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Abstract: This article introduces a new projection method via shifted Legendre polynomials and
an efficient procedure for solving a system of integro-differential equations of the Cauchy type.
The proposed computational process solves two systems of linear equations. We demonstrate the
existence of the solution to the approximate problem and conduct an error analysis. Numerical tests
provide theoretical results.
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1. Introduction

Numerous scientific domains, including hydrodynamics, biology, electromagnetism,
and elasticity rely heavily on operator equations theory. Integro-differential and integral
equations of Cauchy type are a subset of these equations.

Much research has recently been conducted on using ordinary differential, integro-
differential, and integral equations in mathematical physics (see [1–9]). An essential class
of these problems is singular integro-differential equations with boundary conditions
(cf. [10–16]).

The authors of [17] investigated a category of integro-differential equations with
variable-order. They suggested a new approach based on fifth-order shifted Chebyshev
polynomials. In [18], the superconvergence error estimate for integro-differential equations
of semilinear parabolic type without time-step constraints is generated by spatial discretiza-
tion with a bilinear element and temporal discretization with a modeled backward Euler
formula.

Projection approximation methods are fundamental to approximation theory and
have a variety of uses, including the solution of integro-differential and integral equations.
The authors of [19] focused on several finite rank approximations with bounded, limited
rank projections. For solving second-kind singular Fredholm integral equations with
weak singularities, the authors employed a projection approximation in [20]. A projection
approximation for solving integro-differential problems of Cauchy type using first-order
airfoil polynomials is investigated in [21].

Recently, the authors of [22] demonstrated how to solve fuzzy integro-differential equa-
tions with weak singularities via airfoil polynomials. In [23], Mennouni introduced a novel
projection approach based on Legendre polynomials for examining integro-differential
equations with a Cauchy type on L2([−1, 1],C).

Several results for solving compact operator equations using the Galerkin and Kulkarni
methods have been established over the last two decades. These two methods are used
in [24] to approach the solution of the following bounded equation:
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u− Bu = f .

The author considered an approximate equation of the form:

uG
n − BnuG

n = Πn f .

To begin, the author regarded the approximate operator Bn as a Galerkin one:

BG
n := ΠnBΠn,

for some sequence of bounded projections (Πn)n≥1.
Secondly, he employed Kulkarni’s approximation as follows:

BK
n := ΠnB + BΠn −ΠnBΠn.

This work presents a new projection method for solving the following system of
Cauchy integro-differential equations on L2([0, 1],C)

v′(s) +
∮ 1

0

u(η)
η − s

dη = f (s), 0 ≤ s ≤ 1,

u′(s) +
∮ 1

0
v(η)
η−s dη = g(s), 0 ≤ s ≤ 1,

u(0) = 0, v(0) = 0.

We will turn the problem into a system of two separate equations that looks like this:{
AU + T U = F,
AV − T V = G.

Unlike previously, we use the shifted Legendre polynomial and introduce an approxi-
mation system of the form:{

Un +A−1PS
nT Un = A−1PS

nT F,
Vn −A−1PS

nT Vn = A−1PS
nT G.

The results from the introduced computational technique were used to solve two
systems of linear equations. We show that the approximation equation has a solution, and
we conduct an error analysis. Numerical examples illustrate the theories.

Other sections of this study are described as follows: The system of logarithmic integro-
differential equations is covered in the next section. Section 3 discusses some key aspects
of shifted Legendre polynomials and the development of the method. Section 6 improves
the convergence of the approximate solution and estimates the error analysis. Section 5
explores some numerical tests.

2. Cauchy-Type Systems of Singular Integro-Differential Equations

Let H := L2([0, 1],C) be the space of complex-valued Lebesgue square integrable
functions on [0, 1]. The goal of this paper is to introduce a new projection method that uses
shifted Legendre polynomials to solve Cauchy-type systems of singular integro-differential
equations inH.

Consider the following Cauchy-type system of singular integro-differential equations:
v′(s) +

∮ 1

0

u(η)
η − s

dη = f (s), 0 ≤ s ≤ 1,

u′(s) +
∮ 1

0
v(η)
η−s dη = g(s), 0 ≤ s ≤ 1,

u(0) = 0, v(0) = 0.

(1)
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Both integrals denote the main value of Cauchy:∮ 1

0

v(η)
η − s

dη = lim
ε→0

(∫ s−ε

0

v(η)
η − s

dη +
∫ 1

s+ε

v(η)
η − s

dη

)
,∮ 1

0

u(η)
η − s

dη = lim
ε→0

(∫ s−ε

0

u(η)
η − s

dη +
∫ 1

s+ε

u(η)
η − s

dη

)
.

We follow [25] in letting

V := u− v, F := g + f ;

U := u + v, G := g− f .

Lemma 1. Problem (1) can be expressed in the form:
U ′(s) +

∮ 1

0

U (η)
η − s

dη = F(s), 0 ≤ s ≤ 1,

V ′(s)−
∮ 1

0
V(η)
η−s dη = G(s), 0 ≤ s ≤ 1,

U (0) = 0, V(0) = 0.

(2)

Proof. We note that
u =

U + V
2

, f =
F− G

2
;

v =
U − V

2
, g =

F + G
2

.

Substituting these into (1), we obtain

(U − V)′(s) +
∮ 1

0

(U + V)(η)
η − s

dη = (F− G)(s), (3)

(U + V)′(s) +
∮ 1

0

(U − V)(η)
η − s

dη = (F + G)(s). (4)

By adding Equations (3) and (4) together, and by subtracting (3) from (4), we obtain
(2).

System (2) can be rewritten in operator form as follows:{
AU + T U = F,
AV − T V = G,

where T is the Cauchy integral operator

T ϕ(s) :=
∮ 1

0

ϕ(η)

η − s
dη, 0 ≤ s ≤ 1,

and A is the differential operator

Aϕ(s) := ϕ′(s), 0 ≤ s ≤ 1,

with domain
D :=

{
ϕ ∈ H : ϕ′ ∈ H, ϕ(0) = 0

}
.

Following [23], the operator T is bounded fromH into itself.
It is well known that the operator A is invertible, and its inverse is the following

Voletrra integral operator

(A−1y)(s) =
∫ s

0
y(t)dt.
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Moreover, A−1 : H → D is compact.

3. Shifted Legendre Polynomials and Development of the Method

The well-known Legendre polynomials represented on [−1, 1] are described by the
following recurrence

L0(σ) =1, L1(σ) = σ,

Lj+1(σ) =
2j + 1
j + 1

σLj(σ)−
j

j + 1
Lj−1(σ), j = 1, 2, 3, . . .

The first Legendre polynomials are given below.

L0(σ) = 1;

L1(σ) = σ;

L2(σ) =
1
2

(
3σ2 − 1

)
;

L3(σ) =
1
2

(
5σ3 − 3σ

)
;

L4(σ) =
1
8

(
35σ4 − 30σ2 + 3

)
;

L5(σ) =
1
8

(
63σ5 − 70σ3 + 15σ

)
.

Let the shifted Legendre polynomials Li(2σ− 1) be denoted by LS
i (σ), σ ∈ [0, 1]. We

recall that ∫ 1

0
LS

n(σ)LS
m(σ)dσ =


1

2n + 1
n = m,

0 n 6= m.
(5)

Let
Λp :=

√
2p + 1LS

p, p = 0, 2, 3, . . .

denote the corresponding normalized sequence. Let (PS
n )n≥0 be the chain of bounded finite

rank orthogonal projections described by

PS
n ψ :=

n−1

∑
j=0

〈
ψ, Λj

〉
Λj, where

〈
ψ, Λj

〉
:=
∫ 1

0
ψ(σ)Λj(σ)dσ.

Denote by ‖.‖ the corresponding norm onH. Thus,

lim
n→∞

‖PS
n ϑ− ϑ‖ = 0, for all ϑ ∈ H.

LetHn represent the space covered by the first n-shifted Legendre polynomials. It is
obvious that A−1(Hn) = Hn+1. The approximate solution (Un,Vn) solves the following
system: {

Un +A−1PS
nT Un = A−1PS

nT F,
Vn −A−1PS

nT Vn = A−1PS
nT G.

We note that Un,Vn ∈ D ∩Hn+1. Thus, the system{
U +A−1T U = A−1F,
V −A−1T V = A−1G
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is approximated by {
Un +A−1PS

nT Un = A−1PS
n F,

Vn −A−1PS
nT Vn = A−1PS

n G.

We assume that−1 and 1 are not eigenvalues ofA−1T . Thus, both operators I +A−1T
and I −A−1T are invertible.

We recall that A−1 is compact, and

lim
n→∞

‖A−1PS
nT x−A−1T x‖ = 0, for all x ∈ H.

This implies that

lim
n→∞

‖
(
A−1PS

nT −A−1T
)
A−1T ‖ = 0, lim

n→∞
‖
(
A−1PS

nT −A−1T
)
A−1PS

nT ‖ = 0.

Writing 
Un =

n

∑
j=0

xn,jΛj,

Vn =
n
∑

j=0
yn,jΛj.

We obtain the 2n + 2 unknowns xn(j) and yn(j) by solving the two separate linear
systems 

n

∑
j=0

xn(j)
[
Λ′j + PS

n TΛj

]
= PS

nA−1F, with
n

∑
j=0

xn(j)Λj(0) = 0,

n
∑

j=0
yn(j)

[
Λ′j −PS

n TΛj

]
= PS

nA−1G, with
n
∑

j=0
yn(j)Λj(0) = 0.

As a result, two separate linear systems are produced:{
Anxn = bn,
Ânyn = b̂n,

where, for i = 0 · · · n− 1 and j = 0 · · · n,

An(i, j) :=
√
(2i + 1)(2j + 1)

[∫ 1

0
LS′

j (s)Li(s)ds +
∫ 1

0

(∮ 1

0

LS
j (σ)

σ− s
dσ

)
LS

i (s)ds

]
,

Ân(i, j) :=
√
(2i + 1)(2j + 1)

[∫ 1

0
LS′

j (s)LS
i (s)ds−

∫ 1

0

(∮ 1

0

LS
j (σ)

σ− s
dσ

)
LS

i (s)ds

]
,

An(n, j) := Λj(0), Ân(n, j) := Λj(0),

bn(i) :=
√

2i + 1
∫ 1

0
F(s)LS

i (s)ds, b̂n(i) :=
√

2i + 1
∫ 1

0
G(s)LS

i (s)ds,

bn(n) := 0, b̂n(n) := 0.
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4. Convergence Analysis

We will now show how the current method converges. To that end, consider Hs(0, 1)
to be the classical Sobolev space for some s > 0, and ‖.‖s to be its norm.

Remark that
(I +A−1T )(Hs([0, 1],C)) = Hs([0, 1],C).

Also,
(I −A−1T )(Hs([0, 1],C)) = Hs([0, 1],C).

We recall that there exists c > 0 such that∥∥∥(I −PS
n )ψ

∥∥∥ ≤ cn−s‖ψ‖s, for all ψ ∈ Hs([0, 1],C).

Because A−1T is compact, according to [23], the operators (I + A−1PS
nT )−1 and

(I −A−1PS
nT )−1 exist for n large enough and are uniformly bounded with respect to n.

Theorem 1. Assume that f , g ∈ Hs([0, 1],C) for some s > 0. Then, there exist α, β > 0 such that

‖Un −U‖ ≤ α[n1−s‖T (u + v)‖s−1 + n−s‖(g + f )‖s],

and
‖Vn − V‖ ≤ β[n1−s‖T (u− v)‖s−1 + n−s‖(g− f )‖s].

Proof. In fact, {
Un +A−1PS

nT Un = A−1PS
n F,

Vn −A−1PS
nT Vn = A−1PS

n G.

As in [23], we have

Un −U =

[(
I +A−1PS

nT
)−1
A−1PS

n F−
(

I +A−1T
)−1
A−1F

]
+
(

I +A−1PS
nT
)−1
A−1F−

(
I +A−1PS

nT
)−1
A−1F

=
(

I +A−1PS
nT
)−1[(

A−1T −A−1PS
nT
)
U +A−1PS

n F−A−1F
]
.

Further,

Vn − V =

[(
I −A−1PS

nT
)−1
A−1PS

n G−
(

I −A−1T
)−1
A−1G

]
+
(

I −A−1PS
nT
)−1
A−1G−

(
I −A−1PS

nT
)−1
A−1G

=
(

I −A−1PS
nT
)−1[(

A−1PS
nT −A−1T

)
V +A−1PS

n G−A−1G
]
.

However, (
A−1T −A−1PS

nT
)
U = A−1

(
I −PS

n

)
T U ,

and (
A−1PS

nT −A−1T
)
V = A−1

(
PS

n − I
)
T V .

Since f , g ∈ Hs([0, 1],C), we get U ,V ∈ Hs([0, 1],C) and T U , T V ∈ Hs−1([0, 1],C).
Moreover, we have

un − u =
Un −U

2
+
Vn − V

2
, vn − v =

Un −U
2

+
V − Vn

2
.
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Hence,

Un −U =
(

I +A−1PS
nT
)−1[

A−1
(

I −PS
n

)
T U +A−1

(
I −PS

n

)
F
]

=
(

I +A−1PS
nT
)−1
A−1

[(
I −PS

n

)
T (u + v) +

(
I −PS

n

)
(g + f )

]
,

and

Vn − V =
(

I −A−1PS
nT
)−1[

A−1
(

I −PS
n

)
T V +A−1

(
I −PS

n

)
G
]

=
(

I −A−1PS
nT
)−1
A−1

[(
I −PS

n

)
T (u− v) +

(
I −PS

n

)
(g− f )

]
.

Thus,

‖Un −U‖ ≤
∥∥∥∥(I +A−1PS

nT
)−1

∥∥∥∥∥∥∥A−1
∥∥∥[∥∥∥(I −PS

n

)
T (u + v)

∥∥∥+ ∥∥∥(I −PS
n

)
(g + f )

∥∥∥]
≤ α

[∥∥∥(I −PS
n

)
T (u + v)

∥∥∥+ ∥∥∥(I −PS
n

)
(g + f )

∥∥∥]
and

‖Vn − V‖ =
∥∥∥∥(I −A−1PS

nT
)−1[

A−1
(

I −PS
n

)
T V +A−1

(
I −PS

n

)
G
]∥∥∥∥

≤
∥∥∥∥(I −A−1PS

nT
)−1

∥∥∥∥∥∥∥A−1
∥∥∥[∥∥∥(I −PS

n

)
T (u− v)

∥∥∥+ ∥∥∥(I −PS
n

)
(g− f )

∥∥∥].
The desired result follows.

5. Numerical Example

We establish some numerical tests in this section to highlight the theoretical results
described above. In these numerical tests, the Maple programming language was used.

Through this example, we consider the integro-differential system (1), which has the
exact solution as follows:

u(s) =
s + s2

2(s2 + 1)
, v(s) =

s− s2

2(s2 + 1)
.

In this instance, we obtain

U (s) = s
s2 + 1

, V(s) = s2

s2 + 1
.

The way of connecting errors for this example is shown in Table 1.
Figures 1 and 2 compare the exact and approximate solutions at n = 10.

Table 1. Example 1.

n ‖U −Un‖2 ‖V −Vn‖2

3 3.182 × 10−3 4.100 × 10−3

5 4.555 × 10−5 1.776 × 10−4

9 1.000 × 10−6 3.505 × 10−7

13 4.472 × 10−8 2.264 × 10−13

18 4.960 × 10−19 3.06 × 10−20
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Figure 1. The approach solution Un for n = 10.

Figure 2. The approach solution Vn for n = 10.

Allow us to illustrate our method by providing some examples of approximate solu-
tions. For instance, when n = 5, the approximate solutions are as follows:

x5,0 = 0.271, x5,1 = −0.169× 10−1,

x5,2 = 0.337, x5,3 = −0.277,

x5,4 = 0.933× 10−1, x5,5 = −0.125× 10−1.

U5(s) = 2.10−30 + 0.995s + 0.804× 10−1s2

− 1.474s3 + 1.225s4 − 0.327s5.
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y5,0 = 0.294, y5,1 = −0.106,

y5,2 = 0.234, y5,3 = −0.300× 10−1,

y5,4 = −0.288× 10−1, y5,5 = 0.921× 10−2.

V5(s) = 10−30 − 0.733× 10−2s + 1.110s2

− 0.465s3 − 0.378s4 + 0.240s5.

The reported results show that the stated method is extremely accurate in analyzing
this example, as seen in Figures 3 and 4. Observe that the first 18 terms were examined for
the performance of the described procedure.

Figure 3. Presentation of ‖U − Un‖2 with n = 18.

Figure 4. Presentation of ‖V − Vn‖2 with n = 18.
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6. Conclusions

Many works have been published on the numerical solution of integro-differential
equations using various approximation procedures. The application of projection methods
to the Cauchy singular integro-differential system is extended in this paper. A series
of orthogonal finite-rank Legendre polynomial projections build the modified projection
method. In the Sobolev space, we demonstrated the convergence of the approach solution to
the exact one. Numerical experiments demonstrate the utility of our method. Other classes
of integro-differential and integral systems can be studied and solved using this method.
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