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Abstract: This paper investigates the American strangle option in a mean-reversion environment.
When the underlying asset follows a mean-reverting lognormal process, an analytic pricing formula
for an American strangle option is explicitly provided. To present the pricing formula, we consider
the partial differential equation (PDE) for American strangle options with two optimal stopping
boundaries and use Mellin transform techniques to derive the integral equation representation
formula arising from the PDE. A Monte Carlo simulation is used as a benchmark to validate the
formula’s accuracy and efficiency. In addition, the numerical examples are provided to demonstrate
the effects of the mean-reversion on option prices and the characteristics of options with respect to
several significant parameters.
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1. Introduction

The Black–Scholes model, which was proposed in 1973, has provided the theoretical
base for the pricing of options in financial market [1]. Under the Black–Scholes model,
various option pricing problems, including European and American options, have been
extensively studied over the last few decades. We investigate the American style option-
pricing problem in this paper. In fact, while a European options has a closed-form pricing
formula, an American option does not. This is because, unlike a European option, an
American option is a contract that allows holders to exercise at any time before the maturity.
Because of this feature, the American option-pricing problem can be represented as a free-
boundary problem. To obtain the boundary and price of the American option, numerical
methods have been mainly used based on classic methods such as tree methods [2–4], finite
difference methods [5,6], analytical approximation methods [7,8], integral representation
methods [9,10], and Monte Carlo simulation methods [11,12].

In recent years, many researchers have proposed exotic American style options with
various approaches. Based on the Laplace–Carson Transform (LCT) approach, Park and
Jeon [13] and Kang et al. [14] obtained numerically the prices of American knock-out op-
tions with rebate and American strangle options, respectively. Zaevski [15] proposed a new
form of the early exercise premium for the American type options using the technique of
stopping times. Lee [16] investigated the American power options and provided an efficient
numerical method for pricing the options. In Deng [17], the valuation of perpetual Amer-
ican floating-strike option under stochastic volatility was considered using a multiscale
asymptotic technique. Qui [18] studied a system of two nonlinear integral equations arising
from the early exercise premium representation for an American strangle option under the
Black–Scholes model. Zaevski [19] developed the early exercise boundary for American
derivatives with a new approach that imposed continuity on the exponent of piecewise lin-
ear functions. More recently, in Jeon and Kim [20], the integral equation representation for
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American better-of option with two underlying assets was derived using Mellin transform
methods. The discounted American capped options were studied in Zaevski [21]. In this
paper, we also study the extension of American style options. Specifically, we consider
American strangle options with two optimal boundaries in a mean-reversion environment.

Mean-reverting models, which describe a mean-reversion environment, have been
widely used to price various financial derivatives. Through the dynamics of the domestic
and foreign term structure of interest rates, Sorensen [22] proposed a mean-reverting
process for currency exchange rates. Sorensen found that the mean-reverting feature has
an effect on plain vanilla currency option prices [22]. Hui and Lo [23] adopted a mean-
reverting lognormal (MRL) model to investigate the pricing behavior of options with a
barrier, which is a deterministic function of time designed to match the coefficients of
the governing partial different equation for the barrier option. Hui and Lo found that
the parameters in the MRL model had a significant impact on the valuation and hedging
parameters of barrier options [23]. Wong and Lau [24] studied exotic path-dependent
options and provided an efficient and accurate approach for valuing the options under
the MRL model. Motivated by these works and the work of Kang et al. [14], we consider
the MRL model for the underlying asset as an extensional work for the American strangle
option pricing. We used the partial differential equation (PDE) approach to present the
pricing formula of the American strangle option under the MRL model explicitly. Several
studies have been conducted to deal with PDE for American style options using Mellin
transform techniques [25–28]. We also develop Mellin transform techniques for the PDE of
an American type option. More specifically, we derive the integral equation representation
for the price of American strangle option when the underlying asset follows the MRL model.

The remainder of this paper is structured as follows. In Section 2, we propose a mean-
reverting lognormal model for a mean-reversion environment and formulate the problem
addressed in this paper. In Section 3, we demonstrate the analytical pricing formula for
the American strangle option under the proposed model. In Section 4, we provide some
numerical experiments. In Section 5, we present concluding remarks.

2. Model

Under the mean-reversion environment, we investigate the American strangle option
with the finite maturity T > 0, which consists of a call option with strike price K1 > 0 and
a put option with strike price K2 > 0, That is, we assume that the underlying asset St has
the following dynamics, under risk-neutral measure Q:

dSt

St
= κ(µ− log St)dt + σdBt, (1)

where κ is the speed of reversion, σ > 0 is the volatility of the underlying asset, and µ
represents the equilibrium mean level of the asset. Here, we assume that the parameters κ,
σ, and µ are constants. (Bt)T

t=0 is a one-dimensional standard Brownian motion defined on
the probability space (Ω,F ,Q), where (Ft)T

t=0 is the natural filtration generated by (Bt)T
t=0.

Remark 1. In Hui and Lo [23] and Wang and Lau [24], they assumed that the risk-neutral dynamic
of the exchange rate (i.e., the domestic currency value of a unit of foreign currency) followed the
mean-reverting lognormal process as in (1).

We assume that
K1 > K2.

Let V(t, St) be the price of an American strangle option at time t ∈ [0, T]. In the absence
of arbitrage opportunities, V(t, St) is expressed as the following optimal stopping problem:
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Problem 1 (American strangle).

V(t, St) = sup
τ∈U (t,T)

EQ
[
e−r(τ−t)((Sτ − K1)

+ + (K2 − Sτ)
+
)
| Ft

]
, (2)

where EQ is the expectation with respect to the probability measure Q, r > 0 is the constant
risk-free interest rate, U (t, T) is the set of all Ft-stopping times taking values in [t, T], and (a)+ :=
max{a, 0}.

3. Analytic Representation for American Strangle Options

According to a standard theory of optimal stopping problem, the value V(t, s) satisfies
the following variational inequality arising from Problem 1: on the domain DT := {(t, s) |
0 ≤ t < T, 0 < s < ∞}

∂tV + LV ≤ 0 for V(t, s) = (s− K1)
+ + (K2 − s)+,

∂tV + LV = 0 for V(t, s) > (s− K1)
+ + (K2 − s)+,

V(T, s) = (s− K1)
+ + (K2 − s)+,

(3)

where the differential operator L is given by

L := s2∂ss + κ(µ− log s)s∂s − r.

We define the waiting and stopping region WR and SR as follows:

WR := {(t, s) ∈ DT | V(t, s) > (s− K1)
+ + (K2 − s)+},

SR := {(t, s) ∈ DT | V(t, s) = (s− K1)
+ + (K2 − s)+}. (4)

Moreover, the stopping region SR can be divided into the following two subregions:

SRup := {(t, s) ∈ SR | V(t, s) = (s− K1)
+} and SRlow := {(t, s) ∈ SR | V(t, s) = (K2 − s)+}. (5)

That is,
SR = SRup ∪ SRlow and SRup ∩ SRlow = ∅.

Since the value V(t, s) should be positive when the option holder exercises early, we
can rewrite the two regions SRup and SRlow as follows:

SRup = {(t, s) ∈ SR | V(t, s) = s− K1} and SRlow = {(t, s) ∈ SR | V(t, s) = K2 − s}. (6)

Then, there exist two optimal exercise boundaries Zup(t) and Zlow(t) defined as

Zup(t) = sup{s > 0 | (t, s) ∈ WR} and Zlow(t) = inf{s > 0 | (t, s) ∈ WR}.

In terms of the two boundaries Zup(t) and Zlow(t),

SRup = {(t, s) ∈ SR | s ≥ Zup(t)} and SRlow = {(t, s) ∈ SR | 0 < s ≤ Zlow(t)}. (7)

Figure 1 illustrates the regions with the boundaries. At the boundaries s = Zup(t) or
s = Zlow(t), the following smooth-pasting condition (or supercontact) holds:{

V(t,Zup(t)) = Zup(t)− K1, ∂sV(t,Zup(t)) = 1,
V(t,Zlow(t)) = K2 −Zlow(t), ∂sV(t,Zlow(t)) = −1.

(8)
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Figure 1. The waiting region WR, the stopping region SR, the two free boundaries Zup(t), and
Zlow(t).

Since V(t, s) = s− K1 for s ≥ Zup(t) and V(t, s) = K2 − s for 0 < s ≤ Zlow(t), we
deduce that V(t, s) satisfies the following nonhomogeneous PDE:

∂tV + LV =
(
(rK1 + (κµ− r− κ log s)s)1{s≥Zup(t)} + (−rK2 − (κµ− r− κ log s)s)

)
1{0<s≤Zlow(t)} (9)

with the terminal condition V(T, s) = (s − K1)
+ + (K2 − s)+ and the smooth-pasting

condition (8).
By applying the Mellin transform to the nonhomogeneous PDE (9), we derive the

integral equation representation formula for V(t, s) using the results in Appendix A.

Theorem 1. The price V(t, s) of the American strangle option defined in Problem 1 is represented as

V(t, s) = CE(t, s) + PE(t, s) + Vep(t, s) (10)

where CE and PE are the price of European call and put options, respectively, and Vep is the early
exercise premium for the American strangle option:

CE(t, s) =e−rτ+θ(1−e−ττ)+ 1
2 (α(τ))

2
se−κτN

(
d1(τ,

s
K1

)

)
− K1e−ρτN

(
d2(τ,

s
K1

)

)
,

PE(t, s) =K2e−ρτN
(
−d2(τ,

s
K2

)

)
− e−rτ+θ(1−e−ττ)+ 1

2 (α(τ))
2
se−κτN

(
−d1(τ,

s
K2

)

)
and

Vep(t, s)

=
∫ τ

0
e−rξ+θ(1−e−κξ )+ 1

2 a(ξ)2
se−κξ

{[
(r− κµ) + κ(e−κξ log s + θ(1− e−κξ) + (a(ξ))2)

]
×N

(
d1(ξ,

s
Zup(t + ξ)

)

)
+ κa(ξ)n

(
d1(ξ,

s
Zup(t + ξ)

)

)}
dξ − rK1

∫ τ

0
e−rξN

(
d2(ξ,

s
Zup(t + ξ)

)

)
dξ

−
∫ τ

0
e−rξ+θ(1−e−κξ )+ 1

2 a(ξ)2
se−κξ

{[
(r− κµ) + κ(e−κξ log s + θ(1− e−κξ) + (a(ξ))2)

]
×N

(
−d1(ξ,

s
Zlow(t + ξ)

)

)
− κa(ξ)n

(
d1(ξ,

s
Zlow(t + ξ)

)

)}
dξ + rK2

∫ τ

0
e−rξN

(
−d2(ξ,

s
Zlow(t + ξ)

)

)
dξ,
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where N (·) and n(·) are the standard normal cumulative distribution and probability functions,
respectively, τ = T − t,

a(t) := σ

(
1− e−2κt

2κ

) 1
2

, d1(t, s) :=
e−κt log s + θ(1− e−κt) + (a(t))2

a(t)
, d2(t, s) = d1(t, s)− a(t),

and

θ := µ− σ2

2κ
.

Moreover, the two free boundaries Zup(t) and Zlow(t) satisfy the following coupled integral
equations: {

Zup(t)− K1 = Vep(t,Zup(t)),
K2 −Zlow(t) = Vep(t,Zlow(t)).

(11)

Proof. Recall that V(t, s) satisfies

∂tV + LV =
(
(rK1 + (κµ− r− κ log s)s)1{s≥Zup(t)} + (−rK2 − (κµ− r− κ log s)s)

)
1{0<s≤Zlow(t)}, (12)

with V(T, s) = (s− K1)
+ + (K2 − s)+.

By applying the result (A13) in Appendix A with W(t, s) = V(t, s), h(s) = (s−K1)
+ +

(K2 − s)+ and

f (t, s) =
(
(rK1 + (κµ− r− κ log s)s)1{s≥Zup(t)} + (−rK2 − (κµ− r− κ log s)s)

)
1{0<s≤Zlow(t)},

we have

V(t, s) = CE(t, s) + PE(t, s) + Vep(t, s),

where

CE(t, s) =
∫ ∞

K1

e−κτ
(

ue−κτ − K1

)
Ξ(t,

s
u
)

du
u

, PE(t, s) =
∫ K2

0
e−κτ

(
K2 − ue−κτ

)
Ξ(t,

s
u
)

du
u

,

and

Vep(t, s) =
∫ τ

0

{∫ ∞

Zup(t+ξ)
(rK1 + (κµ− r− κ log u)u)Ξ(ξ,

s
u
)

du
u

}
dξ

+
∫ τ

0

{∫ Zlow(t+ξ)

0
(−rK2 − (κµ− r− κ log u)u)Ξ(ξ,

s
u
)

du
u

}
dξ.

By applying Lemma A1 in Appendix A to above the integral representations for CE,
PE, and Vep, we can derive the desired result.

Remark 2. Let us consider the following generalized American strangle option in a mean-reversion
environment:

Vp,q(t, St) = sup
τ∈U (t,T)

EQ
[
e−r(τ−t)(p(Sτ − K1)

+ + q(K2 − Sτ)
+
)
| Ft

]
. (13)

As in Theorem 1, we can easily obtain

Vp,q(t, s) = pCE(t, s) + qPE(t, s) + Vp,q
ep (t, s), (14)

where
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Vp,q
ep (t, s)

=p
[∫ τ

0
e−rξ+θ(1−e−κξ )+ 1

2 a(ξ)2
se−κξ

{[
(r− κµ) + κ(e−κξ log s + θ(1− e−κξ) + (a(ξ))2)

]
× N

(
d1(ξ,

s
Z p,q

up (t + ξ)
)

)
+ κa(ξ)n

(
d1(ξ,

s
Z p,q

up (t + ξ)
)

)}
dξ − rK1

∫ τ

0
e−rξN

(
d2(ξ,

s
Z p,q

up (t + ξ)
)

)
dξ

]

−q
[∫ τ

0
e−rξ+θ(1−e−κξ )+ 1

2 a(ξ)2
se−κξ

{[
(r− κµ) + κ(e−κξ log s + θ(1− e−κξ) + (a(ξ))2)

]
× N

(
−d1(ξ,

s
Z p,q

low(t + ξ)
)

)
− κa(ξ)n

(
d1(ξ,

s
Z p,q

low(t + ξ)
)

)}
dξ + rK2

∫ τ

0
e−rξN

(
−d2(ξ,

s
Z p,q

low(t + ξ)
)

)
dξ

]
.

Moreover, the two free boundaries Z p,q
up (t) and Z p,q

low(t) satisfy the following coupled integral
equations: {

p(Z p,q
up (t)− K1) = Vp,q

ep (t,Z p,q
up (t)),

q(K2 −Z
p,q
low(t)) = Vp,q

ep (t,Z p,q
low(t)).

(15)

Remark 3. Using the result in Theorem 1, the integral equation representations for the free-
boundary and option value of an American call VC(t, s) and put VP(t, s) are derived in the mean-
reversion environment. For more details on the derivation, see Appendix B.

Proposition 1. The following limits holds:

lim
t→T−

Zup(t) = max{K1, z̄} and lim
t→T−

Zlow(t) = min{K2, z},

where z̄ and z solve the following algebraic equations

rK1 − (r− κµ + κ log z̄)z̄ = 0 and rK2 − (r− κµ + κ log z)z = 0,

respectively.

Proof. Suppose that Zup(θ) < K1 for some t ∈ [0, T). Then, the early exercise profit
Zup(t)− K1 becomes negative. However, the early exercise privilege cannot be a liability
so that we can rule out the possibility Zup(t) < K1. That is, Zup(t) ≥ K1 for all τ ∈ [0, T).
Thus, we have Zup(T−) ≥ K1.

Since SR = SRup ∪ SRlow, the variational inequality (3) implies that

∂tV + LV ≤ 0 for (t, s) ∈ SRup. (16)

It follows from V(t, s) = s− K1 in SRup that

rK1 − (r− κµ + κ log s)s ≤ 0 in SRup.

This implies that
Zup(T−) ≥ max{K1, z̄},

where z̄ solves rK1 − (r− κµ + κ log z̄)z̄ = 0.
If Zup(T−) > max{K1, z̄}, then there exists a domain Dε: = {(t, s) | T − ε ≤ t ≤

T, max{K1, z̄} < s < Zup(T−)} ⊂ WR for a sufficiently small ε > 0 such that

∂tV + LV = 0 for (t, s) ∈ Dε.
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At t = T in the domain Dε, we deduce that

∂tV
∣∣
t=T = −[LV(t, s)]t=T > 0,

where we have used the fact that V(T, s) = s− K1 for (T, s) ∈ Dε.
It follows that

V(t, s) < V(T, s) = s− K1 = (s− K1)
+ in Dε,

which contradicts V(t, s) > (s− K1)
+ in the domain Dε ∈ WR.

Hence,
Zup(T−) = lim

t→T−
Zup(t) = max{K1, z̄}.

By the almost similar argument, we derive that

Zlow(T−) = min{K2, z},

where z solves rK2 − (r− κµ + log z)z = 0.

4. Numerical Results

In this section, we carry out some numerical experiments for the prices of the American
strangle option in the proposed model. We defined some default parameters for the
numerical experiments. The following were the default parameter values.

S0 = 55, T = 1, µ = 4, r = 0.03, σ = 0.2, κ = 0.5, K1 = 55, and K2 = 50.

By utilizing the recursive integration method (RIM) proposed by Huang et al. [29], we
can obtain the numerical solution for the coupled integral equation of Zup(t) and Zlow(t)
in Theorem 1. The detailed procedures for the numerical algorithm to solve the coupled
integral equation are well documented in [30,31]. All experiments were implemented using
Matlab on a personal computer with Intel(R) Core(TM) i7-6700 CPU.

We first demonstrated the accuracy and efficiency of our formula by comparing the
option values obtained through the Monte Carlo (MC) simulation method. The time period
[0, T] was discretized into n time steps of equal length T/n, and the sample path was
generated using the Euler–Maruyama discretization method to obtain the values using the
MC simulation method. For all MC simulations, the number of sample paths was set to be
100,000, and the number of time steps was set to be 500. Table 1 presents the results of the
numerical experiments with default parameters.

The option prices calculated by the formula in Theorem 1 using the RIM method
are compared to the values obtained by the MC simulation method in Table 1. Table 1
also shows that the relative error (RE) between the option prices calculated using the
RIM method and those calculated using the MC simulation is less than 1% in all cases.
Moreover, our approach (RIM) took 0.016 s of CPU time on average to obtain a single
option price, whereas the MC simulation took 18.672 s of CPU time on average to obtain a
single option price. As a result, we conclude that our approach based on RIM method is
accurate and efficient.
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Table 1. Values and CPU times for RIM method and the MC simulation. CPU times are in seconds,
and RE is defined by |RIM −MC|/MC ×100%.

µ = 2 µ = 4

S0 r κ RIM MC Relative Error (RE) RIM MC Relative Error (RE)

50 0.01 0.3 19.418 19.369 0.25% 5.474 5.434 0.74%
0.5 26.245 26.220 0.17% 5.215 5.186 0.54%
0.7 30.665 30.677 0.04% 5.029 5.002 0.53%

0.03 0.3 19.034 19.004 0.16% 5.401 5.354 0.87%
0.5 25.726 25.755 0.11% 5.149 5.166 0.83%
0.7 30.058 30.088 0.10% 4.968 4.938 0.61%

0.05 0.3 18.657 18.688 0.17% 5.329 5.279 0.94%
0.5 25.216 25.234 0.07% 5.084 5.044 0.81%
0.7 29.462 29.465 0.01% 4.909 4.872 0.72%

55 0.01 0.3 17.247 17.183 0.37% 5.876 5.821 0.95%
0.5 24.862 24.819 0.17% 5.598 5.566 0.57%
0.7 29.752 29.728 0.08% 5.382 5.771 0.21%

0.03 0.3 16.907 16.810 0.58% 5.797 5.743 0.94%
0.5 24.369 24.314 0.23% 5.526 5.505 0.37%
0.7 29.163 29.168 0.02% 5.317 5.338 0.39%

0.05 0.3 16.573 16.502 0.43% 5.719 5.680 0.69%
0.5 23.887 23.847 0.17% 5.455 5.438 0.31%
0.7 28.585 28.594 0.03% 5.525 5.228 0.46%

60 0.01 0.3 15.262 15.128 0.89% 7.639 7.604 0.46%
0.5 23.526 23.603 0.33% 7.304 7.348 0.60%
0.7 28.879 28.865 0.05% 7.063 7.055 0.10%

0.03 0.3 14.966 14.829 0.92% 7.561 7.567 0.07%
0.5 23.060 23.069 0.04% 7.239 7.248 0.12%
0.7 28.307 28.329 0.07% 7.008 7.062 0.76%

0.05 0.3 14.676 14.534 0.98% 7.486 7.505 0.26%
0.5 22.603 22.632 0.12% 7.177 7.216 0.53%
0.7 27.747 27.755 0.03% 6.954 6.953 0.02%

Av. run time (s) RIM 0.016 MC 18.672

Figure 2 illustrates some curves of the optimal exercise boundaries against time to
maturity τ and shows the effects of the mean-reversion speed κ for American strangle
option. In Figure 2, we observe that the waiting region becomes narrower as κ increases. In
Figure 3, we show option values with different κ as the underlying asset changes. A higher
value of κ corresponds to a lower value of American strangle option. That is, the effect of
the mean-reversion environment on the option can be seen in Figures 2 and 3. In addition,
Figures 4 and 5 show how the optimal exercise boundaries and option values move as
volatility σ changes. When the value of σ is low, the waiting region becomes narrower and
the option value is low, as expected.

In Figure 6, we show option values with different maturity T. Although the option
values are similar when the option is “In The Money” or “Out of The Money”, there seems
to be a significant difference when the option is near to “At The Money”. In other words,
when St −→ 0 or St −→ ∞, the maturity has no effect on option values. Figures 7 and 8
show the comparison of the optimal exercise boundaries and option values for three types
of American options (call, put, strangle), respectively. Figure 7 shows that there is no
difference in value at short τ and a slight difference at long τ. The value function (V) of
the American strangle option for the underlying asset is convex, as expected, unlike the
American call (VC) and American put (VP) options, as illustrated in Figure 8. Moreover,
it can be observed that V and VP get closer as St decreases and V and VC get closer as St
increases.
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Figure 2. Two free boundaries Zup(t) and Zlow(t) with respect to κ.
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Figure 3. The option values at time t = 0 with respect to κ.
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Figure 4. Two free boundaries Zup(t) and Zlow(t) with respect to σ.
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Figure 5. The option values at time t = 0 with respect to σ.
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Figure 6. The option values V at time t = 0 with respect to the maturity T.
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Figure 7. The comparison of the two free boundaries with those of the American call and put
options, respectively.
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Figure 8. The comparison of the option values with those of the American call and put options,
respectively.

5. Concluding Remarks

We investigated a pricing model for the American strangle option in the mean-
reversion environment in this paper. To describe the mean-reversion environment, we
assumed that the underlying asset was driven by a mean-reverting process. Because an
American strangle option incorporates simultaneously buying or selling call and put op-
tions on the same underlying asset, it has two free boundaries. Based on the PDE approach,
we provided an analytical pricing formula for the American strangle option in the proposed
model. Using Mellin transform techniques, we derived the integral equation representation
for two optimal exercise boundaries arising from the nonhomogeneous PDE for the Ameri-
can strangle option price with finite maturity. The Mellin transforms have the advantage of
converting the given PDE into a relatively simple ODE. After solving the ODE with some
techniques, we used inverse Mellin transforms to invert the ODE solutions to obtain the
integral equations for the American strangle option. Finally, the pricing formula was ex-
plicitly presented as the sum of the European call option, the European put option, and the
early exercise premium, and it was quickly solved using the RIM. Based on our approach,
we also investigated American call and put options in the mean-reversion environment.

Through numerical experiments, we verified the accuracy of our formula and in-
vestigated the impact of mean-reversion on the American strangle option. Numerical
simulations using the MC simulation method showed that our formula was accurate and
efficient. Furthermore, we showed how to move American strangle option prices with re-
spect to several significant parameters using graphs, and we compared two free boundaries
and values for three types of options (American call, American put, American strangle).

Although we provide meaningful results for the valuation of the American strangle
option in a mean-reversion environment, this study has some limitations. First, we assumed
that the underlying asset’s volatility was constant. The stochastic volatility model can be
considered our model’s generalization. Second, the empirical analysis was not provided.
In the future, these will be considered extended works.
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Appendix A. The Nonhomogeneous PDE with the Operator L
In this section, we derive an analytic representation solution for the following nonho-

mogeneous PDE with the operator L:∂tW + LW = f (t, s) for (t, s) ∈ DT ,

W(T, s) = h(s) for s > 0.
(A1)

Recall that the operator L is given by

L = s2∂ss + κ(µ− log s)s∂s − r.

Let W̃ and f̃ be the time-reversed functions of W and f , respectively, i.e.,

W̃(τ, s) = W(T − τ, s) and f̃ (τ, s) = f (T − τ, s),

where τ = T − t.
In the domain D̃T := {(τ, s) | 0 < τ ≤ T, 0 < s < ∞}, we have−∂τW̃ + LW̃ = f̃ (τ, s) for (τ, s) ∈ D̃T ,

W̃(0, s) = h(s) for s > 0.
(A2)

Let us consider the Mellin transform WM(τ, x) of W(τ, s), given by

WM(τ, x) =
∫ ∞

0
W̃(τ, s)sx−1ds x ∈ C. (A3)

By the properties of the Mellin transform (the definition and basic properties are
well documented in [32–34]), the Mellin transforms of s∂sW̃, s2∂ssW̃, and s log s∂sW̃ are
given by

−xWM(τ, x), x2WM(τ, x), and ∂x(−xWM(τ, x)),

respectively.
By applying the Mellin transform to both sides of the first equation in (A2), we have−∂τWM(τ, x) +

σ2

2
x(x + 1)VM − κµxWM + κ∂x(xWM)− rWM = fM(τ, x),

WM(0, x) = hM(x),
(A4)

where fM(τ, x) and hM(x) are the Mellin transform of f̃ (τ, s) and h(s), respectively, i.e.,

fM(τ, x) =
∫ ∞

0
f̃ (τ, s)sx−1ds and hM(x) =

∫ ∞

0
h(s)sx−1ds. (A5)

Let us consider the following substitution:

Q(τ, y) = WM(τ, x) with y = log x + κτ. (A6)

From the substitution in (A6), we can rewrite the PDE (A4) as follows:
−dQ

dτ
+ A(τ, y)Q = fM(τ, ey−κτ),

Q(0, y) = hM(ey),
(A7)
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where

A(τ, y) =
σ2

2
e2(y−κτ) +

(
σ2

2
− κµ

)
ey−κτ − (r− κ). (A8)

To solve the first-order ordinary differential equation (ODE) (A7), we multiply the
integrating factor e−I(τ,y) with I(τ, y) :=

∫ τ
0 A(ξ, y)dξ on both sides of the first equation

in (A7).
Since

I(τ, y) =
σ2

2
e2y 1− e−2κτ

2κ
+

(
σ2

2
− κµ

)
ey 1− e−κτ

κ
− (r− κ)τ

and
I(τ, y)− I(ξ, y) = I(τ − ξ, y− κξ),

we have
Q(τ, y) = hM(ey)eI(τ,y) −

∫ τ

0
fM(ξ, ey−κξ)eI(τ−ξ,y−κξ)dξ. (A9)

Thus, it follows from the substitution (A6) that

WM(τ, x) = hM(eκτx)eK(τ,x) −
∫ τ

0
fM(ξ, xeκ(τ−ξ))eK(τ−ξ,x)dξ, (A10)

where

K(τ, x) :=I(τ, log x + κτ)

=
σ2

2
1− e−2κτ

2κ
e2κτx2 +

(
σ2

2
− κµ

)
1− e−κτ

κ
eκτx− (r− κ)τ.

By applying the inverse Mellin transform to Equation (A10), it follows from the Mellin
inversion theorem that

W̃(τ, s) =
1

2πi

∫ c+i∞

c−i∞
hM(eκτx)eK(τ,x)s−xdx−

∫ τ

0

[
1

2πi

∫ c+i∞

c−i∞
fM(ξ, xeκ(τ−ξ))eK(τ−ξ,x)s−xdx

]
dξ (A11)

for some c ∈ C.
To utilize the Mellin convolution theorem, let us define Ξ(τ, s) as the inverse Mellin

transform of eK(τ,x), i.e.,

Ξ(τ, s) =
1

2πi

∫ c+i∞

c−i∞
eK(τ,x)s−xdx.

Note that

K(τ, x) =
σ2

2
1− e−2κτ

2κ
e2κτx2 +

(
σ2

2
− κµ

)
1− e−κτ

κ
eκτx− (r− κ)τ

=
σ2

2
1− e−2κτ

2κ
e2κτ

(
x +

(
1− 2κµ

σ2

)
1− e−κτ

1− e−2κτ
e−κτ

)2

− σ2

2
1− e−2κτ

2κ

(
1− 2κτ

σ2

)2( 1− e−κτ

1− e−2κτ

)2

−(r− κ)τ

=− (r− κ)τ − δ1(t)(δ2(t))2 + δ1(t)(x + δ2(t))2,

where

δ1(τ) :=
1
2
(α(t)eκτ)2 with α(t) = σ

(
1− e−2κτ

2κ

) 1
2

,

δ2(τ) :=
(

1− 2κµ

σ2

)
1− e−κτ

1− e−2κτ
e−κτ .
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Since the inverse Mellin transform of the exponential form eβ1(x+β2)
2

with Re(β1) > 0
is given by

1
2πi

∫ c+∞

c−i∞
eβ1(x+β1)

2
s−xdx =

1
2
√

πβ1
sβ2 e−

1
4β1

(log s)2
,

Ξ(t, s), the inverse Mellin transform of eK(τ,x), is given by

Ξ(t, s) =
1

2πi

∫ c+∞

c−i∞
eK(τ,x)s−xdx = exp

{
−(r− κ)τ − δ1(t)(δ2(t))2 − 1

4δ1(t)(log s)2

}
× 1

2
√

πδ1(t)
sδ2(t). (A12)

Moreover, the inverse Mellin transforms of hM(eκτx) and fM(ξ, xeκ(τ−ξ)) are given by

h
(

se−κτ
)

e−κτ and f̃
(

ξ, se−κ(τ−ξ)
)

e−κ(τ−ξ),

respectively.
Finally, we get an analytic representation formula for V(t, s) = Ṽ(τ, s) via the Mellin

convolution theorem as follows:

W(t, s) =
∫ ∞

0
h
(

ue−κτ
)

e−κτΞ
(

τ,
s
u

)du
u
−
∫ τ

0

[∫ ∞

0
f̃
(

ξ, ue−κ(τ−ξ)
)

e−κ(τ−ξ)Ξ
(

τ − ξ,
s
u

)du
u

]
dξ

=
∫ ∞

0
h
(

ue−κτ
)

e−κτΞ
(

τ,
s
u

)du
u
−
∫ τ

0

[∫ ∞

0
f
(

T − ξ, ue−κ(τ−ξ)
)

e−κ(τ−ξ)Ξ
(

τ − ξ,
s
u

)du
u

]
dξ (A13)

=
∫ ∞

0
h
(

ue−κτ
)

e−κτΞ
(

τ,
s
u

)du
u
−
∫ τ

0

[∫ ∞

0
f
(

t + ξ, ue−κξ
)

e−κξΞ
(

ξ,
s
u

)du
u

]
dξ

with τ = T − t.
The following lemma is useful for some specific h(s) and f (t, s) to simplify the analytic

formula in (A13):

Lemma A1. For a given D > 0, the following equalities are established:

∫ ∞

D
e−κτΞ

(
τ,

s
u

)du
u

=e−rτN
(

log s
D − 2δ1(t)δ2(t)√

2δ1(t)

)
,

∫ D

0
e−κτΞ

(
τ,

s
u

)du
u

=e−rτN
(
−

log s
D − 2δ1(t)δ2(t)√

2δ1(t)

)
,

∫ ∞

D
e−κτue−κτ

Ξ
(

τ,
s
u

) du
u

=e−rτ−2δ1(t)δ2(t)e−κτ+δ1(t)e−2κτ
se−κτN

(
log s

D − 2δ1(t)(δ2(t)− e−κτ)√
2δ1(t)

)
,

∫ D

0
e−κτue−κτ

Ξ
(

τ,
s
u

) du
u

=e−rτ−2δ1(t)δ2(t)e−κτ+δ1(t)e−2κτ
se−κτN

(
−

log s
D − 2δ1(t)(δ2(t)− e−κτ)√

2δ1(t)

)
,

and
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∫ ∞

D
e−κτue−κτ

log ue−κτ
Ξ
(

τ,
s
u

)du
u

=e−rτ−2δ1(t)δ2(t)+δ1(t)e−2κτ
se−κτ

×
{
(e−κτ log s− 2δ1(t)δ2(t)e−κτ + 2δ1(t)e−2κτ) N

(
log s

D − 2δ1(t)(δ2(t)− e−κτ)√
2δ1(t)

)

+ e−κτ
√

2δ1(t)n

(
log s

D − 2δ1(t)(δ2(t)− e−κτ)√
2δ1(t)

)}
,

∫ D

0
e−κτue−κτ

log ue−κτ
Ξ
(

τ,
s
u

)du
u

=e−rτ−2δ1(t)δ2(t)+δ1(t)e−2κτ
se−κτ

×
{
(e−κτ log s− 2δ1(t)δ2(t)e−κτ + 2δ1(t)e−2κτ) N

(
−

log s
D − 2δ1(t)(δ2(t)− e−κτ)√

2δ1(t)

)

− e−κτ
√

2δ1(t)n

(
log s

D − 2δ1(t)(δ2(t)− e−κτ)√
2δ1(t)

)}
,

where N (·) and n(·) are the standard normal cumulative distribution and probability density
functions, respectively.

Proof. By the explicit form of Ξ(t, s) in (A12), we have∫ ∞

D
e−κτΞ

(
τ,

s
u

)du
u

=e−rτ−δ1(τ)(δ1(τ))
2
∫ ∞

D

1
2
(πδ1(τ))

− 1
2

( s
u

)δ2(τ)
e
− 1

4δ1(τ)
(log s/u)2 du

u

=− e−rτ
∫ −∞

log s
D

1
2
(πδ1(τ))

− 1
2 e
− 1

4δ1(τ)
(v−2δ1(τ)δ2(τ))

2

dv
(

v = log
s
D

)
=e−rτN

(
log s

D − 2δ1(τ)δ2(τ)√
2δ1(τ)

)

and

∫ ∞

D
e−κτue−κτ

Ξ
(

τ,
s
u

)du
u

=e−rτ−δ1(τ)(δ1(τ))
2
se−κτ

∫ ∞

D

1
2
(πδ1(τ))

− 1
2

( s
u

)δ2(τ)−e−κτ

e
− 1

4δ1(τ)
(log s/u)2 du

u

=e−rτ−2δ1(t)δ2(t)e−κτ+δ1(t)e−2κτ
se−κτ

∫ ∞

D

1
2
(πδ1(τ))

− 1
2 e
− 1

4δ1(τ)
(v−δ1(τ)(δ2(τ)−e−κτ))2) du

u

=e−rτ−2δ1(t)δ2(t)e−κτ+δ1(t)e−2κτ
se−κτN

(
log s

D − 2δ1(t)(δ2(t)− e−κτ)√
2δ1(t)

)
.

On the other hand,∫ ∞

D
e−κτue−κτ

log ue−κτ
Ξ
(

τ,
s
u

) du
u

=
∫ ∞

D
e−κτue−κτ

e−κτ
(

log
u
s
+ log s

)
Ξ
(

τ,
s
u

) du
u

=e−κτ log s
∫ ∞

D
e−κτue−κτ

Ξ(τ,
s
u
)

du
u

+ e−κτ
∫ ∞

D
e−κτue−κτ

log
u
s

Ξ(τ,
s
u
)

du
u

(A14)

=e−κτ log s

{
e−rτ−2δ1(t)δ2(t)e−κτ+δ1(t)e−2κτ

se−κτN
(

log s
D − 2δ1(t)(δ2(t)− e−κτ)√

2δ1(t)

)}

+e−κτ
∫ ∞

D
e−κτue−κτ

log
u
s

Ξ(τ,
s
u
)

du
u

.

Note that
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∫ ∞

D
e−κτue−κτ

log
u
s

Ξ(τ,
s
u
)

du
u

=e−rτδ1(τ)(δ2(τ))
2
se−κτ

∫ ∞

D

1
2
(πδ1(τ))

− 1
2

( s
u

)δ2(τ)−e−κτ

log
s
u

e
− 1

4δ1(τ)
(log s/u)2 du

u

=e−rτ−2δ1(t)δ2(t)+δ1(t)e−2κτ
se−κτ

∫ ∞

log s
u

1
2
(πδ1(τ))

− 1
2 ve
− 1

4δ1(τ)
(v−δ1(τ)(δ2(τ)−e−κτ))2

dv

=e−rτ−2δ1(t)δ2(t)+δ1(t)e−2κτ
se−κτ

{
(2δ1(t)δ2(t) + 2δ1(t)e−κτ) N

(
−

log s
D − 2δ1(t)(δ2(t)− e−κτ)√

2δ1(t)

)
(A15)

− e−κτ
√

2δ1(t)n

(
log s

D − 2δ1(t)(δ2(t)− e−κτ)√
2δ1(t)

)}
.

From the equalities (A14) and (A15),∫ ∞

D
e−κτue−κτ

log ue−κτ
Ξ
(

τ,
s
u

)du
u

=e−rτ−2δ1(t)δ2(t)+δ1(t)e−2κτ
se−κτ

×
{
(e−κτ log s− 2δ1(t)δ2(t)e−κτ + 2δ1(t)e−2κτ) N

(
log s

D − 2δ1(t)(δ2(t)− e−κτ)√
2δ1(t)

)

+ e−κτ
√

2δ1(t)n

(
log s

D − 2δ1(t)(δ2(t)− e−κτ)√
2δ1(t)

)}
.

The remaining integrals from 0 to D also can be proved by almost similar arguments.

Appendix B. Integral Equation Representation for American Options

In this section, we derive the integral equation representations for American call and
put options with the dynamic of the underlying asset (1).

As in Problem 1, we can define the price of the American call and put options as
follows:

Problem A1 (American call).

VC(t, St) = sup
τ∈U (t,T)

E
[
e−rτ(Sτ − K1)

+ | Ft
]
. (A16)

Problem A2 (American put).

VP(t, St) = sup
τ∈U (t,T)

E
[
e−rτ(K2 − Sτ)

+ | Ft
]
. (A17)

The value function Vj(t, s) (j = C, P) satisfies the following variational inequality: on
the domain DT 

∂tVj + LVj ≤ 0 for Vj(t, s) = hj(s),

∂tVj + LVj = 0 for Vj(t, s) > hj(s),

Vj(T, s) = hj(s),

(A18)

where hC(s) := (s− K1)
+ and hP(s) := (K2 − s)+.

From the variational inequalities (A18), we can define the waiting region WRj and
stopping region SRj as follows: for j = C, P

WRj := {(t, s) ∈ DT | Vj(t, s) > hj(s)} and SRj := {(t, s) ∈ DT | Vj(t, s) = hj(s)}. (A19)
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Note that

SRC = {(t, s) ∈ DT | VC(t, s) = hC(s)} = {(t, s) ∈ DT | VC(t, s) = s− K1},
SRP = {(t, s) ∈ DT | VP(t, s) = hP(s)} = {(t, s) ∈ DT | VC(t, s) = K2 − s}.

The optimal stopping boundary Zj(t) (j = C, P) can be defined as

ZC(t) = sup{s > 0 | (t, s) ∈ WRC} and ZP(t) = inf{s > 0 | (t, s) ∈ WRP}.

Then, the following smooth-pasting condition for Vj(t, s) (j = C, P) holds:{
VC(t,ZC(t)) = Zup(t)− K1, ∂sVC(t,ZC(t)) = 1,
VP(t,ZP(t)) = K2 −ZP(t), ∂sVP(t,ZP(t)) = −1.

(A20)

In terms of the boundary Zj(t) (j = C, P), we can rewrite WRj and SRj as follows:

WRC = {(t, s) ∈ DT | 0 < s < ZC(t)} and SRC = {(t, s) ∈ DT | s ≥ ZC(t)}

and

WRP = {(t, s) ∈ DT | s > ZP(t)} and SRP = {(t, s) ∈ DT | 0 < s ≤ ZP(t)}.

Since ∂tVC + LVC = 0 in WRC, ∂tVP + LVP = 0 in WRP, VC(t, s) = s− K1 in SRC,
and VP(t, s) = K2 − s in SRP, the value functions VC(t, s) and VP satisfy the following
nonhomogeneous PDEs:{

∂tVC + LVC = (rK1 + (κµ− r− κ log s)s)1{s≥ZC(t)},
VC(T, s) = hC(s) = (s− K1)

+,
(A21)

and {
∂tVP + LVP(rK1 + (κµ− r− κ log s)s)1{s≥ZP(t)},
VP(T, s) = hP(s) = (K2 − s)+,

(A22)

with the smooth-pasting condition (A20).
As in Theorem 1, we can easily obtain the following proposition:

Proposition A1. The value functions VC(t, s) and VP(t, s) are expressed as

VC(t, s) = CE(t, s) + Cep(t, s) and VP(t, s) = PE(t, s) + Pep(t, s) (A23)

where CE(t, s) and VP(t, s) are given in Theorem 1,

Cep(t, s) :=
∫ τ

0
e−rξ+θ(1−e−κξ )+ 1

2 a(ξ)2
se−κξ

{[
(r− κµ) + κ(e−κξ log s + θ(1− e−κξ) + (a(ξ))2)

]
×N

(
d1(ξ,

s
ZC(t + ξ)

)

)
+ κa(ξ)n

(
d1(ξ,

s
ZC(t + ξ)

)

)}
dξ

−rK1

∫ τ

0
e−rξN

(
d2(ξ,

s
ZC(t + ξ)

)

)
dξ
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and

Pep(t, s) := −
∫ τ

0
e−rξ+θ(1−e−κξ )+ 1

2 a(ξ)2
se−κξ

{[
(r− κµ) + κ(e−κξ log s + θ(1− e−κξ) + (a(ξ))2)

]
×N

(
−d1(ξ,

s
ZP(t + ξ)

)

)
− κa(ξ)n

(
d1(ξ,

s
ZP(t + ξ)

)

)}
dξ

+rK2

∫ τ

0
e−rξN

(
−d2(ξ,

s
ZP(t + ξ)

)

)
dξ.

Moreover, ZC(t) and ZP(t) satisfy

s− K1 = VC(t,ZC(t)) and K2 − s = VP(t,ZP(t)),

respectively.
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