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Abstract: Thanks to their hovering and vertical take-off and landing abilities, quadrotor unmanned
aerial vehicles (UAVs) are receiving a great deal of attention. With the diversified development of the
functions of UAVs, the requirements for flight performance with higher stability and maneuverability
are increasing. Aiming at parameter uncertainty and external disturbance, a deep deterministic
policy gradient-based active disturbance rejection controller (DDPG-ADRC) is proposed. The total
disturbances can be compensated dynamically by adjusting the controller bandwidth and the estima-
tion of system parameters online. The tradeoff between anti-interference and rapidity can be better
realized in this way compared with the traditional ADRC. The process of parameter tuning is demon-
strated through the simulation results of tracking step instruction and sine sweep under ideal and
disturbance conditions. Further analysis shows the proposed DDPG-ADRC has better performance.

Keywords: reinforcement learning; deep deterministic policy gradient; active disturbance rejection
control; quadrotor ummanned aerial vehicle

MSC: 93-10

1. Introduction

Quadrotor unmanned aerial vehicles (UAVs) have attracted attention thanks to their
ability to hovering and to take off and landing vertically. Due to their under-actuated
nature, quadrotors’ position control is performed by controlling the attitude angles [1]. For
this reason, attitude control of quadrotors has been a hot research topic in recent years.
However, quadrotors are subject to parameter uncertainty and external disturbance, which
threaten flight safety and pose huge challenges to the design of controllers [2]. In addition,
with the popularity of quadrotors, higher requirements are being placed on the controllers.
Thus, it is urgent to design an advanced controller to improve reliability and rapidity.

In the literature, plenty of approaches have been studied for the quadrotor attitude
control problem. As a classical controller, proportion integration differentiation (PID) is
widely used because of its simple structure and good control effect [3–5]. Taybe et al. [6]
developed an augmented proportion differentiation (PD) attitude controller that guarantees
exponential stability. Cao et al. [7] focused on the position control of quadrotors using an
inner–outer loop control structure. The outer loop generates a saturated thrust, reference
roll, and pitch angles, while the inner loop is designed to follow these reference angles
using a traditional PID controller.

Due to nonlinearity and disturbances, the control effect of PID is unsatisfactory. As
one of the most important control techniques, sliding mode control (SMC) is able to handle
nonlinear systems with external disturbances. Based on second-order SMC, Zheng et al. [8]
designed a controller for a small quadrotor unmanned aerial vehicle (UAV). Xiong et al. [9]
designed a highly coupled and nonlinear controller for a fully actuated UAV through a
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novel robust terminal sliding mode control algorithm. Nevertheless, the oscillation caused
by SMC is the main obstacle restricting its application.

To achieve robust performance and stabilization, the robust H∞ control method of
George Zames has been widely studied [10]. Due to the uncertain nature of aircraft systems,
Babar et al. [11] improved the traditional inner–outer loop strategy and adopted a robust
controller for the inner control loop. Liu et al. [12] designed a distributed robust controller
consisting of a position controller and an attitude controller for multiple quadrotors with
nonlinearities and disturbances.

To deal with nonlinearities and disturbances, the main idea of active disturbance
rejection control (ADRC) is to reduce the state feedback, whether linear or non-linear, to
a cascade of integrators [13,14]. To solve the problem that UAV tracking control relies
too much on mathematical modeling and the accuracy of measurements, Niu et al. [15]
proposed a longitudinal pitching angle control system based on a nonlinear ADRC. Lotufo
et al. [16] combined ADRC with embedded model control (EMC), relying on the disturbance
rejector to bridge the gap between model and reality.

However, there are issues remaining that deserve attention [17].

1. The classical controller design relies on understanding the physics of flight, and has
difficulty to handling the coupling multiple loops design task. In other words, the
classical one-loop-at-a-time design cannot guarantee success when more loops are
added and coupled.

2. Modern control techniques often require exact knowledge of models and are sensitive
to parameter uncertainty and external disturbances [18]. However, different loads in
each flight mission lead to uncertainty in system parameters. Meanwhile, parameters
may be difficult to obtain, especially aerodynamic parameters. This sometimes leads
to unstable behaviors, limiting the application of model-based controllers.

3. For modern robust controllers [12], it is usually difficult to obtain the upper bounds of ex-
ternal disturbance and parameter uncertainty, which causes unsatisfactory performance.

4. In the ADRC algorithm, the predefined bandwidth of the closed-loop system is unable
to guarantee the tradeoff between robustness and transient tracking performance.
Meanwhile, the estimation of parameters affects the ability of the controller to resist
disturbances [14].

Aiming at the controller parameters tuning problem, many optimization algorithms
have been used, including genetic algorithms (GA) [19], particle swarm optimization
(PSO) [20], and grey wolf optimization (GWO) [21]. Bolandi et al. [22] used an analytical
optimization method to tune a conventional PID controller for stabilization and disturbance
rejection of quadrotors.

With the development of computer science and technology, reinforcement learning
(RL) is able to autonomously learn optimal strategies through continuous interaction
with the environment and is considered one of the most likely approaches for achieving
general artificial intelligence [23]. Lee et al. [24] proposed an RL-based adaptive PID
controller for dynamic positioning systems. The results showed that the system had
better station-keeping performance without any deterioration in its control efficiency.
Gheisarnejad et al. [25] proposed a deep deterministic policy gradient (DDPG)-based
supplementary controller to enhance the adaptive capability of the tracking control problem.
Zhao et al. [26] employed RL to update the optimal control weights in the fault-tolerant
formation control law design. Zheng et al. [27] used the Q-learning algorithm to select
the adaptive parameters for ADRC. However, as Q-learning can only deal with discrete
problems, the states need to be stored in the Q table, and the action must be discrete. By
itself, Q-learning cannot deal with complex continuous problems such as attitude control
of UAVs. RL, which can solve the nonlinear optimal consensus control problem, is widely
used in fault-tolerant control. Ma et al. [28] presented an adaptive model-free fault-tolerant
control scheme based on integral RL by introducing the integral of the tracking error. Li
et al. [29] designed direct adaptive optimal controllers by combining the backstepping
technique with RL. The critic network is used to approximate the strategic utility functions
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and the action network is used to approximate the unknown and desired control input
signals.

Motivated by the above discussions, ADRC based on DDPG is proposed in this paper.
The main contributions of this paper are as follows:

1. A realistic and nonlinear model of quadrotors is established, considering parameter
uncertainty and external disturbances.

2. Online continuous adjustment of the bandwidth of the closed loop is realized by
DDPG, and is beneficial for balancing the robustness and transient tracking perfor-
mance.

3. DDPG is adopted to achieve fast and accurate compensation for the total disturbance
of the system, leading to the response speed and control accuracy being further
improved.

The remainder of this paper is organized as follows. In Section 2, the proposed dy-
namic quadrotor model with internal and external disturbances is provided. The proposed
DDPG-based ADRC is presented in Section 3. The simulation results are provided and
analyzed in Section 4. Finally, Section 5 presents our conclusions.

2. Nonlinear Model of Quadrotors

In this section, a nonlinear dynamic model with internal and external disturbances is
provided. Figure 1 shows the structure and coordinate system of the quadrotor.

Yb

Zb
I

xE

EO I

yE

I

zE

Figure 1. Schematic of the quadrotor.

2.1. Ideal Model of Quadrotors

The ideal dynamic model of quadrotors is established in Formula (1).

mËI = RI
bFb

JΘ̈ = C(J, Θ̇) + Mb
, (1)

where m is the quadrotor mass, EI = [EI
x, EI

y, EI
z]

T is the position expressed in the Earth-
inertial coordinate, RI

b ∈ SO(3) denotes the rotation matrix from the body-fixed coordinate

to the Earth-inertial coordinate, and Fb = [0, 0, ft]T − RI
b

T
[0, 0, mg]T is the force estab-

lished in the body-fixed coordinate, where ft = Cw ∑4
i=1 w2

i . Cw is the lift coefficient and
wi(i = 1, 2, 3, 4) denotes the rotational speed of the ith rotor. Above, J = diag{Jφ, Jθ , Jψ}
denotes the inertia matrix, while Θ = [φ, θ, ψ]T indicates the Euler angles, i.e., the roll,
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pitch, and yaw angles, respectively; thus, the rotation matrix can be rewritten using the
Euler angles [12].

RI
b =

 cos θ cos ψ cos ψ sin φ sin θ − cos φ sin ψ sin φ sin ψ + cos φ cos ψ sin θ
cos θ sin ψ cos φ cos ψ + sin φ sin θ sin ψ cos φ sin θ sin ψ− cos ψ sin φ
− sin θ cos θ sin φ cos φ cos θ



C(J, Θ̇) denotes the Coriolis term, where C(J, Θ̇) =

 (Jy − Jz)θ̇ψ̇
(Jz − Jx)φ̇ψ̇
(Jx − Jy)φ̇θ̇

;

Mb = [Mxb, Myb, Mzb]
T represents the torque in the body-fixed coordinate Mxb

Myb
Mzb

 =

 U2 + Jrq(−w1 + w2 − w3 + w4)
U3 − Jrq(−w1 + w2 − w3 + w4)

U4

,

where

 U2
U3
U4

 =

 l(F2 + F3 − F1 − F4)
l(F3 + F4 − F1 − F2)

ld(w2
2 + w2

4 − w2
1 − w2

3)

. lc and d represent the distance from the

motor to the center of mass and the anti-torque coefficient, respectively, while Jr is the
moment of inertia of the motors and propellers. For now, the normal model of quadrotors
has been established.

2.2. Internal and External Disturbances

Quadrotors usually carry various mission payloads to perform different missions,
resulting in changes in parameters such as mass or moment of inertia. This can be modeled
as m∗ = kmm and J∗ = k J J, where m∗ and J∗ are the actual mass and inertia matrix, respec-
tively, and km and k J are the scaling factors of uncertainty. At the same time, quadrotors are
inevitably disturbed by the environment, Me.

Thus, the actual dynamic model of quadrotors is expressed as follows:

m∗ËI = RI
bFb

J∗Θ̈ = C∗(Θ, Θ̇) + Mb + Me
(2)

3. Construction of DDPG-Based ADRC
3.1. ADRC-Based Attitude Controller Design

Only the attitude control of quadrotors is considered here, and the construction of
ADRC is designed as in Figure 2. To facilitate the control system design, the quadrotor
is reduced to a second-order system with perturbations, which can be written in state
equation form:

ẋ = Ax + Bu + Eh
y = Cx

(3)

where

A =

 0 1 0
0 0 1
0 0 0

, B =

 0
b
0

, C =
[

1 0 0
]
.

h is the unknown disturbance, and E =
[

0 0 1
]T .
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E u0

z3
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Figure 2. Structure of ADRC; θ is the desired angle of pitch and b is the estimation of system parameters.

The extended state observer (ESO) is designed from the ideal model of the quadrotor,
which can be established as follows:

ż = Az + Bu + L(y− ŷ)
ŷ = Cz

(4)

where y is the state of the system and L is the observer gain vector, L =
[

β1 β2 β3
]T .

Let ei = xi − zi and combine Equations (3) and (4); then, the error can be rewritten as

ė = Aee + Eh (5)

where Ae = A− LC =

 −β1 1 0
−β2 0 1
−β3 0 0

.

It is obvious that the ESO is bounded-input bounded-output stable if the roots of the
characteristic polynomial of Ae

λ(s) = s3 + β1s2 + β2s + β3

are all in the left half plane and h is bounded [14,30].
Thus, β1,β2,β3 can be designed using the pole placement technique. Let λ(s) = s3 +

β1s2 + β2s + β3 = (s + wo)3. Therefore, it can be obtained that

β1 = 3w0, β2 = 3w2
o , β3 = w3

o , (6)

where wo is the bandwidth of the observer.
For the controller, the ideal system can be written as ÿ = x3 + bu, where ẋ3 = h.

According to the proof above, the appropriate value (6) can make e→ 0; in other words,
z1 → x1, z2 → x2, z3 → x3.

The controller is designed as u = −z3+u0
b . Thus, ÿ = x3 + bu = (x3 − z3) + u0 ≈ u0,

where u0 is designed as a PD controller, u0 = kp(r− z1) + kd(ṙ− z2). It can be assumed that
ṙ = 0. Then, ÿ = kp(r− z1)− kdz2 and the closed loop transfer function can be rewritten as

Gcl =
kp

s2 + kds + kp
.

When Kp = w2
c , kd = 2ξwc, the closed-loop system is simplified into a standard

second-order system.
Taken together, the effectiveness of the involved ESO and controller is demonstrated.

Normally, wo ≈ 5 ∼ 10wc, where wc is the bandwidth of the controller. In this paper,

wo = 5wc. (7)

However, as described in Section 2.2, when there are internal disturbances, B =
[

0 b 0
]T

in Formula (3) turns into B0 =
[

0 b0 0
]T . The difference between b and b0 reduces

the robustness of the system. The presence of the observer in ADRC allows the total
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disturbances to be observed, which means that z3 → x3 + (b− b0)u. Then, the internal
disturbance can be compensated for.

In practice, a step signal has a great impact on the system. To balance the contradiction
between increasing the rapidity of the system and reducing the overshoot, a tracking
differentiator (TD) can be adopted to track the desired signal, and a smooth tracking signal
can be obtained and further used in the controller. In this paper, a standard second-order
system is designed,

GTD =
w2

n
s2 + 2ξwns + w2

n
,

where wn = 20 is the natural frequency and ξ = 1 is the damping ration.

3.2. Reinforcement Learning Theory

In this paper, the attitude control is regarded as a Markov decision process (MDP),
which can be modeled as (S, A, T, R, γ), where S represents the state space, A is the action
space, T : T(st+1 = s

′ |st = s, at = a) is the state transition model, R : S× A→ R signifies
the reward function, and γ is the discount factor. The MDP means that, at every timestep,
the agent in state st takes action at, reward rt is obtained, and the state is transited to st+1.
A generic flowchart of the process is shown in Figure 3.

Agent

Environment

State

tS

State

tS

Reward

tR

Reward

tR

Action

+1tR

1tS +

tA

Figure 3. Learning process of RL.

RL discusses how an agent can maximize its rewards in a complex and uncertain
environment. The goal is to learn an optimal policy π∗, which in all states enables the agent
to obtain the maximum discount return Gt = ∑T

i=t γi−tr(si, ai); γ ∈ [0, 1]; the action-value
function is called Q function, and can be rewritten using the Bellman equation:

Qπ(st, at) = Ert ,st+1∼E[r(st, at) + γEat+1∼π [Qπ(st+1, aa+1)]], (8)

where policy π maps a state st to action at, which can be learned by an off-policy learning
algorithm called Q-learning [31].

The strategy used in this paper is the DDPG algorithm, which is an extension of the
deep Q network (DQN). A model-free algorithm that is able to operate over continuous
action spaces has previously been presented in [32] based on the deterministic policy
gradient. The structure is shown in Figure 4.
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target_p

target_Q

Q network

policy

network

state

( )a g S=

S

1( , , , )t t t ts a r s +

1 1 1( , , , )t t t ts a r s− − −

1( , , , )t n t n t n t ns a r s− − − − +

Update Q network:

[ ( , ), ( , )]w wLoss MSE q s a r q s a= +

Update Q network:

[ ( , ), ( , )]w wLoss MSE q s a r q s a= +

Update policy network:Update policy network:

( , )wLoss q s a= −

( , )wq s a

Figure 4. The structure of DDPG.

Such a structure is called Actor–Critic. The policy network, which is called the Actor,
outputs actions based on states a = gϑ(S). The Q network is employed to export the action
value qw(s, a), which is named Critic, and a replay buffer is used to eliminate correlations
between inputs. Compared with the Actor network, the Critic network usually has a more
complex structure to infer the underlying state from the measurements and deal with the
state transition [33].

3.3. Structure of DDPG-Based ADRC

As a feedback-based controller, the inputs of DDPG-ADRC include the control com-
mand and the tracking error. Then, the outputs of DDPG are used to update the parameters
in ADRC, which means the estimation of system parameters b and the bandwidth of the
controller wc. On one hand, the parameter b reflects the gain from the input to the output of
the system, which is related by the system parameters. On the other hand, to compensate
for the total disturbance, − z3

b is added to the PD controller, which means that b affects the
compensation for disturbances. Meanwhile, the bandwidth of the controller, wc, directly
determines the performance of the PD controller, and the bandwidth of the observer, wo,
determines the performance of the ESO, where wo = 5wc. An overall structure of the
proposed fault-tolerant controller is shown in Figure 5.

UAV

Model

Actuator

Model

ESO

TD PD
E u0

1/b

u

Actor

Critic

tS

Reward

1 2,z z
3z

bandwidth cwbandwidth cw

System parameterSystem parameterSystem parameter b

State

Control 

command

Tracking

error E

State

Control 

command

Tracking

error E





+

−

+

−

Figure 5. Overall structure of the proposed DDPG-based ADRC controller.
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The reward function is a key element in RL, supervising agents to learn and obtain the
optimal policy. In order to solve the difficulty of training caused by sparse rewards, the
reward function is designed as follows:

R1 = −
√
(φ− φ)2 + (θ − θ)2 + (ψ− ψ)2, (9)

To solve the problem of slow convergence under small errors, step rewards are designed.

R2 =

{
R1 + 5 i f |φ− φ|, |θ − θ|, |ψ− ψ| ≤ 0.5◦

R1 + 3 elsei f |φ− φ|, |θ − θ|, |ψ− ψ| ≤ 1◦
(10)

At the same time, a sparse penalty function is considered. When the attitude of the
agent is too far away from the target, the current round of training is terminated in advance.
To reduce ineffective exploration, a large penalty is introduced. Thus, the total reward is

R =

{
R2 − 1000 i f the train is terminated in advance

R2 else
(11)

Above all, the algorithm flow presented in this paper is shown in Algorithm 1.
The state input of DDPG is a two-dimensional vector, namely, control command, θ,

and tracking error, e. The action output is a two-dimensional variable, i.e., b and wc.

Algorithm 1 DDPG-based ADRC controller

Randomly initialize Q network qw and policy network gϑ parameters
Initialize the target network parameters qt

w and gt
ϑ

Initialize the experience pool
for episode = 1, 2 · · ·N do

Random initialization of control command and initial state
for i = 1, 2 · · · T do

State st is obtained
Select the action based on the current state and exploration noise at = gϑ(st) + ξi
Perform the action at,observe the return rt, get the next state st+1
Put the sample (st, at, rt, st+1) in the experience pool D
Sample random mini-batch of (st, at, rt, st+1) from D
Optimize critic network parameters w:
Loss = MSE[qw(s, a), r + γqw(s′, a′)]
Optimize actor network parameters θ:
Loss = −qw(s, a)
Every C steps update w, θ:
w = τw + (1− τ)w,θ = τθ + (1− τ)θ

end for
end for

4. Simulation and Results

To verify the effectiveness of the proposed controller, simulations with ideal conditions
and under conditions of internal and external disturbance are presented. The parameters
of the quadrotor are shown in Table 1.
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Table 1. Quadrotor model parameters.

Variable Value Measuring Unit

mass m = 1.4 kg
acceleration of gravity g = 9.8 m/s2

moment of inertia Jxx and Jyy Jxx = Jyy = 0.01724 kg·m2

radius of the quadrotor r = 0.24 m
thrust coefficient CT = Tp/w2 CT = 1.227× 10−5 N/(rad/s)2

moment coefficient CM = Mp/w2 CM = 2.215× 10−7 N·m/(rad/s)2

moment of inertia of motor and propeller Jr Jr = 2.13× 10−4 kg·m2

An Intel Xeon(R)W-2123 CPU @ 3.60 GHz, NVIDIA GeForce RTX1080Ti GPU, and
Windows 10 64 bit were used in the experiments. To evaluate the performance of the
proposed method several common evaluation indicators were adopted, such as integrated
time and absolute error (ITAE), integrated time and square error (ITSE), and integrated
absolute error (IAE).

ITAE =
∫ t f

t0
t|e(t)|dt

ITSE =
∫ t f

t0
te2(t)dt

IAE =
∫ t f

t0
|e(t)|dt

(12)

These indicators take into account both the control accuracy and convergence speed;
smaller values indicate better controller performance.

4.1. Simulations in the Presence of Internal Disturbances

In order to verify the effectiveness of the proposed DDPG-ADRC method, simulations
under internal disturbance conditions are presented. The pitch channel of the quadrotor
tracks a step command of 10◦, and the command reduces to 8◦ 2 s later. The response is
shown in Figure 6a, and the outputs of RL, i.e, the bandwidth of the controller wc and the
estimation of the system b are displayed in Figure 6b.

(a)

0 0.5 1 1.5 2 2.5 3
t/s

20

21

22

23

24

25

w
c

0 0.5 1 1.5 2 2.5 3
t/s

11.5

12

12.5

b

(b)
Figure 6. (a) Control instruction and state response via DDPG-ADRC and (b) online parame-
ters adjustment.

It can be seen that with DDPG-ADRC the quadrotor can accurately track the instruction.
In addition, the controller bandwidth wc and the system parameter b can be adaptively
adjusted according to the observations.

In order to demonstrate the advantages of dynamic parameter adjustment, the steady
results are used as fixed parameters, i.e, wc = 22.2, b = 12. Figure 7a shows the response of
the system and Figure 7b reveals the differences between traditional ADRC and DDPG-
ADRC in compensating for total disturbances.
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(a)
(b)

Figure 7. (a) Control instruction and state response via traditional ADRC and (b) comparison of
compensation amount z3/b between traditional ADRC and DDPG-ADRC.

By dynamically adjusting parameters, DDPG-ADRC can compensate for disturbances
more accurately and quickly, which is the advantage of DDPG-ADRC compared to tradi-
tional ADRC.

In order to explore the influence of parameter uncertainty on controllers, simulations
were carried out with different parameter estimates b; the results are shown in Figure 8a,
and are compared with model predictive control (MPC), shown in Figure 8b. In the design
of the MPC controller, the same second-order system with a gain b is used. ITAE, ITSE, and
IAE are adopted to evaluate the tracking process, and are shown in Table 2.

It can be seen from Table 2 and Figure 8 that, under nominal conditions, all three con-
trollers can achieve satisfactory control effect. Meanwhile, with the selection of appropriate
parameters, with lower ITAE, ITSE, and IAE and higher rewards, the control effect of MPC
is the best. However, MPC is less robust against parameter uncertainty compared with
ADRC.

(a) (b)
Figure 8. (a) Control instruction and state response via ADRC with different b and (b) control
instruction and state response via MPC with different b.

Table 2. Evaluation indicators of MPC, traditional ADRC, and DDPG-ADRC.

Parameter and Indicator MPC Traditional ADRC DDPG ADRC

b 12 13 14 15 12 13 14 15 /
ITAE 9.5016 13.047 10.629 14.049 9.4512 9.4512 9.4512 9.4512 9.357
ITSE 0.0664 0.2393 0.2504 0.2781 0.19384 0.19337 0.19293 0.19252 0.1848
IAE 13.895 22.555 20.976 24.614 18.868 18.868 18.868 18.868 18.273

Rewards 24,470 22,230 22,010 21,459 21,943 21,949 21,956 21,966 22,010
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4.2. Simulations in the Presence of External Disturbances

In order to verify the performance of the proposed controller in the face of external
disturbances, disturbance torque caused by windblast was added in the simulation time
1∼1.5 s. Figure 9a shows the control instruction and the response, and the action of RL is
displayed in Figure 9b.

(a)

0 0.5 1 1.5 2 2.5 3
t/s

20

21

22

23

24

25

w
c 0.8 1 1.2 1.4 1.6

22

22.2

22.4

0 0.5 1 1.5 2 2.5 3
t/s

11.5

12

12.5

b

0.8 1 1.2 1.4 1.6

12

12.1

(b)
Figure 9. (a) Control instruction and state response via DDPG-ADRC in the presence of external
disturbances and (b) online parameters adjustment in the presence of external disturbances.

It can be seen that the designed DDPG-ADRC can respond in time when faced with
external disturbances. The performance is compared with the traditional ADRC in Figure 10.
The evaluation indicators are shown in Table 3.
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Figure 10. Comparison of compensation between traditional ADRC and DDPG-ADRC in the presence
of external disturbances.

Table 3. Evaluation indicators of traditional ADRC and DDPG-ADRC in the presence of disturbances.

Evaluation Indicator Traditional ADRC DDPG-ADRC

ITAE 11.971 11.87
ITSE 0.2064 0.1848
IAE 20.73 20.131

Total rewards 21,829 21,904

Compared with the case of internal disturbances shown in Table 3, external distur-
bances have a greater affect on controller performance, although both traditional ADRC
and DDPG-ADRC can counteract the disturbances in time. Similarly, the performance of
DDPG-ADRC is more prominent in both control accuracy and convergence speed. Under
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the ITSE indicator, DDPG-ADRC is improved by 10.4% compared to ADRC in the presence
of external disturbances. This means that DDPG-ADRC can achieve better performance
than ADRC with fixed parameters in practice, which is demonstrated in Figure 11a as well.
Although the MPC has better control performance under nominal conditions, it diverges
when there are large external disturbances, as Figure 11b shows.

(a)
(b)

Figure 11. (a) Control instruction and state response via ADRC with different b in the presence of
external disturbances; (b) control instruction and state response via MPC with different b in the
presence of external disturbances.

4.3. Simulation under Sine Sweep

In designing a control system, in order to know the response of the system under
different frequency commands it is necessary to carry out frequency sweep experiments.
A sine sweep is often used to measure the time-frequency characteristics of the system.
Figure 12 shows the control instruction and response, while the evaluation indicators are
shown in Table 4.

(a) (b)
Figure 12. (a) Control instruction and state response via ADRC and DDPG-ADRC under sine sweep;
(b) control instruction and state response via MPC with different b under sine sweep.

Table 4. Evaluation indicators of MPC, ADRC, and DDPG-ADRC.

Parameter and Indicator MPC Traditional ADRC DDPG ADRC

b 12 13 14 15 12 13 14 15 /
ITAE 375.85 361.27 351.32 344.28 288.38 288.62 288.89 289.18 286.3
ITSE 41.985 38.145 35.623 33.911 23.772 23.811 23.856 23.905 23.456
IAE 192.85 188.61 186.37 185.33 155.2 155.25 155.31 155.38 154.25

Rewards −19,203 −18,821 −18,513 −18,267 −16,996 −17,027 −17,071 −17,104 −16,946
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It can be seen from Figure 12 and Table 4 that the uncertainty of the parameters affects
the control effect of MPC; generally speaking, ADRC has better performance and lower
phase delay in the high-frequency bound than MPC. Meanwhile, from the point of view of
indicators, DDPG-ADRC has stronger tracking ability thanks to the adaptive adjustment of
compensation.

5. Conclusions

In this paper, a novel DDPG-based ADRC is proposed for the attitude control of
quadrotors. First, a nonlinear mathematical model of quadrotors with internal disturbance
and external disturbance is established. Then, by properly setting the reward function,
online continuous adjustment of the bandwidth is realized to balance the robustness
and transient tracking performance. Meanwhile, fast and accurate compensation for the
total disturbance is achieved, further improving the response speed and control accuracy.
Simulation results show that DDPG-ADRC has advantages on all indicators; in other
words, it has advantages in terms of both control accuracy and convergence speed. This
paper provides a new solution to the attitude control of quadrotors in the presence of
disturbances. In the future, the proposed controller will be used to conduct hardware-in-
the-loop simulation experiments to further verify the stability of the algorithm. However,
the gap between the simulation and the real world presents additional challenges, such as
the oscillation of the controller [34].
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Abbreviations
The following abbreviations are used in this manuscript:

UAV unmanned aerial vehicle
PID proportion integration differentiation
PD proportion differentiation
SMC sliding mode control
ADRC active disturbance rejection control
EMC embedded model control
GA genetic algorithm
PSO particle swarm optimization
GWO grey wolf optimization
RL reinforcement learning
DDPG deep deterministic policy gradient
ESO extended state observer
TD tracking differentiator
MDP Markov decision process
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DQN deep Q network
ITAE integrated time and absolute error
ITSE integrated time and square error
IAE integrated absolute error
MPC model predictive control
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