, each image patch and its adjacent
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ones generally share spatial correlations that are crucial for prediction. If one patch is a
tumor, its adjacent patches are more likely in the tumor region, as they are situated in the
neighboring areas.

In order to fully capture the spatial structure information between adjacent patches,
authors in Reference [22] applied a conditional random field (CRF) on patch features, which
are first obtained from a CNN classifier. However, the method [22] adopted a two-step
learning framework, so the spatial relationships between neighboring patches are not
available for the CNN feature extractor. Authors in Reference [23] employed 2D long
short-term memory (LSTM) on patch features to learn spatial structure information, due to
higher computation cost of the end-to-end learning scheme, the two-stage learning strategy
was also adopted in their experiments [23].

This paper presents an alternative spatially sensitive learning architecture to fully
explore spatial relationships between neighboring patches. This model is composed of a
CNN feature extractor, LSTM, and spatial loss constraint. The standard back-propagation
algorithm can be utilized to train this architecture in an end-to-end way, and a post-
processing step is no longer required. As a result, the spatial structure information between
adjacent patches is available for the CNN feature extractor, which can benefit from joint
learning with the spatial constraint components.

3. Method

The proposed spatially sensitive learning method is introduced in this section. Its over-
all framework is shown in Figure 1. CNN and LSTM are two important components of this
framework. When a grid of patches is input, the CNN feature extractor will encode every
patch as a given-length vector representation. Given the grid of patch representations, the
LSTM component models the spatial relationships between adjacent patches and outputs
the probability of every patch being tumorous. The details of each component are presented
in the next subsections.

3.1. Patch Representation with CNN

As the size of a whole-slide image (WSI) is extremely huge, smaller image patches (e.g.,
256 pixels × 256 pixels) are first extracted from WSIs, then a deep convolutional neural
network (CNN) is utilized to learn effective feature representations of these image patches.
Convolutional neural network f (•) is generally composed of convolution, spatial pooling,
and non-linear activation layers, which may map an image patch p to a vector with a given
length z ∈ Rd, i.e.,

z = f (p; W1, · · · , Wi, · · · , WN) (1)

where Wi is the learned weights for the ith layer.
The proposed architecture can be compatible with a wide range of network structures

with no restrictions. In this paper, the widely used ResNet [24] is utilized as the feature
extractor due to its balance between learning capability and network scale. Specifically, the
ResNet-34 architecture is used in the experiments, which proves to be powerful for image
classification tasks, to obtain comprehensive feature representation for every patch. The
activations after the average pooling layer are employed as the feature representation of
the image patch.

3.2. Spatial Modeling with LSTM

Post-processing (e.g., smoothing and averaging adjacent predictions) is a simple
approach to integrate spatial relationships between adjacent regions. However, patch
structures are highly complicated, and it is generally inefficient to post-process the spatial
correlations. As the special structure of LSTM makes it easy to train and avoid gradient
exploding or vanishing problems during back-propagation [25], the LSTM model is thus
applied to learn spatial dependencies between neighboring patches when taking the grid
of patch representations as input.
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As illustrated in Figure 2, each LSTM unit has three gates, i.e., output gate ot+1, input
gate it+1, and forget gate ft+1, to guide the flows of relevant information. It also includes a
memory cell ct and a hidden state ht at each time step t. The memory cell is designed to
learn how to forget or update the past memories. Therefore, the memory cell and hidden
state can be updated as follows:

ft+1 = σ
(

W f • [ht, zt+1] + b f

)
it+1 = σ(Wi • [ht, zt+1] + bi)

ot+1 = σ(Wo • [ht, zt+1] + bo)

mt+1 = tanh(Wm • [ht, zt+1] + bm)

ct+1 = ft+1 ∗ ct + it+1 ∗mt+1

ht+1 = ot+1 ∗ tanh(ct+1)

(2)

where [ht, zt+1] represents the concatenation of current hidden state ht and the input zt+1.
The weight matrices for the forget, input, output, and memory gates are W f , Wi, Wo, and

Wm, respectively. The sigmoid function σ(q) = (1 + e−q)
−1 will squash the input q to [0, 1].

In the proposed framework, the final output of the LSTM denotes the probability of each
patch being tumorous.

Figure 2. Structure of a single LSTM cell.

3.3. Optimize with Spatial Constraint

The predicted label, in fact, may not only depend on the current input alone, but also
is related to its neighbors in the residing spatial domain, as shown in Figure 3. Given an
image patch and its neighbors, in order to predict their categories, this paper proposes a
new spatial constraint loss function to further model the spatial structure information in
the loss layer.
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Figure 3. An illustration of a spatially structured constraint. The blue circle represents the center of
an image patch; the centers of its neighboring patches are represented by yellow circles.

Let ϕ(•) denote the learned classifier of the proposed method, y∗ and yn (n = 1,
2, · · · , N) represent the ground truth labels of current image patch x∗ and its neighbors
xn (n = 1, 2, · · · , N), respectively. Ideally, the predictions of patches should be consistent
with their ground truth labels. That is, |ϕ(x∗)− ϕ(xn)| should be smaller when y∗ = yn.
Otherwise, |ϕ(x∗)− ϕ(xn)| should be larger if y∗ 6= yn.

In the experiments, tumorous and normal patches are labeled as 1 and 0, respectively.
For patches with the same label, the predicted loss is defined as:

Lsame = [ϕ(x∗)− ϕ(xn)]2 (3)

For those patches coming from different categories, the predicted loss is encoded as:

Ldi f = [1− ϕ(xn)] ∗ [1− ϕ(x∗)] + ϕ(xn) ∗ ϕ(x∗) (4)

By integrating Equations (3) and (4), the spatial constraint loss is defined as:

Lspatial =
1
N

N

∑
n=1

[
(1− |y∗ − yn|) ∗ Lsame + |y∗ − yn| ∗ Ldi f

]
(5)

Through minimizing Lspatial , Lsame enforces the predictions of x∗ and xn to be similar
when y∗ = yn, whereas Ldi f makes the learned classifier ϕ(•) maximally distinguish x∗

and xn if they belong to different categories.
Finally, for the whole training dataset, the optimization objective of the proposed

framework is defined as:
min ∑

x∗∈Dtrain

(
LCE + βLspatial

)
(6)

where Dtrain denotes the training dataset, LCE is the cross-entropy loss, and hyper-parameter
β is cross-validated in the experiments.

In order to solve Equation (6), stochastic gradient descent (SGD) is employed with
mini-batch to train the deep network. The parameters of the network are updated by
back-propagation (BP) strategy.

After generating the probability map of the WSI, the non-maxima suppression algo-
rithm [26,27] is applied to obtain the coordinates of cancer metastases, which repeats two
steps until there are no values larger than a certain threshold in the heatmap: (1) search the
maximum and its corresponding coordinate; (2) all values in the range of a given radius
around the maximum are set to 0.

4. Experiments
4.1. Experimental Setup

Extensive experiments are conducted on the Camelyon16 challenge dataset (https:
//camelyon17.grand-challenge.org/Data/, accessed on 15 July 2021), which was obtained

https://camelyon17.grand-challenge.org/Data/
https://camelyon17.grand-challenge.org/Data/
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from two different institutes: University Medical Centre Utrecht (Utrecht UMC) and
Radboud University Medical Centre (Radboud UMC). These two medical centers utilize
different digital slide scanners to produce the TIF WSIs. The TIF WSIs from Utrecht UMC
were created with a 40× objective lens (level-0 pixel size, 0.226 × 0.226 µm) through a digital
slide scanner (NanoZoomerXR Digital slide scanner C12000-01; Hamamatsu Photonics).
The TIF WSIs from Radboud UMC were created with a 20× objective lens (level-0 pixel size,
0.243 × 0.243 µm) through a digital slide scanner (Pannoramic 250 Flash II; 3D Histech). The
Camelyon16 challenge dataset contains 400 TIF WSIs in total, including 110 tumorous and
160 normal WSIs for training, and 50 tumorous and 80 normal WSIs for test. Among the test
WSIs, Test_049 and Test_114 are excluded from the evaluation, as noted by the Camelyon16
organizers. Pathologists have carefully annotated the cancer metastasis locations and
regions in the format of binary mask, with a few exceptions reported in [27].

Most WSIs are larger than 60,000 pixels × 100,000 pixels. The size of the whole
Camelyon16 dataset is approximately 700 gigabytes. The WSIs are usually saved in a
pyramid structure of multi-resolution, with several down-sampled versions of each source
image [28]. The source image with the highest resolution is labeled as level-0, whereas
other down-sampled images are labeled as level-1 to level-n.

Given a test WSI, the goal is to detect whether this slide includes tumors and locate
the areas of these tumors. The model is trained with smaller image patches extracted from
the slides, due to the huge size and limited number of slides. A patch is labeled to be
tumorous if there is at least one pixel marked as a tumor within the patch area. In general,
just a tiny part of the slide includes biological tissue of interest, whereas the majority is
background and fat. To reduce computation, the Otsu algorithm [29] is applied to remove
the background regions of every training slide.

Training the model was challenging because of the tumorous class imbalance among
the large number of patches. There are 10,000 to 400,000 patches (median 90,000) in each
slide. However, only 20 to 150,000 tumorous patches (median 2000) are found in each
tumor slide. The proportion of tumorous patches is between 0.01% and 70% (median 2%).
An effective sampling strategy is adopted to avoid bias towards slides that include more
patches (both normal and tumorous). First, “normal” or “tumorous” class is selected with
the same probability. Second, a slide containing this class of patches is selected uniformly
at random, and then patches are sampled from that slide. In comparison, several existing
approaches pre-sampled a number of patches from each slide [30], which restricts the
diversity of the training patches.

In the training stage, several strategies of data augmentation are applied to increase
the samples of tumorous patch. The input patches are rotated by four multiples of 90°,
then flipped left to right, and rotations are repeated. As pathological slides have no
canonical directions, the eight directions are all valid. In addition, color jitter is added
using torchvision tranforms with the parameters used in [27,31]: hue with a maximum
delta of 0.04, saturation with a maximum delta of 0.25, contrast with a maximum delta of
0.75, and brightness with a maximum delta of 64/255. By subtracting 128 and dividing
128, the pixel values of patches are normalized. The proposed approach is implemented
using PyTorch-1.6.0 [32] and trained using NVIDIA GeForce GTX 2080 Ti GPU. In order to
optimize the whole architecture, RMSProp [33] is employed with the learning rate of 0.01
and momentum of 0.9.

In the test stage, a tumorous probability heatmap is generated by performing pre-
diction over patches in a sliding window, with a stride of 64 across the whole slide. For
every patch, rotations and left–right flip are applied to generate the prediction results in the
eight directions, and the patch-level tumor prediction is finally obtained by averaging the
prediction results in the eight directions. The maximum value in the tumorous probability
heatmap is taken as prediction result of each slide.
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4.2. Evaluation Metrics

Two Camelyon16 evaluation metrics are employed to assess the performance of tumor
region localization and WSI classification. The area under receiver operating characteristic
(area under ROC, AUC) [34] is utilized for the evaluation of slide-level classification
performance. The free response operating characteristic (FROC) curve [35] is utilized for
performance evaluation in tumor detection and localization.

The FROC curve is defined as a sensitivity plot versus the average number of false
positives per image under various probability truncation values. To be specific, for each
heatmap, a list of coordinates and related predictions will first be generated. The maximum
prediction value is recorded among all the coordinates within each annotated tumor area.
FPs are the number of coordinates that fall outside tumor areas. The FROC score is defined
as the average sensitivity at six predefined false positive rates: 1/4, 1/2, 1, 2, 4, and 8 false
positives. Higher average FROC score means better detection performance.

In order to produce the points for FROC calculation, Camelyon16 challenge winner
thresholded the heatmap to generate a bitmask, and recorded a single prediction value
for every connected component in the bitmask. Instead, based on a certain probability
map, the non-maxima suppression algorithm [26,27] is employed to get cancer metastasis
coordinates.

4.3. Results and Discussion

First, the convergence speed of the proposed method is validated through the loss and
accuracy on the training and validation sets, as shown in Figures 4–6.

Figure 4. Patch classification accuracy of each batch throughout training.

Figure 5. Patch training loss of each batch.
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Figure 6. Patch loss and accuracy on validation set.

The effectiveness of the proposed spatially structured constraint is also evaluated.
Compared with the baseline ResNet-34, the proposed model is composed of ResNet-34
and LSTM. The proposed method employed both LSTM and spatial constraint loss to learn
the 2D spatial relationships between adjacent patches. It is observed from Table 1 that
after adding the spatial constraint in the network, the FROC score is improved by 6.3%,
compared with the baseline ResNet-34. It is implied the network architecture without
spatially structured information only obtains a suboptimal solution. In addition, the
spatially structured constraint, as an effective “plug-in”, can also be seamlessly integrated
into various network architectures. For the case without spatial constraint loss, it only
utilized the cross-entropy loss during the training. The grid of patch representations
is transformed into a sequence as the input of LSTM, so only 1D spatial relationships
between neighboring patches are considered. That is why it only marginally improves the
performance (approximately 1%), compared with the baseline ResNet-34.

Table 1. Performance evaluation of the spatially structured constraint.

Methods FROC Score AUC Score

Baseline ResNet-34 0.7463 0.9524

The proposed framework
without spatial constraint loss 0.7542 0.9681

The proposed framework 0.8093 0.9834

Furthermore, the approach is compared with several state-of-the-art approaches,
which were submitted by different top institutions and organizations to the Camelyon16
challenge. It is observed from Table 2 that the proposed approach is superior to other
methods in both tumor localization and WSI classification tasks. In comparison with other
state-of-the-art methods, which employed different CNN models to extract patch feature
and did not take into account spatial correlations among image patches, the proposed ap-
proach not only extracts discriminative feature for each image path, but also embeds spatial
information between adjacent neighbors into the image patch to make better predictions. It
should be noted that detection performance of the proposed approach outperformed that
from pathologists by about 7%, which highlights the proposed approach’s capability to
detect metastasis in lymph node biopsies. The PR and ROC curves of the proposed method
are shown in Figure 7, where precision is 0.9565, recall = 0.9167, F1 score = 0.9362, balanced
accuracy = 0.9458, accuracy = 0.9531. The confusion matrix of the proposed method, shown
in Figure 8, provides better insight into the achieved results. It is demonstrated that the
proposed approach not only provides an objective solution, but also achieves more accurate
results in localization.
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Table 2. Performance evaluation on Camelyon16 dataset.

Approaches FROC Score AUC Score

Human performance 0.7325 0.9660
C Radboud Uni. (DIAG) 0.5748 0.7786
Middle East Tech. Uni. 0.3889 0.8642

L HMS, Gordan Center, MGH 0.7600 0.9763
NLP LOGIX co. USA 0.3859 0.8298

EXB Research co. 0.5111 0.9156
DeepCare Inc. 0.2439 0.8833

University of Toronto 0.3822 0.8149

The proposed framework 0.8093 0.9834

Figure 7. PR curve and ROC curve of the proposed method.

Figure 8. Confusion matrix of the proposed method.

Several detection probability results from the proposed framework are also displayed
to emphasize the excellent performance of this method. It can be observed from Figure 9 that
the proposed approach generates detection probability maps with better visual quality, and
metastasis detection results of the proposed approach in the third column have excellent
agreement with the ground truth annotations in the second column generated by the
experienced pathologists. It is obvious that the proposed approach can detect metastases
very well within the whole-slide images.

The diversity of FROC score and AUC score for the proposed method is shown in
the box and whiskers diagrams. It can be seen from Figure 10 that the proposed method
exhibits stable behavior with a relatively low standard deviation value.
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Figure 9. Metastasis identification examples using the proposed approach. (a) original image;
(b) ground truth annotation; (c) predicted probability map.
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Figure 10. Diversity analysis for the proposed method.

5. Conclusions

This paper proposes an effective spatially sensitive learning network for cancer metas-
tasis identification in whole-slide images. In addition, a novel spatial loss function is
designed to integrate the spatial constraint into the network for more accurate detection.
Specifically, the proposed method incorporates a CNN feature extractor, LSTM, and spatial
constraint loss into a unified framework. Consequently, the proposed method not only takes
into account the spatial dependencies among adjacent patches through LSTM and spatial
loss function, but the CNN feature extractor also benefits from the joint learning frame-
work. Extensive experiments on the benchmark Camelyon2016 Grand Challenge dataset
demonstrate that the proposed approach obtains better performance than state-of-the-art
methods in cancer metastasis identification.

The proposed approach utilizes the patch-based classification and analyzes gigapixel
whole-slide images in a sliding window with a scanning stride of 64 at the resolution of
level-6. When scanning the whole-slide image at a higher resolution (i.e., level-0) for micro-
metastases, it will take much more time and computation resources, which is not suitable
for clinical practice. Therefore, how to dramatically improve the inference efficiency while
maintaining competitive accuracy is an important research direction for whole-slide image
analysis in future. Furthermore, it is expected that the proposed model can be applied
in other kinds of medical image analysis, as spatial structures generally exist in various
medical images (e.g., cardiac MRI).
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