
����������
�������

Citation: Wang, S.; Chen, W.; Hu, J.;

Hu, S.; Huang, L. Noise-Regularized

Advantage Value for Multi-Agent

Reinforcement Learning. Mathematics

2022, 10, 2728. https://doi.org/

10.3390/math10152728

Academic Editor: Zhaobin Wang

Received: 21 June 2022

Accepted: 24 July 2022

Published: 2 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Noise-Regularized Advantage Value for Multi-Agent
Reinforcement Learning
Siying Wang 1 , Wenyu Chen 1, Jian Hu 2,* , Siyue Hu 3 and Liwei Huang 1,4

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

2 Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 106, Taiwan
3 Department of Computer Science & Information Engineering, National Taiwan University, Taipei 106, Taiwan
4 The State Key Laboratory of IoTSC, University of Macau, Taipa, Macau 999078, China
* Correspondence: r08944053@ntu.edu.tw

Abstract: Leveraging global state information to enhance policy optimization is a common approach
in multi-agent reinforcement learning (MARL). Even with the supplement of state information, the
agents still suffer from insufficient exploration in the training stage. Moreover, training with batch-
sampled examples from the replay buffer will induce the policy overfitting problem, i.e., multi-agent
proximal policy optimization (MAPPO) may not perform as good as independent PPO (IPPO) even
with additional information in the centralized critic. In this paper, we propose a novel noise-injection
method to regularize the policies of agents and mitigate the overfitting issue. We analyze the cause of
policy overfitting in actor–critic MARL, and design two specific patterns of noise injection applied
to the advantage function with random Gaussian noise to stabilize the training and enhance the
performance. The experimental results on the Matrix Game and StarCraft II show the higher training
efficiency and superior performance of our method, and the ablation studies indicate our method
will keep higher entropy of agents’ policies during training, which leads to more exploration.

Keywords: multi-agent reinforcement learning; proximal policy optimization; exploration; noise
injection; advantage function

MSC: 68T07; 68T42; 68T99

1. Introduction

Multi-agent reinforcement learning (MARL) has seen revolutionary breakthroughs
with its successful applications to multi-agent cooperative tasks, such as robot swarms
control [1], coordination of robots [2], autonomous vehicle coordination [3], computer
games [4], and multi-agent differential games [5–7]. Since agents need to make a series
of proper decisions to cooperate better to complete the tasks, many researchers have
extended the deep reinforcement learning methods to the multi-agent field to solve these
problems. An intuitive approach is to treat each agent as a separate individual and train
the decentralized policies of agents with deep Q-Learning [8], i.e., independent Q learning
(IQL) [9]; however, IQL cannot address the non-stationarity introduced by the fast-changing
policies of agents during training; these policies could not even converge with enough
exploration and local observations. Agents need additional information about each other
to be aware of the others’ policy changes; therefore, the centralized training and decentralized
execution (CTDE) paradigm [10], which allows agents to access global information during
training and execute based only on their local histories, is proposed to alleviate the non-
stationary problem and stabilize training in some multi-agent cooperation scenarios.

Many CTDE algorithms, such as MADDPG [11], MAAC [12], and QMIX [13], have
been proposed for different multi-agent tasks. These algorithms enable agents to treat the
concatenated local observations as global state information, merge them with attention

Mathematics 2022, 10, 2728. https://doi.org/10.3390/math10152728 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152728
https://doi.org/10.3390/math10152728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3180-0815
https://orcid.org/0000-0002-3437-2625
https://doi.org/10.3390/math10152728
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152728?type=check_update&version=2


Mathematics 2022, 10, 2728 2 of 15

mechanism, or incorporate them into the weights and bias of the delicately designed neural
networks [14]. All these methods aim to enhance the observational representation of the
individual agent by fusing more global information. Through the above methods, agents
can integrate more information about policies and local observations from each other, so
that they can make more appropriate decisions to cooperate better; however, the size of the
joint action space increases with the number of agents. Even with the help of more accurate
state information, it is extremely difficult to directly search for the optimal joint policy in a
huge state-action space with multiple agents. This may lead us to take millions of samples
to train the policies.

On the other hand, there are some ways to ensure that the training of agents progresses
steadily from the perspective of policy updating. Considering the excellent properties of
monotonically improving the policy, IPPO extends PPO [15] to the multi-agent setting to
train the agents efficiently. In the case of the maximum entropy optimization target, IPPO
ensures that the policy of each agent can be monotonically learned to find the optimal joint
policy; however, MAPPO [16], which incorporates global information with IPPO, may not
perform as well as IPPO. Although the global information can enrich the representation of
observations, it also brings information redundancy to the centralized critic. This counter-
intuitive phenomenon is described as policy overfitting, which would mislead the update
of policy in the wrong direction with all agents sharing the parameters of networks. The
inherent defect of policy overfitting raised by the centralized critic is difficult to improve
by modifying the traditional Markov decision process (MDP) or changing the exploration
method of policy networks. It also makes it harder to train the agents in an actor–critic
architecture since there are policy and value networks that need to be trained.

To deal with the policy overfitting and reducing the information redundancy brought
by the centralized critic, we propose a novel noise injection method to regularize the
policies of actor–critic MARL algorithms. We focus on MAPPO, develop two patterns
of the noise injection method applied to the advantage function, which is, respectively,
inspired by the noisy net [17] and parameter space noise [18]. Different from replacing the
exploration mechanism with a noisy policy network, as in [17,18], we inject the noise directly
into the centralized value network to enrich the representation ability. Furthermore, we
theoretically analyze the reason for policy overfitting in multi-agent actor–critic, and explain
that the problem comes from updating the agents’ policy by batch-sampling updating. Our
experimental results on the Matrix Game and challenging StarCraft II micromanagement
benchmark tasks (SMAC) [4] show that the injected noise can augment the variance of the
centralized value function, and indirectly increase the entropy of agents’ policies to obtain
more exploration during training. In general, our main contributions are summarized in
the following:

• We analyze the reason for policy overfitting in actor–critic MARL algorithms with the
centralized value function, which is caused by the batch sampling mechanism in the
training stage;

• We propose two patterns of noise injection to deal with the policy overfitting problem,
and experimentally prove the noise injected into the centralized value function can
maintain the entropy of agents’ policies during training to alleviate the information
redundancy and enhance performance;

• The experiments show our proposed method is able to archive comparable or much
better performance than state-of-the-art results in most hard scenarios of SMAC com-
pared to the current most trustworthy actor–critic MARL methods. Our code is open
source and can be found at https://github.com/hijkzzz/noisy-mappo (accessd on 7
January 2022) for experimental verification and for future works.

2. Related Works

Multi-agent reinforcement learning approaches are mainly divided into four categories:
analysis of emergent behaviors, learning communications, learning cooperation, and agent
modeling agents [19]. Among them, the agent cooperation is the top priority in this field.

https://github.com/hijkzzz/noisy-mappo


Mathematics 2022, 10, 2728 3 of 15

Recently, many MARL algorithms under the CTDE paradigm have been proposed to
alleviate the non-stationarity during training. The straightforward idea is to consider all
the agents in the same environment as a whole when we obtain all local observations
and additional state information. This concept brings out plenty of algorithms under
the CTDE paradigm. Value decomposition networks (VDN) [20] is the first attempt to
factorize the joint critic into each individual agent. QMIX [13] takes a step forward and
factorizes the centralized critic function by ensuring the consistency of argmax operator
between Qtot and each Qi, which is able to effectively reduce the search space of the
joint policy. QTRAN [21] learns the discrepancy between ∑T

i=0 Qi(oi, ai) and Qtot(o, a)
and compensates for this discrepancy through a state-based value function, which would
elaborately factorize the centralized critic function and train all the agents in an end-to-end
fashion. Then, QPLEX [22] factorizes the centralized critic into advantage value for each
agent with transformed dueling architecture, and LICA [23] extends QMIX to continuous
action spaces with the entropy of joint policy to constrain the training of agents.

On the other hand, actor–critic style algorithms are also shining in MARL. MAD-
DPG [11], as a representative, extends the DDPG [24] to a multi-agent setting and trains
agents with a centralized value function. MAAC [12] enriches the information of the
centralized function in MADDPG with a self-attention mechanism [25]. COMA [26] trains
agents with a centralized critic with counterfactual advantages, which is the embodiment
of the credit assignment from the perspective of the expectation of a value function. FAC-
MAC [27] combines the consistent constraint of QMIX with actor–critic algorithm for agents
to improve the training efficiency of agents. Furthermore, researchers introduced indepen-
dent PPO [16] to the multi-agent domain to monotonically update the policies of agents.
They also equip the global state information with IPPO and propose MAPPO [16]. Yu [28]
feeds agent-specific features to the centralized critic network of MAPPO, and proposes
an information filtering method to mask the useless features, which would significantly
improve MAPPO’s performance in some cooperative scenarios. Still, Kuba [29] theoreti-
cally analyzes the information redundancy of centralized critic in MAPPO/MATRPO, then
indicates the parameter sharing between agents will mislead the update of policies and
deteriorate the performance.

Moreover, agents would also suffer from inefficient exploration in MARL setting even
with enough state information. MAVEN [30] equips the value-based methods with com-
mitted exploration to persist the joint exploratory policy over an entire episode. ROMA [31]
introduces a role concept-based regularizer to train agents more efficiently. Pan [32] pro-
poses to use a synthetical softmax operator to update the Q-function under the CTDE
paradigm, and [33] encourages the agent to maintain a common goal while all agents
are exploring. Moreover, the traditional exploration, such as ε-greedy method, can be
incorporated into a noise-injection network [17,18]. All the noises are injected into the
parameters of policy network since designers expect to disturb the actions to explore other
states, then make the joint value function jump out of the local optimal region.

All the methods above expect to efficiently train the policies with adequate information
both from agents and environments, or other novel ways to increase exploration; however,
these methods do not solve the information redundancy problem brought by centralizing
the critics of agents together. Inspired by the noisy network [17], we explore the effect of
the specific pattern of Gaussian noise directly injected in centralized advantage function of
agents, which will correct the direction of policy update and regularize the training.

3. Preliminaries

Dec-POMDP We consider a cooperative task, which can be described as a decentral-
ized partially observable Markov decision process (Dec-POMDP) [34], which is formally
defined as a tuple (S ,A,O,R,P , n, γ). S represents the global state space, and τi = O(s; i)
is partially observation for each agent i at state s. P(s′|s, a) is the state transition probability
in the environment given the joint action a = (a1, . . . , aN) ∈ A. Each agent shares the
same reward functionR(s, a), and chooses sequential actions under partial observations.



Mathematics 2022, 10, 2728 4 of 15

N denotes the number of agents and γ ∈ [0, 1) is the discount factor. The whole team
of agents attempt to learn a joint policy π = 〈π1, ..., πN〉 that maximizes their expected
discounted return in a complete trajectory as

Vπ(s0) = Eai∼πi ,t∼T

[
∞

∑
t=0

γtrt

(
st, a1

t , . . . , aN
t

)]
. (1)

Multi-Agent Policy Gradient (MAPG) Policy gradient (PG) is the cornerstone of
actor–critic RL algorithms, which makes policy π closer to the actions which contain larger
advantage values by gradient ascending. Since we can easily extend PG to multi-agent
setting, the policies of N agents are trained with a shared advantage function which is
introduced by the global state s as

G =
N

∑
i
Est ,at∼π

[
∇ log πi(ai

t | τi
t )Aπ(st, at)

]
, (2)

where Aπ(st, at) = rt + γV π(st+1)− V π(st) is estimated by a centralized value function
with access to the global state s during training, and γ ∈ [0, 1] is the discount factor. The
joint actions conform to the distribution of joint policies and the objective function is related
to the gradient update direction fo all agents.

Multi-Agent Proximal Policy Optimization (MAPPO) Though it is easy to directly
apply PPO to each agent in cooperative scenarios, the independent PPO [16] may also
encounter non-stationarity since the policies of agents are updated simultaneously. MAPPO
extends IPPO’s independent critics to a centralized function with additional global infor-
mation, and the learning target is derived as

Jmappo =
1
N

N

∑
i
Eπold

[
min

(
ρi Aold, C(ρi, ε)Aold

)]
, (3)

where ρi = πi(ai |τi)

πi
old(ai |τi)

is the importance sampling weight for each agent, π−i denotes all the

policies except for agent i, and Aold
(

st, at, π−i
old

)
= rt + γV π(st+1)− V π(st). C(ρi, ε) =

clip(ρi, 1− ε, 1 + ε) is a range-limiting function, which limits the ratio ρi in the interval
(1− ε, 1 + ε).

Noise-injection Methods for Exploration Alongside the ε-greedy mechanism, the
parametric noise in the weights of the policy network can also aid efficient exploration
for agents. These parameters of noise are learned with gradient descent along with the
remaining network weights [17], and induce the stochasticity of agents’ policies to explore.
The corresponding noisy linear layer is defined as:

y def
= (µw + σw � εw)x + µb + σb � εb, (4)

where the learnable parameters µw + σw � εw and µb + σb � εb replace w and b in the
original layer y = wx + b, respectively. Meanwhile, the noisy-injection method with non-
learnable parameters is also proposed [18]. It is worth noting that these methods aim to
directly intervene in the selection of actions at execution, forcing agents to explore other
states. Both methods affect the policy rather than critic network, which is different from
our goal to alleviate the information redundancy of joint value function.

4. Method

In this section, we first describe and analyze the reason for the policy overfitting problem,
then we propose the two patterns of noise-injection methods to deal with the information
redundancy in the centralized value function.



Mathematics 2022, 10, 2728 5 of 15

4.1. Policy Overfitting

Let us start from MAPPO, the typical example of the actor–critic style algorithm,
to illustrate the policy overfitting problem brought by the centralized value function and
batched sampling mechanism. Since our ultimate goal is to update the policy of each agent,
we can directly obtain the derivative of the objective function with respect to the policy of
agent i. The expected policy gradient of MAPPO from (3) will be simplified as

∂J
∂πi
(
ai

t | st
) ∝ Ea−i∼π [Aπ

(
st, ai

t, a−i
)
]

= Ea−i∼π [r(st, ai
t, a−i) + Vπ(st+1)− Vπ(st)],

(5)

as this gradient expects the actions of other agents rather than agent i itself; its value can
represent the contribution of agent i. This marginal advantage function relies on the actions
of all the other agents, which will be poorly estimated with the exploration-biased actions.
Since we can access the global state information and global reward from the environment
during training, the centralized advantage function can also be calculated in the bootstrap
way. Still, similar results are also held in other PG-style MARL algorithms.

Furthermore, it is intractable to sweep the entire joint state-action space to obtain an
unbiased gradient. Modern multi-agent algorithms including MAPG and MAPPO, estimate
the gradient in (7) with sampled examples. These finite samples will enforce us to obtain
a fluctuating gradient factorized by a mean value and deviations. These deviations may
lead the policy update of agent i into a sub-optimal direction, preventing the exploration of
trajectories with higher returns. Obviously, this inherent defect will persist as long as we
use a batched sampling mechanism to update the gradients of policies.

Here, we illustrate it with a simple example. Assume we have just two cooperative
agents with the centralized value function, we need to update the policy of both agents
with trajectories sampled from the replay buffer or environment. As illustrated in Figure 1,
assume this advantage value calculated by the centralized value function is dominated by
the action of Agent 2 rather than Agent 1, so the global reward given by the environment
is supposed to be assigned to Agent 2; however, the policy gradients with this shared
advantage value under CTDE paradigm would improve the policies of both agents, i.e.,

∂ Ĵ
∂πi(ai

t |st)
∝ Aπ

(
st, a1, a2). The additional information brought by the centralized critic

would evenly distribute the global reward to each agent, which would assign the wrong
credit to Agent 1. This credit misassignment will ultimately cause policy overfitting even in
the same cooperative scenarios sometimes, which is contrary to the conventional wisdom
that additional information would help agents act more carefully and further alleviate the
non-stationarity caused by fast-changing policies of other agents. This credit misassignment
here is essentially different from that in COMA, we have put the specific differences between
them in Appendix A.

4.2. Noisy Advantage Values

Since the advantage values learned with finite samples are usually biased, our core
motivation is to smooth these advantage values with the designed noise to prevent the policy
overfitting and non-stationarity problems in the multi-agent setting. Inspired by noisy
net [17] and parameter space noise [18], we propose two patterns of the noisy centralized
value for policy regularization to address the aforementioned problems.

Noisy Advantage MAPPO (NA-MAPPO) Since the misguided policy is derived from
the shared advantage values, we sample a Gaussian noise for each agent i, and then inject
it into the advantage value Ab with a weight α as follows

xi ∼ N (0, 1); ∀i ∈ N,

Ai
b = (1− α)× Ab + α× xi; ∀i ∈ N, b ∈ B,

(6)



Mathematics 2022, 10, 2728 6 of 15

as shown in Figure 2, this sampled noise in (6) aims to perturb the policy update of some
agents unrelated to the global rewards and regularize the policy to some extent.

Centralized 
Critic

Agent 1 Agent 2

Policy update with sampling 
shared advantage values

Actually only policy of Agent 2 should 
be updated when advantage value is 
dominated by the action of Agent 2

Centralized 
Critic

Agent 1 Agent 2

Figure 1. The schematic diagram of two agents with shared advantage function. The centralized
critic would mislead the policy update to when we train the agents with finite samples as the left part
of this figure, while it is correct by only updating the policy of Agent 2 as the right part.

Agent 1

Agent n

MLP GRU MLP

Policy Network

MLP GRU MLP

Critic Network
Sample

Gaussian
Noise for

each agent

Figure 2. The framework of NA-MAPPO, blue-dash line region refers to the outline of MAPPO,
red-dash line region refers to the designed Gaussian noise injected into the centralized critic function.

Noisy Value MAPPO (NV-MAPPO) The essence of NA-MAPPO is to directly disturb
the centralized advantage function, which would make the change of policies too drastic.
On the other hand, we gently incorporate the noise information into the joint advantage
function. We sample a Gaussian noise xi ∼ N (0, σ2) for each agent i, where σ2 is the
variance that can be regarded as noise intensity, and concatenate these noises with state
information s. We feed the concatenated vectors to the centralized critic and generate noisy
value vi for each agent i as shown in Figure A1,

vi = V(concat(s, xi)), ∀i ∈ N. (7)

This sampled noise xi disturbs the centralized value network and propagates to
Ai = r + γvi(st+1)− vi(st), for perturbing the shared advantage values. These advantage
noises would bring the following benefits:

• The advantage noises prevent the multi-agent policies overfitting caused by the sam-
pled advantage values with deviations and environmental non-stationarity.

• The policies trained by N noisy value networks of agents are similar to policies
ensembling, which could enhance the generalization of the joint policy.



Mathematics 2022, 10, 2728 7 of 15

• The different noises xi of each agent stimulate the gradients of policies to go in different
directions, which encourage agents to explore diverse high-return trajectories.

In practice, we periodically shuffle these noises from Gaussian distribution, which
is derived from noisy net [17], to keep the variety of noise and improve the stability of
training. In general, we conclude the pseudo-code of NA-MAPPO in Algorithm 1, the
model diagram and pseudo-code of NV-MAPPO is described in Appendix B for clarity.

Algorithm 1 NA-MAPPO.

Initialize parameters θ; φ; D ← {}; batch size B; N agents; noise variance σ2;
entropy loss weight η; λ for GAE(λ); Sample Gaussian noise xi ∼ N (0, 1), ∀i ∈ N;
for each episodic iteration do

for episodic step t do
~at = [πi

θ(o
i
t), ∀i ∈ N]; Execute actions~at, observe rt, st+1, ot+1;

D ← D ∪D{(st,~ot,~at, rt, st+1,~ot+1};
end for
Sample random batch B from D;
Compute advantage Â1, . . . , Âb and returns R̂1, . . . , R̂b via GAE(λ);
Mixing the noise with the normalized advantage values by (6);
for each training epochs do

Update critic by minimizing the loss L(φ): L(φ) = 1
B ∑B

b=1(vb(φ)− R̂b)
2;

Update policy by using PPO loss L(θ):

L(θ) =
1

B · N
B

∑
b=1

N

∑
i=1

min[ri
b(θ)Âi

b, C(ri
b(θ), ε)Âi

b − ηH(πi
θ(o

i
b))];

C(ri
b(θ), ε) := clip(ri

b(θ), 1− ε, 1 + ε); ri
b(θ) =

πi
θ(ai

b|o
i
b)

πi
θold

(ai
b|o

i
b)

, ∀i ∈ N, b ∈ B;

end for
end for

5. Experiments

In this section, we evaluate the performance of baseline algorithms IPPO and MAPPO [16]
and their noisy centralized critic variants on non-monotonic Matrix Game and SMAC. We
also compare the performance of NV-MAPPO and NA-MAPPO with the results of the
agent-specific features enhanced MAPPO [28] to show the superiority of our noisy critic
network. All the variant algorithms are implemented in the PyMARL framework [4], and
all the hyperparameters would be kept the same as the baseline algorithms for the sake
of fairness. We plot the median results for all experiments over 5 independent runs with
random seeds and shade the 25–75% quartile.

Specifically, we give an out line of the two test environments, then list the necessary
parameters of the algorithms in the following part of this section; the evaluation results
and ablation studies will be presented at the end.

5.1. Testbeds
5.1.1. Non-Monotonic Matrix Game

The non-monotonic Matrix Game is a simple environment to test the cooperative
ability of just two agents with three actions each, and the goal of cooperative agents is to
take the optimal joint-action and capture the highest reward. The symmetric matrix game
has the optimal joint action (A, A), all the agents share the same state information, and the
pay-off matrix is shown in Table 1.



Mathematics 2022, 10, 2728 8 of 15

5.1.2. SMAC

It is a common and popular practice to test the training effect of multiple agents in
a game environment. StarCraft II, as typical real-time strategy (RTS) game, offers a great
opportunity to tackle different cooperative challenges in the multi-agent domain. SMAC [4]
makes use of Blizzard’s StarCraft II machine learning API and DeepMind’s PySC2 as an
interface for the autonomous agents to interact with the game environment. Each of our
training agents can be controlled by an individual army unit in the testing scenarios, which
is described as the decentralized micromanagement problem in StarCraft II. As in Figure 3, all
the agents are trained to battle an opposing army of the game’s built-in scripted AI, which
can be set to different difficulty levels. Each agent can move in four discrete actions and
take attack actions to cause damage to enemies within shooting range.

Table 1. Pay-off matrix of one-step game. Boldface means optimal/greedy actions from the state-
action value. Both agents need to find the optimal joint actions as soon as possible.

a1

a2
A B C

a1

a2
A B C

A 8 −12 −12 A 12 0 10
B −12 0 0 B 0 10 10
C −12 0 0 C 10 10 10

(a) Payoff of matrix game 1 (b) Payoff of matrix game 2

Figure 3. Two typical cooperative scenarios in SMAC: 2c_vs_64zg & 3s5z_vs_3s6z.

5.2. Experimental Setup

We implemented all the algorithms in the PyMARL framework [35], and used the same
network architecture and hyperparameters for those contrastive methods. Since we selected
MAPPO as a representative of the MARL actor–critic style algorithm, the hyperparameters
are heavily based on the recent paper [28], which fine-tunes the MAPPO (MAPPO: https:
//github.com/marlbenchmark/on-policy (accessed on 5 March 2021)). Yu [28] proposes
several agent-specific features screening methods to enhance the performance of vanilla
MAPPO. It is worth noting that we strip off these artificial features of MAPPO in [28] as
testing baseline. Each agent is equipped with a DRQN [36] with a recurrent layer, which
has a 64-dimensional hidden state. We set the discount factor γ = 0.99 and lr = 5× 10−4

for all testing scenarios (there is a noticeable difference between the different versions of
SMAC, we use SC2.4.10 version of SMAC through all the testing scenarios).

In order to speed up the convergence of policies, we adopted 8 individual processes
to collect training trajectory. The clip coefficient ε = 0.2 and scaling parameter λ in GAE
module is 0.95. Still, we add an entropy term to the objective function and the entropy
coefficient is 0.01. We paused the training every 10,000 time steps and test 32 episodes
to test the cooperative ability. The difficult of game was set to the Very Difficult level as
default, and we plot the median results for all experiments over 5 independent runs with
random seeds and shade the 25–75% quartile.

We list the common hyperparameters of NV-MAPPO and NA-MAPPO in Table 2.
For noise shuffle interval, we consider {0, 50, 100, 200} and choose 100; for σ we consider

https://github.com/marlbenchmark/on-policy
https://github.com/marlbenchmark/on-policy


Mathematics 2022, 10, 2728 9 of 15

{0, 0.05, 0.5, 1, 3, 8, 10}, and for α we consider {0, 0.05, 0.06, 0.1}, then we select proper
value for each scenario. As the positive correlation between the variance of noise and the
exploration, we encourage researchers to select bigger σ in some other kind of cooperative
scenarios to strengthen exploration of agents. Other training hyperparameters related to
the test scenarios in SMAC can be found in Table A1 which is summarized in Appendix C,
as well as the specific hyperparameters, i.e., σ and α for each scenario.

Table 2. Common hyperparameters used in MAPPO and its variants (NA-MAPPO and NV-MAPPO).

Hyperparameters MAPPO & MAPG
Envs num 8

Buffer length 400
RNN hidden state dim 64

FC layer dim 64
Noise dim num 10

Adam lr 5× 10−4

GAE(λ) 0.95
Entropy coef 0.01

PPO clip 0.2
Noise shuffle interval (episodes) 100

5.3. Results

First, we evaluated NV-MAPPO on a non-monotonic Matrix Game to verify the ex-
pressive capacity of the centralized value function. These two different payoff matrices in
Table 1 are both used to test the cooperative ability that deals with the Relative Overgeneral-
ization problem. The results in Figure 4a,b show the superiority of the NV-MAPPO since it
could find the optimal joint-action faster even when we implement the fine-tuned version
of QMIX (QMIX : https://github.com/hijkzzz/pymarl2 (accessed on 8 August 2021)) [37]
(represented by QMIX+ in figures below), which also achieves the state-of-the-art level in
SMAC and other cooperative tasks.

0.0 0.32 0.64 0.96 1.28 1.6 1.92
Total sampling steps (mil)

0

1

2

3

4

5

6

7

8

R
ew

ar
d

NV-MAPPO 

QMIX+

(a)

0.0 0.08 0.16 0.24 0.32 0.4 0.48
Total sampling steps (mil)

10

10

10

10

11

11

11

11

12

R
ew

ar
d

NV-MAPPO 

QMIX+

(b)
Figure 4. The test returns for NV-MAPPO and QMIX in two kinds of non-monotonic Matrix Games.
(a) Learning results for Matrix Game 1; (b) learning results for Matrix Game 2.

Next, we compared the performance of MAPG and MAPPO with their noisy variants.
As shown in Figure 5, both NV-MAPG and NV-MAPPO obtain superb performance in
most scenarios, which indicates the dominant advantages of the proposed noise-injection
method. Furthermore, we emphatically evaluate NV-MAPPO and NA-MAPPO on three
hard-exploration scenarios, and both methods would surpass the baseline with a large
margin as shown in Figure 6. We also found that the noisy advantage method could cause
some instability in some scenarios, i.e., the results of the noisy advantage method have
large variances during training. We speculate that it is too aggressive to directly inject the
noises into the advantage function of each agent, which may introduce additional bias
in training. Still, the performance of NA-MAPPO is comparable to NV-MAPPO in most
scenarios of SMAC.

https://github.com/hijkzzz/pymarl2


Mathematics 2022, 10, 2728 10 of 15

Moreover, we found that the performance of MAPPO degraded a lot when those
agent-specific features in [28] are stripped off. We expect to know whether the performance
of NV-MAPPO would come up to the state-of-the-art results of SMAC reported in [28]. We
tested our methods on most of the Hard and Super-Hard scenarios and list the median
results in Table 3. The results demonstrate that the performance of NV-MAPPO significantly
exceeds that of MAPPO on most Hard scenarios, such as 5m_vs_6m (+65%), 3s5z_vs_3s6z
(+31%), 6h_vs_8z (+87%), and corridor (+97%). Even without a shared advantage critic, NV-
IPPO still achieves extraordinary results in Super-Hard scenarios 3s5z_vs_3s6z (96%) and
6h_vs_8z (94%). We think that the noise injected into the independent critic of agents would
also disturb the gradient direction and prevent IPPO from overfitting due to non-stationarity.
The average performance of NV-MAPPO calculated from Hard and Super-Hard scenarios
still surpasses that of MAPPO with agent-specific features.

0.0 1.6 3.2 4.8 6.4 8.0 9.6

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

Hard 3s_vs_5z

0.0 1.6 3.2 4.8 6.4 8.0 9.6

0

20

40

60

80

100
Super Hard corridor

0.0 1.6 3.2 4.8 6.4 8.0 9.6

0

20

40

60

80

100
Super Hard 6h_vs_8z

0.0 1.6 3.2 4.8 6.4 8.0 9.6

0

20

40

60

80

100
Hard 2c_vs_64zg

MAPPO
MAPG

0.0 1.6 3.2 4.8 6.4 8.0 9.6
Total sampling steps (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

Super Hard MMM2

0.0 1.6 3.2 4.8 6.4 8.0 9.6
Total sampling steps (mil)

0

20

40

60

80

100
Super Hard 3s5z_vs_3s6z

0.0 1.6 3.2 4.8 6.4 8.0 9.6
Total sampling steps (mil)

0

20

40

60

80

100
Hard 5m_vs_6m

0.0 1.6 3.2 4.8 6.4 8.0 9.6
Total sampling steps (mil)

0

20

40

60

80

100
Hard 8m_vs_9m

NV-MAPPO
NV-MAPG

Figure 5. The training curves of MAPG and MAPPO, and their noisy variants in some Hard and
Super-Hard testing scenarios in SMAC.

Table 3. Median test win rates of MARL algorithms in scenarios of SMAC. MAPPO+ represents the
MAPPO with agent-specific features, and Hard+ includes Hard and Super-Hard scenarios.

Scenarios Difficulty NV-MAPPO NA-MAPPO MAPPO+ MAPPO NV-IPPO IPPO
2s3z Easy 100% 100% 100% 100% 100% 100%

1c3s5z Easy 100% 100% 100% 100% 100% 100%
3s5z Easy 100% 100% 100% 100% 100% 100%

2s_vs_1sc Easy 100% 100% 100% 100% 100% 100%
3s_vs_5z Hard 100% 100% 100% 98% 100% 100%

2c_vs_64zg Hard 100% 100% 100% 100% 100% 98%
5m_vs_6m Hard 89% 85% 89% 25% 87% 87%
8m_vs_9m Hard 96% 96% 96% 93% 96% 96%

MMM2 Super Hard 96% 96% 90% 96% 86% 86%
3s5z_vs_3s6z Super Hard 87% 72% 84% 56% 96% 82%

6h_vs_8z Super Hard 91% 90% 88% 15% 94% 84%
corridor Super Hard 100% 100% 100% 3% 98% 98%

27m_vs_30m Super Hard 100% 98% 94% 98% 72% 69%
Avg. Score Hard+ 95.5% 93.2% 93.4% 64.9% 91.9% 88.8%



Mathematics 2022, 10, 2728 11 of 15

0.0 1.6 3.2 4.8 6.4 8.0 9.6

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

Super Hard corridor

NA-MAPPO
NV-MAPPO
MAPPO

0.0 1.6 3.2 4.8 6.4 8.0 9.6

0

20

40

60

80

100
Super Hard 6h_vs_8z

0.0 1.6 3.2 4.8 6.4 8.0 9.6
Total sampling steps (mil)

0

20

40

60

80

100
Super Hard 3s5z_vs_3s6z

0.0 1.6 3.2 4.8 6.4 8.0 9.6
Total sampling steps (mil)

0

20

40

60

80

Hard 5m_vs_6m

Total sampling steps (mil) Total sampling steps (mil)

100

Figure 6. The training curves of proposed methods in some Hard and Super-Hard scenarios.

5.4. Ablations

All the results above indicate that the noisy advantage function would distinctly
improve the performance of actor–critic style MARL algorithms. Since the proposed noise
is relied upon to disturb the policy gradient direction, it would generally increase the
fluctuation of centralized values. Furthermore, we calculate the standard deviation of
centralized value function vi on each agent dimension during training. As the box plot
shown in Figure 7a, it seems that the fluctuations of the centralized critic are more dramatic
in some scenarios that need more exploration and careful cooperation. Combined with the
results in Table 3, we could find there is a positive correlation between the performance
improvement and the standard deviation vi, i.e., the larger fluctuation of vi would bring the
greater performance improvement. This conclusion reveals that the significantly improved
results of NV-MAPPO indeed come from the noise we inject into the centralized critic.

Testing Scenarios

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

St
an

da
rd

 D
ev

ia
tio

n

5m_
vs_6

m

MMM
2

corr
idor

8m_
vs_9

m
3s_v

s_5z

2c_v
s_64

zg
MMM

2
6h_
vs_8

z

3s5
z_vs

_3s6
z

(a)

2 8
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
tro

py

Total sampling steps (mil)

NV-MAPPO
MAPPO

64

(b)
Figure 7. The increment of performance is positively correlated with the deviation of centralized
value function, and injected noise can bring more exploration for agents. (a) Standard deviation
of centralized value function on the agent dimension. (b) Average entropy of agents’ policies in
3s5z_vs_3s6z during training.

Since the proposed noises are not injected into policy network similar to [17,18], they
will not directly affect the actions that agents take. Therefore, we explore the reason why
these noises could regularize the policies of agents under CTDE paradigm. We calculate
the average entropy of the policies of the agents in scenario 3s5z_vs_3s6z, which has the
largest variance across all the testing environments. As shown in Figure 7b, the entropy of
MAPPO’s policies continuously drops as the training goes on; however, for NV-MAPPO,
the entropy would drop at the beginning of training as usual, and then keep fluctuating in
a small range. This peculiarity would maintain the entropy in agents’ policies higher than
that of MAPPO, and hence give rise to more exploration. We think that the fluctuation of
centralized critic induced by injected noise will indirectly regularize the policies through
gradient backpropagation along with actor–critic architecture. This could explain why the
proposed noise-injection method would greatly improve the performance of MAPPO in
Super-Hard scenarios that are hard to explore the optimal joint actions of agents.



Mathematics 2022, 10, 2728 12 of 15

In the end, we mentioned before that the fixed sampling noise would show some
instability of agents in some Hard or Super-Hard cooperative scenarios. Here, we compare
the performance of the periodical shuffled Gaussian noise with the fixed sampling noise
of NV-MAPPO on 5m_vs_6m and Super-Hard corridor, 6h_vs_8z. As shown in Figure 8,
the performance of these two noise-sampling methods is comparable, but the shuffled
Gaussian noise is more stable during training. We implemented the shuffled sampling
noise across all the cooperative scenarios in this paper.

0.0 2.0 4.0 6.0 8.0 10.0
Total sampling steps (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

Hard 5m_vs_6m

shuffled
fixed

0.0 2.0 4.0 6.0 8.0 10.0
Total sampling steps (mil)

0

20

40

60

80

100
Super Hard corridor

0.0 2.0 4.0 6.0 8.0 10.0
Total sampling steps (mil)

0

20

40

60

80

100
Super Hard 6h_vs_8z

shuffled
fixed

shuffled
fixed

Figure 8. The performance comparison of fixed sampled noise vectors and shuffled noise vectors.

6. Conclusions

In this paper, we depict the policy overfitting of actor–critic pattern in MARL and
propose a noise-injection method to mitigate this issue. The injected noise can be directly
implemented in shared advantage or value function under CTDE paradigm. We theo-
retically analyze the credit misassignment caused by policy overfitting with finite samples
and compare its essential differences with COMA. The experimental results show that our
proposed method would obtain extraordinarily high win rates and achieve state-of-the-art
in SMAC, even without artificial agent-specific features. Our work indicates that perturba-
tion induced by the noisy advantage values would effectively improve the performance
of multi-agent actor–critic algorithms, and the injected noise would also regularize the
policies by maintaining relative higher entropy, then encourage more exploration during
training. For future work, it is worth exploring the adaptive noise in both policy and critic
networks, or designing a task-specific noise-selecting mechanism. Moreover, it is also worth
exploring the regularization method on centralized value network itself with DropOut or
other methods to strengthen the representation ability for general MARL algorithms.

Author Contributions: Conceptualization, S.W.; Data curation, S.H.; Methodology, J.H.; Supervision,
W.C.; Writing—original draft, S.W.; Writing—review & editing, L.H. All authors have read and agreed
to the published version of the manuscript.

Funding: There is no funding support for the work of this paper.

Data Availability Statement: Algorithms and code openly available in a public repository.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this part, we give out the discrepancy of policy overfitting and the explicit credit
misassignment problem in COMA. The gradient of COMA [26] is given by

g = Eπ

[
∑

i
∇θ log πi

(
ai | τi

)
Ai(s, a)

]
, (A1)

Ai(s, u) = Q(s, a)−∑
a′i

πi
(

a′i | τi
)

Q
(

s,
(

a′i, a−i
))

. (A2)

From the equations above, we can conclude that COMA computes an advantage
function that compares the Q-value for the current action ai with a counterfactual baseline
that marginalizes out ai, while keeping the other agents’ actions fixed. This advantage



Mathematics 2022, 10, 2728 13 of 15

value relies heavily on action ai, and we have to exhaustively sample the actions to obtain
an accurate counterfactual baseline. On the other hand, policy overfitting is caused by the
inaccurate estimation of the centralized advantage function brought by the batch sampling
mechanism in training. The marginal advantage function relies on the biased exploring
actions of the other agents, which is significantly different from the credit misassignment
in COMA. This conclusion still holds in other PG-style MARL algorithms.

Appendix B

We describe the model diagram and the omitting pseudo-code of NV-MAPPO in this
section, the complete code can be found in https://github.com/hijkzzz/noisy-mappo
(accessd on 7 January 2022).

Agent 1

Agent n

MLP GRU MLP

Policy Network

MLP GRU MLP

Critic Network
Sampled
Gaussian

Noise 

Figure A1. The framework of NV-MAPPO, whose noise-injection is different from NA-MAPPO.

Algorithm A1 NV-MAPPO.

Initialize parameters θ; φ; D ← {}; batch size B; N agents; noise variance σ2;
entropy loss weight η; λ for GAE(λ); Sample random noise vectors~xi ∼ N (0, σ2), ∀i ∈ N;
for each episodic iteration do

for episodic step t do
~at = [πi

θ(o
i
t), ∀i ∈ N]; Execute actions~at, observe rt, st+1, ot+1;

D ← D ∪D{(st,~ot,~at, rt, st+1,~ot+1};
end for
if episodes % shuffle interval then

Shuffle the noise vectors ~xi on each agent dimension.
end if
Sample random batch B from D; Inject noise into value function for each agent by (7);
Compute Âi

1, . . . , Âi
b and returns R̂i

1, . . . , R̂i
b via GAE(λ) with vi

b(φ), ∀i ∈ N, b ∈ B;
for each training epochs do

Update critic by minimizing the loss L(φ): L(φ) = 1
B·N ∑B

b=1 ∑N
i=1(v

i
b(φ)− R̂i

b)
2;

Update policy by using PPO loss L(θ):

L(θ) =
1

B · N
B

∑
b=1

N

∑
i=1

min[ri
b(θ)Âi

b, C(ri
b(θ), ε)Âi

b − ηH(πi
θ(o

i
b))];

C(ri
b(θ), ε) := clip(ri

b(θ), 1− ε, 1 + ε); ri
b(θ) =

πi
θ(ai

b|o
i
b)

πi
θold

(ai
b|o

i
b)

, ∀i ∈ N, b ∈ B;

end for
end for

Appendix C

As described in the main text, NV-MAPPO and NA-MAPPO are heavily dependent
on MAPPO [16]. To be fair, we develop our NV-MAPPO and NA-MAPPO code based on
the project of [16], the omitting hyperparameters for each scenario are listed in Table A1.

https://github.com/hijkzzz/noisy-mappo


Mathematics 2022, 10, 2728 14 of 15

Table A1. Hyperparameters for IPPO and MAPPO and their noisy variants in SMAC.

Map PPO Epochs Mini-Batch Gain Network Stacked Frames
NV-MAPPO NV-MAPG NV-IPPO NA-MAPPO

σ σ σ α

2s3z 15 1 0.01 rnn 1 1 1 0.05 0.05
1c3s5z 15 1 0.01 rnn 1 1 1 0.05 0.05
3s5z 5 1 0.01 rnn 1 1 1 0.05 0.05

2s_vs_1sc 15 1 0.01 rnn 1 1 1 0.05 0.05
3s_vs_5z 15 1 0.01 mlp 4 1 1 1 0.05

2c_vs_64zg 5 1 0.01 rnn 1 1 1 1 0.05
5m_vs_6m 10 1 0.01 rnn 1 8 3 0 0.05
8m_vs_9m 15 1 0.01 rnn 1 1 0.05 1 0.05

corridor 5 1 0.01 mlp 1 3 1 1 0.06
MMM2 5 2 1 rnn 1 0 0.5 0 0

3s5z_vs_3s6z 5 1 0.01 rnn 1 10 1 8 0.05
6h_vs_8z 5 1 0.01 mlp 1 1 1 1 0.06

27m_vs_30m 5 1 0.01 rnn 1 1 1 1 0

References

1. Hüttenrauch, M.; Šošić, A.; Neumann, G. Guided deep reinforcement learning for swarm systems. arXiv 2017, arXiv:1709.06011.
2. Kušić, K.; Ivanjko, E.; Vrbanić, F.; Gregurić, M.; Dusparic, I. Spatial-Temporal Traffic Flow Control on Motorways Using

Distributed Multi-Agent Reinforcement Learning. Mathematics 2021, 9, 3081. [CrossRef]
3. Cao, Y.; Yu, W.; Ren, W.; Chen, G. An overview of recent progress in the study of distributed multi-agent coordination. IEEE

Trans. Ind. Inform. 2012, 9, 427–438. [CrossRef]
4. Samvelyan, M.; Rashid, T.; De Witt, C.S.; Farquhar, G.; Nardelli, N.; Rudner, T.G.; Hung, C.M.; Torr, P.H.; Foerster, J.; Whiteson, S.

The starcraft multi-agent challenge. arXiv 2019, arXiv:1902.04043.
5. Tatari, F.; Naghibi-Sistani, M.B.; Vamvoudakis, K.G. Distributed optimal synchronization control of linear networked systems

under unknown dynamics. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017;
pp. 668–673. [CrossRef]

6. Vamvoudakis, K.G.; Lewis, F.L.; Hudas, G.R. Multi-agent differential graphical games: Online adaptive learning solution for
synchronization with optimality. Automatica 2012, 48, 1598–1611. [CrossRef]

7. Jiao, Q.; Modares, H.; Xu, S.; Lewis, F.L.; Vamvoudakis, K.G. Multi-agent zero-sum differential graphical games for disturbance
rejection in distributed control. Automatica 2016, 69, 24–34. [CrossRef]

8. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

9. Tan, M. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the ICML, Amherst, MA,
USA, 27–29 June 1993; pp. 330–337.

10. Oliehoek, F.A.; Spaan, M.T.; Vlassis, N. Optimal and approximate Q-value functions for decentralized POMDPs. J. Artif. Intell.
Res. 2008, 32, 289–353. [CrossRef]

11. Lowe, R.; WU, Y.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. Adv. Neural Inf. Process. Syst. 2017, 30, 6379–6390.

12. Iqbal, S.; Sha, F. Actor-attention-critic for multi-agent reinforcement learning. In Proceedings of the ICML, Long Beach, CA, USA,
9–15 June 2019; pp. 2961–2970.

13. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. Qmix: Monotonic value function factorisation for
deep multi-agent reinforcement learning. In Proceedings of the ICML, Stockholm, Sweden, 10–15 July 2018; pp. 4295–4304.

14. Ha, D.; Dai, A.; Le, Q.V. Hypernetworks. arXiv 2016, arXiv:1609.09106.
15. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
16. de Witt, C.S.; Gupta, T.; Makoviichuk, D.; Makoviychuk, V.; Torr, P.H.; Sun, M.; Whiteson, S. Is Independent Learning All You

Need in the StarCraft Multi-Agent Challenge? arXiv 2020, arXiv:2011.09533.
17. Fortunato, M.; Azar, M.G.; Piot, B.; Menick, J.; Hessel, M.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; et al. Noisy

Networks for Exploration. In Proceedings of the ICLR, Vancouver, BC, Canada, 30 April–3 May 2018.
18. Plappert, M.; Houthooft, R.; Dhariwal, P.; Sidor, S.; Chen, R.Y.; Chen, X.; Asfour, T.; Abbeel, P.; Andrychowicz, M. Parameter

Space Noise for Exploration. In Proceedings of the ICLR, Vancouver, BC, Canada, 30 April–3 May 2018.
19. Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A survey and critique of multiagent deep reinforcement learning. Auton. Agents

Multi-Agent Syst. 2019, 33, 750–797. [CrossRef]
20. Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W.M.; Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo, J.Z.; Tuyls, K.;

et al. Value-Decomposition Networks For Cooperative Multi-Agent Learning Based On Team Reward. In Proceedings of the
AAMAS, Stockholm, Sweden, 10–15 July 2018; pp. 2085–2087.

21. Son, K.; Kim, D.; Kang, W.J.; Hostallero, D.E.; Yi, Y. Qtran: Learning to factorize with transformation for cooperative multi-agent
reinforcement learning. In Proceedings of the ICML, Long Beach, CA, USA, 9–15 June 2019; pp. 5887–5896.

22. Wang, J.; Ren, Z.; Liu, T.; Yu, Y.; Zhang, C. Qplex: Duplex dueling multi-agent q-learning. arXiv 2020, arXiv:2008.01062.

http://doi.org/10.3390/math9233081
http://dx.doi.org/10.1109/TII.2012.2219061
http://dx.doi.org/10.23919/ACC.2017.7963029
http://dx.doi.org/10.1016/j.automatica.2012.05.074
http://dx.doi.org/10.1016/j.automatica.2016.02.002
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1613/jair.2447
http://dx.doi.org/10.1007/s10458-019-09421-1


Mathematics 2022, 10, 2728 15 of 15

23. Zhou, M.; Liu, Z.; Sui, P.; Li, Y.; Chung, Y.Y. Learning implicit credit assignment for cooperative multi-agent reinforcement
learning. arXiv 2020, arXiv:2007.02529.

24. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. In Proceedings of the ICLR (Poster), San Juan, Puerto Rico, 2–4 May 2016.

25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.

26. Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual multi-agent policy gradients. In Proceedings of
the AAAI, New Orleans, LO, USA, 2–7 February 2018; Volume 32.

27. Peng, B.; Rashid, T.; de Witt, C.A.S.; Kamienny, P.A.; Torr, P.H.; Böhmer, W.; Whiteson, S. FACMAC: Factored Multi-Agent
Centralised Policy Gradients. arXiv 2020, arXiv:2003.06709.

28. Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; Wu, Y. The surprising effectiveness of mappo in cooperative, multi-agent games.
arXiv 2021, arXiv:2103.01955.

29. Kuba, J.G.; Chen, R.; Wen, M.; Wen, Y.; Sun, F.; Wang, J.; Yang, Y. Trust region policy optimisation in multi-agent reinforcement
learning. In Proceedings of the ICLR, Virtual, 25–29 April 2022.

30. Mahajan, A.; Rashid, T.; Samvelyan, M.; Whiteson, S. MAVEN: Multi-agent variational exploration. In Proceedings of the NeuIPS,
Vancouver, Canada, 8–14 December 2019; pp. 7613–7624.

31. Wang, T.; Dong, H.; Lesser, V.; Zhang, C. ROMA: Multi-Agent Reinforcement Learning with Emergent Roles. In Proceedings of
the ICML, Virtual, 13–18 July 2020; pp. 9876–9886.

32. Pan, L.; Rashid, T.; Peng, B.; Huang, L.; Whiteson, S. Regularized Softmax Deep Multi-Agent Q-Learning. Adv. Neural Inf. Process.
Syst. 2021, 34, 1365–1377.

33. Liu, I.J.; Jain, U.; Yeh, R.A.; Schwing, A. Cooperative exploration for multi-agent deep reinforcement learning. In Proceedings of
the ICML, Virtual, 18–24 July 2021; pp. 6826–6836.

34. Ong, S.C.; Png, S.W.; Hsu, D.; Lee, W.S. POMDPs for robotic tasks with mixed observability. In Proceedings of the Robotics:
Science and Systems, Seattle, WA, USA, 28 June–1 July 2009; Volume 5, p. 4.

35. Böhmer, W.; Kurin, V.; Whiteson, S. Deep coordination graphs. In Proceedings of the International Conference on Machine
Learning, Virtual , 13–18 July 2020; pp. 980–991.

36. Hausknecht, M.; Stone, P. Deep recurrent q-learning for partially observable mdps. In Proceedings of the 2015 AAAI Fall
Symposium Series, Austin, TX, USA, 25–30 January 2015.

37. Hu, J.; Jiang, S.; Harding, S.A.; Wu, H.; Liao, S.W. Revisiting the Monotonicity Constraint in Cooperative Multi-Agent
Reinforcement Learning. arXiv 2021, arXiv:2102.03479.


	Introduction
	Related Works
	Preliminaries
	Method
	Policy Overfitting
	Noisy Advantage Values

	Experiments
	Testbeds
	Non-Monotonic Matrix Game
	SMAC

	Experimental Setup
	Results
	Ablations

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

