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Abstract: The power control of horizontal axis wind turbines can affect significantly the vibration
loads and fatigue life of the tower and the blades. In this paper, we both consider the power control
and vibration load mitigation of the tower fore-aft vibration. For this purpose, at first, we developed
a fully coupled model of the NREL 5MW turbine. This model considers the full aeroelastic behaviour
of the blades and tower and is validated by experiment results, comparing the time history data
with the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code which is developed by
NREL (National Renewable Energy Lab in the United States). In the next, novel sensorless control
algorithms are developed based on the supper twisting sliding mode control theory and sliding
mode observer for disturbance rejection. In region II (the wind speed is between the cut-in and rated
wind velocity), the novel sensorless control algorithm increased the power coefficient in comparison
to the conventional indirect speed control (ISC) method (the conventional method in the industry).
In region III (the wind speed is between the rated and cut-out speed), an adaptive neural fuzzy
inference system (ANFIS) is developed to estimate pitch sensitivity. The rotor speed, pitch angle, and
effective wind velocity are inputs, and pitch sensitivity is the output. The designed novel pitch control
performance is compared with the gain scheduled PI (GPI) method (the conventional approach in
this region). The simulation results demonstrate that the flapwise blade displacement is reduced
significantly. Finally, to reduce the fore-aft vibration of the tower, a tuned mass damper (TMD) was
designed by using the genetic algorithm and the fully coupled model. In comparison to the literature
body, we demonstrate that the fully coupled model provides much better accuracy in comparison to
the uncoupled model to estimate the vibration loads.

Keywords: aeroelastic model; disturbance rejection; vibration control; tuned mass dampers; sliding
mode observer

MSC: 74F10

1. Introduction

Wind energy generation has been growing at an unprecedented rate. For instance, the
increase in wind energy capacity from 18 GW in 2000 to 590 GW in 2019 is solid evidence
of the amazing growth in wind energy production [1,2]. Many countries have decided to
produce energy through wind power because it is both clean and economical. According to
the latest annual report from the World Wind Energy Association (WWEA), China is the
largest wind energy harvester in the world with a capacity of 217 GW, following the USA
with 96 GW, and Germany and India in third and fourth places with 59 GW and 39 GW,
respectively [1].
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A typical horizontal axis wind turbine has four main operational regions according
to the incoming wind flow [3–6] (Figure 1). The wind turbine operates in region I if the
wind velocity is lower than the cut-in wind velocity. Because of the low wind speed, a
wind turbine that operates in the region I does not produce any energy. If the wind speed
is between the cut-in wind velocity and the rated speed, then the wind turbine operates
in region II and extracts as much energy from the wind as possible. Actuator control for
this purpose is the generator. With the increase of wind speed from the rated wind velocity
to the cut-out wind velocity, the wind turbine operates in region III with limited power
output to its nominal value for the safety of machinery. Actuator control is the pitch angle
mechanism for regulating the output power. Finally, in region IV, the wind turbine ceases
to generate power to prevent any damage to the machinery due to the larger wind velocity
than the cut-out wind velocity [3].
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Figure 1. Different operational regions of a horizontal axis wind turbine [3].

There has been plenty of research studying the control problem in regions II and
III. For region II, the maximum power point tracking algorithm (MPPT) has been exten-
sively investigated and is the simplest method for achieving maximum power [5–7]. Its
main problem, however, is that it has weak performance against the uncertainties in the
model [7–10]. The gain schedule PI (GPI) control algorithm was first developed in [11] to
limit the output power in region III. The gains of the algorithm were regulated by using
pitch sensitivity, but its main obstacle was measurement noise due to the wind speed.

Control algorithms for bodies such as wind turbines can be categorizable, in literature,
into model-based and non-model-based approaches [12–16]. Non-model-based approaches
include fuzzy control systems [17,18] and PI or GPI control approaches [11]. The main
part of each fuzzy system is the fuzzy rule base [19]. Designing the fuzzy rule base,
most of the time is based on a trial-and-error process which makes it difficult to use.
The model-based approaches are widely found in the literature [20–24]. Model-based
predictive control (MPC), is widely used in many engineering applications [25–27]. MPC
is a predictive approach based on the optimization of a cost function. The cost function
must be defined to address the output power error and some sources of vibration loads.
However, the main disadvantage of this approach is its inability to provide any analytical
stability proof for the closed-loop system [25]. Most of the model-based approaches are
based on non-linear control theory like sliding mode, adaptive control approach, and
backstepping [22,23,28,29]. In these works, two simple models: one-mass and two-mass
were considered for the whole wind turbine system. However, these models have not
considered the aeroelastic behaviour of the blades and the tower. In addition, the control
signal in these works contains unmeasurable (like the aerodynamic torque) and unknown
state variables.
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The above discussion demonstrates that in order to have a better understanding of the
wind turbine loads, an aeroelastic model is necessary. Wind turbines are complex structures.
The blades are like rotating beams that can vibrate in two directions that are perpendicular
to each other [30]. The lateral vibration in the rotational plane is called edgewise and the
lateral vibration perpendicular to the rotational plane is called flapwise vibration. The
tower also cannot be considered a rigid body. Similar to the blades, the tower can vibrate
in the rotational plane (i.e., “side-side” vibration), and also perpendicular to the rotational
plane (i.e., “fore-aft” vibration) [30–32]. The mitigation of the vibration loads is a significant
goal in increasing the life span of a wind turbine. Three main approaches, namely, passive,
semi-active, and active have been proposed in the literature to reduce the vibration loads
of the structure [33]. In particular, passive control has been widely studied. In [31], roller
dampers were proposed to reduce the edgewise vibrations in the blades, in which, each
blade of the wind turbine is considered as a two degree of freedom system and the roller
damper is designed to minimize the edgewise vibration signal. In another research [34],
tuned liquid dampers were used to mitigate vibrations in the edgewise direction. In [35],
a 3D pendulum was suggested to reduce both fore-aft and side-side vibration of the
tower. The results demonstrated that, with a 2% mass ratio (ratio between the mass of
the pendulum with respect to the rotor), the pendulum can reduce the standard deviation
(STD) of the vibration signals by around 10% in comparison to dual tuned mass dampers
(TMDs). However, the main point of these studies is that the performance of the vibration
absorber was designed by considering the constant rotor speed (12.1 rpm). In addition, the
coupling dynamics between the drivetrain and the other parts were not investigated.

According to the above discussion, the following shortcomings in the literature body
are addressed:

• In some of the previous research [22,23,28,36], the designed control signals contain
unmeasurable or unknown terms. Any applicable control signal must estimate the
unknown terms and uses the measurable terms.

• Pitch sensitivity is one of the key parameters in region III. In order to improve the
computational time, it is better to estimate the pitch sensitivity rather than using
look-up tables.

• Regarding the literature body, the passive vibration absorber is designed in the con-
stant nominated rotor speed (which is 12.1 rpm) [31,32,34,35]. However, the rotor
speed is not constant in region III. In addition, pitch control in region III has a signif-
icant effect on the tower vibration loads. Therefore, it is more accurate to estimate
vibration loads by considering drivetrain dynamics.

To address these issues, our research considers both control and load mitigation
of the NREL 5MW wind turbine. A complete aeroelastic model of this wind turbine is
investigated. This model considers the continuous vibration of the blades in the edgewise
and flapwise directions, the vibration of the tower in the fore-aft and side-side directions,
and the flexibility of the drivetrain system. The interaction of the wind with the blades is
obtained by the blade element momentum theory (BEM), Prandtl correction, dynamic stall,
and wake modelling. This model is validated by the FAST numerical tool of NREL. The
main contribution of this research is summarized as follows:

• The control problem in region II has been considered by a novel super twisting control
approach. The main novelty and contribution of this part, in comparison to the litera-
ture body, is estimating the unknown terms by designing a novel nonlinear observer.
The comparison of our results with the conventional ISC algorithm demonstrates that
this approach can increase the mean value of the power coefficient by nearly 1%.

• In region III, we developed a novel sensorless pitch controller based on the previous
research of the first author [37]. Similar to the previous part, we estimate the unknown
terms (especially the aerodynamic torque derivatives) by a super twisting sliding
mode observer. In order to fully design a sensorless approach, we estimate the pitch
sensitivity by a novel ANFIS (adaptive neural fuzzy system) system. The inputs of this
system are the effective wind velocity, pitch angle, and rotor speed. The simulation
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results are compared with conventional GPI which demonstrates that the standard
deviation of pitch angle, tower fore-aft vibration, and flapwise displacement of the
blade is decreased significantly.

• Finally, unlike the previous literature, the passive vibration design is considered with
the coupling effect of the drivetrain dynamic, the tower, and the blade. In the previous
works, the drivetrain dynamic is ignored in the optimization process and the rotor
speed is considered constant at the nominal value (12.1 rpm).

The remainder of this paper is organized as follows: The aeroelastic wind turbine
modelling is investigated in Section 2. The model validation is considered in Section 3.
The novel sliding mode control based on the sliding mode observer is studied in Section 4.
Section 5 follows the TMD design procedure and compares the load mitigation with the
fully coupled model and uncoupled model (without drivetrain dynamic). The simulation
results are investigated in Section 6. Finally, Section 7 concludes this study and gives the
future direction.

2. Obtaining the Multi-Body Model of a Fixed Bottom Wind Turbine

A brief description of the wind turbine model is given in this section. The model
contains the mechanical subsystems of the blades, tower, and drivetrain system, as well
as the aerodynamic modelling of wind profile and the wind-structure interactions. The
following subsections describe how the proposed model integrates the dynamic model of
the tower, the drivetrain model, and the dynamic equation of the blades. The modelling
of the wind field and the aerodynamic modelling and the interaction of the wind and
wind turbine are presented in the process of obtaining the dynamic equation of motion
of the assembled system of a fixed-bottom wind turbine following the multi-body Euler-
Lagrangian approach.

2.1. Dynamic Modeling of the Tower

The tower can be modelled as a flexible structure, with a nacelle mounted on top of it.
The tower experiences lateral vibrations in the rotational plane, (called side-side vibrations),
as well as perpendicular to the rotational plane, (called fore-aft vibrations). Therefore, two
DOFs must be considered when modelling the tower.

{qtower}2×1 =
{

q f a, qss

}
(1)

where qss is the displacement of the nacelle in the rotational plane and q f a is the displace-
ment of the nacelle perpendicular to the rotational plane. For obtaining the kinetic energy of
the tower, only the first natural mode is considered for each side-side and fore-aft direction.
Therefore, this leads to [30,32]:

Ttower =
1
2

H∫
0

(ρA)tower

( .
q f a ϕ f a

)2
dh +

1
2

H∫
0

(ρA)tower
( .
qss ϕss

)2dh +
1
2

Mnac

( .
q2

f a +
.
q2

ss

)
(2)

where Ttower is the kinetic energy of the tower, (ρA)tower is the mass density of the tower, H
is the height of the tower, ϕ f a is the first fore-aft vibration mode of the tower,ϕss is the first
side-side vibration mode of the tower, and Mnac is the mass of the nacelle. According to
the Euler-Bernoulli beam theory, the potential energy of the tower is given as [30]:

πtower =
1
2

H∫
0

(EI)tower

(
q f a

d2 ϕ f a

dh2

)2

dh +
1
2

H∫
0

(EI)tower

(
qss

d2 ϕss

dh2

)2

dh (3)

where h is the position of each element along the tower from the bottom to the hub, πtower
is the potential energy of the tower, and (EI)tower is the bending stiffness of the tower. One
should note that the aeroelastic properties (bending stiffness and mass density) are the
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same in both directions, fore-aft, and side-side. Thus the mode shapes in both directions
are close to each other. Both (EI)tower and (ρA)tower are a function of h from the bottom to
the top of the tower.

2.2. Dynamic Modeling of the Drivetrain System

The drivetrain of a wind turbine is one of the most significant subsystems because the
mechanical power passes through the drivetrain then transfers to the generator and finally
produces electrical power [38]. A schematic view of the drivetrain is depicted in Figure 2.
The main components of the drivetrain system are the rotor, low-speed shaft, gearbox,
high-speed shaft, and generator. For the dynamic equation of the drivetrain system the
generalized coordinates are given as:

{qdrivetrain}2×1 = {θr, θls} (4)

where θr is the azimuth angle of the rotor and θls is the low-speed shaft azimuth angle of
the rotor. The kinetic energy of the generator is given as [28]:

Tgenerator =
1
2

jgω2
g (5)

where jg is the generator inertia and ωg is the generator speed (ωg =
.
θg = ng

.
θls) and ng is

the gearbox ratio. The kinetic energy of the rotor is considered in Section 2.3. The potential
energy is related to the torsional stiffness of the low-speed shaft which can be computed
as [23]:

πls =
1
2

Kls(θr − θls)
2 (6)

where πls and Kls are the potential energy and torsional stiffness of the low-speed shaft.
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2.3. Dynamic Modeling of the Blades

The blades of a wind turbine can be considered rotational beams. These structures may
experience two sources of lateral vibrations, edgewise, and flapwise. By considering two
DOFs for each blade (in the flapwise and edgewise directions), the generalized coordinates
below are considered for describing the blades of the wind turbine [30,35,39,40]:
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{qblade}6×1 =
{

qb1
edg, qb2

edg, qb3
edg, qb1

f lp, qb2
f lp, qb3

f lp

}
(7)

where qbi
edg describes the edgewise vibration displacement of the tip of the ith blade and

qbi
f lp denotes the flapwise displacement of the ith blade. For obtaining the kinetic energy

of each blade, the velocity profile of each infinitesimal element must be obtained then by
integration along the blade, the total kinetic energy of the blades can be computed. For
the velocity profile, it is convenient to express the velocity and also the position of each
infinitesimal element in {x, y, z} coordinates (Figure 3). This set of coordinates is attached
to the hub of the turbine and also rotates with the rotational speed of the blades (the x-axis
is along the blade, the y-axis is perpendicular to the x-axis in the rotational plane and the
z-axis is determined by the right-hand rule law). The position of each element concerning
the system {x, y, z} is given as [32,35]:

xbi = −uss sin ψi + r

ybi = −uss cos ψi + uedg

zbi = u f a + u f lp

(8)

where ψi is the azimuth angle of each blade, uss and u f a denotes the side-side and fore-aft
vibration of the nacelle, uedg and u f lp denotes the edgewise and flapwise tip vibration of
the blade, xbi, ybi and zbi are the position of each element concerning the {x, y, z} system
and r is the radial position of each element in the non-deformable case of the blade (when
there is no vibration displacement). The azimuth angles for each blade can be obtained
as [39,40]:

ψi = ψ1 +
2π

3
(i− 1), i = 1, 2, 3

ψ1 =
∫ t

0 ωrdt
(9)

where ψi is the azimuth angle of the ith blade and ωr is the rotor speed. Also, the vibration
displacements of the tip of blades can be obtained as [31,32,39]:

uedg = ϕedgqedg

u f lp = ϕ f lpq f lp
(10)

Using the time derivative of Equation (8), the velocity of each infinitesimal element
can be obtained for each blade:

 Vbi,x

Vbi,y

Vbi,z

 =


dxbi
dt

dybi
dt

dzbi
dt

+

 0

0

ωr

×
 −uss sin ψi + r

−uss cos ψi + uedg

u f a + u f lp

 (11)

Finally, the kinetic energy of blades can be obtained as the sum of the kinetic energy of
each infinitesimal element [41]:

Tblade =
3

∑
i=1

∫ R

0
(ρA)bladeV

T
bi Vbidr (12)

where R is the length of the blade, r is the radial position of each infinitesimal element along
the non-deformed blade, Tblade and (ρA)blade are the kinetic energy and mass density of
the blade. For the potential energy, there are three sources for each edgewise and flapwise
direction. The first source is related to the strain energy of the blade, and the second relates
to the axial component of gravity which acts as an axial force. Finally, the third component
is the centrifugal tension force which is related to the rotation of each blade. According to
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the Euler-Bernoulli beam theory, the strain energy of the beam is π =
1
2

R∫
0
(EI)

(
∂2u
∂r2

)2

dr.

By considering only one normal mode shape in each edgewise and flapwise direction, the
strain energy term for each blade can be obtained as: (uedg ≈ ϕedgqedg, u f lp ≈ ϕ f lpq f lp):

πedg,strain =
1
2

R∫
0
(EI)edg

(
d2φedg

dr2

)2

dr

π f lp,strain =
1
2

R∫
0
(EI) f lp

(
d2φ f lp

dr2

)2

dr

(13)

where πedg,strain and π f lp,strain are the strain energy of the blade in the edgewise and
flapwise directions, φedg and φ f lp are the first natural mode shapes in the edgewise and
flapwise directions, (EI)edg and (EI) f lp are the bending stiffness in the edgewise and
flapwise directions and R is the length of the blade. The axial gravity component and
centrifugal force modelling are quite similar because both act like axial forces. According
to [39,40] we have:

πedg,cen =
1
2

ω2
r

R∫
0

R∫
r
((ρA)bladeξdξ)

(dφedg

dr
qedg

)2

dr

π f lp,cen =
1
2

ω2
r

R∫
0

R∫
r
((ρA)bladeξdξ)

(dφ f lp

dr
q f lp

)2

dr

πedg,gravity,bladei = −
1
2

g
R∫
0

R∫
r
((ρA)bladedξ)

(dφedg

dr
qedg

)2

cos ψidr

π f lp,gravity,bladei = −
1
2

g
R∫
0

R∫
r
((ρA)bladedξ)

(dφ f lp

dr
q f lp

)2

cos ψidr

(14)

where πedg,cen and π f lp,cen are the centrifugal terms of the potential energy for each blade
in the edgewise and flapwise directions, πedg,gravity,bladei and π f lp,gravity,bladei are the gravity
term of the potential energy in the edgewise and flapwise directions of the ith blade.

Remark 1. ϕedg, ϕ f lp ϕ f a , and ϕss are the first natural mode shapes of blade vibration in the
edgewise and flapwise vibration and fore-aft and side-side vibration of the tower respectively. The
mode shape of the blade of the NREL 5MW turbine is reported in [11] and can be found in Appendix B
of this paper. ϕedg, ϕ f lp are a function of r and ϕ f a, ϕss are a function of h respectively.

Remark 2. The values (ρA)blade, (EI)edg, and (EI) f lp vary along the blade as a function of r. The
whole structural properties of the blade can be found in [11] with 49 different sections with different
structural properties. To compute the integrations in Equations (13) and (14), a linear pattern is
considered between every two sections as a function of r.

Remark 3. Potential and kinetic energy are both scalar functions. it must be noted that total kinetic
energy is the summation of the kinetic energy of the rotor, generator, and tower. The total potential
energy is the summation of Equations (3), (6), (13) and (14).

2.4. Aerodynamic Modeling

The conventional method for modelling the interaction between the wind and the
wind turbine is called blade element momentum theory (BEM) [42]. The blade of each
wind turbine consists of different airfoils, chord lines, and twist angles. By considering
each section of the blade as a control volume, the magnitude of the relative velocity vector
on each section can be obtained as shown in Figure 4 as:
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Vrel = V0

√
(1− a)2 +

(
rωr

V0
(1 + a′)

)2
(15)

where a and a′ are the induction factors in the axial component and lateral component, V0
is the wind velocity in each section, and Vrel is the relative velocity. In addition, it is easy
to see that the angle of relative wind velocity with respect to the rotor plane is given as
(Figure 4) [42]:

tan(φ) =
V0

rωr

1− a
1 + a′

(16)

As can be seen in Figure 4, two components of the relative wind velocity (Vrel) are
V0(1− a) normal to the rotational plane and rωr(1 + a′) in the rotational plane. α is the
angle of attack and β is the pitch angle. In addition, the angle of attack of each airfoil
can be easily obtained as α = φ− β. Furthermore, the normal (PN) and tangential (PT)
aerodynamic forces can be obtained as a function of lift ( fL) and drag ( fD) forces (Figure 4):

PN = fL cos φ + fD sin φ

PT = fL sin φ− fD cos φ
(17)

As can be seen from Equation (17), normal and tangential forces are a function of
angle of attack, and angle of attack is a function of induction factors. The induction factors
can be updated by modelling using the BEM approach. More details on the aerodynamic
modelling and BEM approach more details are presented in Appendix A.
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Remark 4. There are 17 different sections along the blade with different chord lines, airfoil type,
and twist angles. The above process must be investigated with each section along the blade.

2.5. Wind Profile Modelling

Wind speeds are measured by anemometers at each point. The main concept in
modelling wind velocity profiles is that the time history data must be consistent with the
atmospheric boundary layer (ABL). It is common to assume that the flow is stationary and
homogeneous, which means that the statistical properties of the wind (standard deviation,
kurtosis, and other moments) do not change with time and space [43].

In Figure 5, the wind velocity at the hub (90 m above the ground for the NREL 5MW)
has been depicted. The wind velocity for two points in the grid has been depicted in
Figure 6. More details on generating the grid and rotational sampling approach can be
found in [42,44].
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2.6. Euler Lagrangian Approach for Modelling Multi-Body Systems

There are different ways of obtaining the governing equation of motion of a multi-body
dynamic system. According to the literature, there include the Kane, Euler Lagrange, and
the Gibbs-Appell method [45–47]. Sometimes, the generalized coordinates for describing
the dynamic equation of a system are not independent of each other and they are related
according to the constrained dynamics. These constrained dynamics can be integrable
which in this case are called holonomic constraints and non-integrable which are called
non-holonomic dynamic systems [45]. In these cases, the Kane method is an excellent
approach for obtaining the governing equation of motion. Since the wind turbine system is
not constrained (all the generalized coordinates are independent), the Lagrange method
is quite acceptable. Furthermore, the Lagrange method uses energy functions that are
easier to deal with in comparison to the vectors. According to the Lagrange approach, one
can obtain:

d
dt

(
∂L

∂
{ .

q
}

10×1

)
− ∂L

∂{q}10×1
= {Q}10×1 (18)

where L is called the Lagrangian which can be obtained as the difference between the kinetic
and the potential energy, such that L = T − π. {q}10×1 is the vector of the generalized
coordinates and {Q}10×1 is the vector of generalized forces. The generalized coordinates
can be described as:

{q}10×1 =


{qdrivetrain}2×1

{qblade}6×1

{qtower}2×1

 (19)

For obtaining the generalized forces vector, virtual displacement must be considered in
each positive direction of the generalized coordinates and the virtual work of each external
force must be obtained. In general, the generalized force vector can be obtained as follows:

{Q}10×1 =
∂δW

∂{q}10×1
(20)

where δW is a total virtual work. Just like the generalized coordinates vector, the general-
ized forces is a 10× 1 vector that can be defined as:

{Q}10×1 =


{Qdrivetrain}2×1

{Qblade}6×1

{Qtower}2×1

 (21)

For the drivetrain, there are two-DOFs. the generalized force vector ({Qdrivetrain}2×1)
can be obtained as:

Qdrivetrain,1 =
∂δW
∂θr

= Ta − Dls(ωr −ωls)− Drωr

Qdrivetrain,2 =
∂δW
∂θls

= −Teng + Dls(ωr −ωls)− Dgn2
gωls

(22)

where Dls is the low-speed shaft damper, Dr is the rotor damper, Te is the generator torque,
ng is the gearbox ratio, Dg is the generator damping, and Qdrivetrain,i is the i-th component
of the vector {Qdrivetrain}2×1. Ta is the aerodynamic torque for rotating the blade which can
be obtained as:

Ta =
3

∑
j=1

∫ R

0
rpN,jdr (23)

where pN,j is the normal force for the jth blade. There are aerodynamic forces in both the
edgewise and flapwise directions for each blade. Therefore, the generalized forces vector
for the blade can be denoted as follows:
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{Qblade}6×1 =


{

Qblade,edg

}
3×1{

Qblade, f lp

}
3×1

 (24)

where
{

Qblade,edg

}
3×1

is the generalized forces vector corresponding to the edgewise DOFs

and
{

Qblade, f lp

}
3×1

is the generalized forces vector corresponding to the flapwise DOFs.

In addition, structural damping must be considered external forces. Gravity has two
components. The axial component is computed as the potential energy and the tangential
component must be considered as an external force (Figure 7). By following the approach
in [39], one can obtain:

{
Qblade,edg

}
3×1

=
∂δW

∂{q}edg
=



(∫ R
0 pT,1 ϕedgdr

)
− cedg

.
qedg,blade1 +

∫ R
0 (ρA)blade ϕedgg sin ψ1dr(∫ R

0 pT,2 ϕedgdr
)
− cedg

.
qedg,blade2 +

∫ R
0 (ρA)blade ϕedgg sin ψ2dr(∫ R

0 pT,3 ϕedgdr
)
− cedg

.
qedg,blade3 +

∫ R
0 (ρA)blade ϕedgg sin ψ3dr


{

Qblade, f lp

}
3×1

=
∂δW

∂{q} f lp
=



(∫ R
0 pN,1 ϕ f lpdr

)
− c f lp

.
q f lp,blade1(∫ R

0 pN,2 ϕ f lpdr
)
− c f lp

.
q f lp,blade2(∫ R

0 pN,3 ϕ f lpdr
)
− c f lp

.
q f lp,blade3



(25)

where {q}edg =
{

qb1
edg, qb2

edg, qb3
edg

}
and {q} f lp =

{
qb1

f lp, qb2
f lp, qb3

f lp

}
, cedg is the damping coef-

ficient in the edgewise vibration direction, c f lp is the damping coefficient in the flapwise
direction, PN,i and PT,i are the normal and tangential aerodynamic forces of the ith blade.
The damping coefficient in both these directions can be obtained as (c = 2ζ

√
km) [30]:

cedg = 2ζedg

√√√√√
∫ R

0 EIedg

(
d2 ϕedg

dr2

)2

dr

(∫ R
0 (ρA)blade

(
ϕedg

)2
dr
)

c f lp = 2ζ f lp

√√√√√
∫ R

0 EI f lp

(
d2 ϕ f lp

dr2

)2

dr

(∫ R
0 (ρA)blade

(
ϕ f lp

)2
dr
) (26)

where ζ f lp and ζedg are the non-dimensional damping coefficients in the edgewise and
flapwise directions. These values can be found in [11] (some general properties can be
found in Appendix B).

Finally, the generalized force vector for the tower, which correspond to the fore-aft
and side-side generalized coordinates can be modelled as [32]:

Qtower,1 =

{(
3
∑

i=1

∫ R
0 pN,idr

)
− c f a

.
q f a

}
Qtower,2 =

{(
3
∑

i=1

∫ R
0 pT,i cos ψidr

)
− css

.
qss

}

c f a = 2ζ f a

√√√√√
∫ H

0 (EI)tower

(
d2 ϕ f a

dh2

)2

dh

(∫ H
0 (ρA)tower

(
ϕ f a

)2
dh
)

css = 2ζss

√√√√(∫ H
0 (EI)tower

(
d2 ϕss

dh2

)2

dh

)(∫ H
0 (ρA)tower(ϕss)

2dh
)

(27)
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where Qtower,i is the ith component of the vector {Qtower}2×1. For simplification, it is com-
mon to rewrite the Lagrange equation in the following form by using the chain derivation
rule [45]:

d
dt

(
∂L

∂
{ .

q
}

10×1

)
=

∂

∂t

(
∂L

∂
{ .

q
}

10×1

)
+

∂

∂{q}10×1

(
∂L

∂
{ .

q
}

10×1

){ .
q
}

10×1 +
∂

∂
{ .

q
}

10×1

(
∂L

∂
{ .

q
}

10×1

){ ..
q
}

10×1 (28)
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By defining the following matrices, one can find the dynamic equation of motion by
the Lagrange approach.

[M]10×10 =
∂

∂
{ .

q
}( ∂L

∂
{ .

q
})

[N]10×10 =
∂

∂{q}

(
∂L

∂
{ .

q
})

{K(q)}10×1 =
∂

∂t

(
∂L

∂
{ .

q
})− ∂L

∂{q}

(29)

Finally, by applying the Lagrange equation, the following equation for the wind
turbine dynamic equations is obtained:

[M]10×10
{ ..

q
}

10×1 + [N]10×10
{ .

q
}

10×1 + {K(q)}10×1 = {Q}10×1 (30)

where [M] and [N] are 10 × 10 matrices and {K(q)} is a 10 × 1 vector. The following
governing equation can be solved by the Rang-Kutta approach in a numerical tool. For this
purpose, the following state-space vector is defined:

{zstate}20×1 =

{
{q}10×1{ .

q
}

10×1

}
(31)

where {zstate} is a state-space vector. According to Equation (30), the time derivative of the
state space vector can be obtained as follows:
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{ .
zstate

}
20×1 =

{ { .
q
}

10×1{ ..
q
}

10×1

}
=

{ { .
q
}

10×1

[M]−1
10×10

(
{Q}10×1 − [N]10×10

{ .
q
}
− {K(q)}10×1

) } (32)

Equation (32) is in the standard form and can be solved easily by the Rang-Kutta method.

3. Validation of the Model by FAST

In this section, to ensure the compatibility of the obtained model, the results are
compared to the numerical FAST aeroelastic code. FAST is an aeroelastic code which is
developed by the national renewable energy lab in the USA [48,49]. The edgewise and
flapwise displacement, as well as the nacelle vibrations, are compared with the FAST code.
For extracting the wind field, the Turbsim code is used [50]. The results are obtained
in the same mean wind speed and the same turbulence intensity situation in FAST and
the proposed model in this research. Unlike the previous research [37], in which the
uniform flow is simulated for simulation, the validation part in this research is presented
by considering a fully 3D wind profile by considering the wind shear effect. The power
control approaches in regions II and III are assumed as the baseline approaches which have
been considered in [11]. The dynamic response of the proposed model is compared with
FAST for two load cases. Load case I, has a mean wind velocity of 7 m/s and turbulence
intensity of 10%(region II), whereas load case II has a mean wind speed of 20 m/s and
turbulence intensity of 10% (region III) (Tables 1 and 2).

Table 1. Comparison with the performance of the aeroelastic model in this research with FAST. Mean
wind speed 7 m/s and turbulence intensity 10% (region II).

FAST Numerical Tool Proposed Model

Parameter Mean STD Mean STD

Rotor speed (rad/s) 0.7592 0.0404 0.7667 0.0414
Generator speed (rpm) 705.23 38.45 710.43 38.51

Flapwise tip deflection of blade 1 (m) 2.337 0.338 2.48 0.3574
Edgewise tip deflection of blade 1 (m) −0.2482 0.3408 −0.2588 0.3378

Nacelle fore-aft deflection (m) 0.1437 0.0268 0.1329 0.02329
Nacelle side-side deflection (m) −0.02105 0.01035 −0.02393 0.00840

Table 2. Comparison with the performance of the aeroelastic model in this research with FAST. Mean
wind speed 18 m/s and turbulence intensity 10% (region III).

FAST Numerical Tool Proposed Model

Parameter Mean STD Mean STD

Rotor speed (rad/s) 1.275 0.1448 1.272 0.1453
Generator speed (rpm) 1182 134.2 1178 134.62

Flapwise tip deflection of blade 1 (m) 1.349 1.632 1.416 1.509
Edgewise tip deflection of blade 1 (m) −0.08809 0.3703 −0.1019 0.3507

Nacelle fore-aft deflection (m) 0.211 0.1163 0.216 0.1183
Nacelle side-side deflection (m) −0.06475 0.02135 −0.0618 0.022s3

The power coefficient of the wind turbine is one of the most important characteristics
that determine the ratio of mechanical convertible power to the kinetic energy of the wind.
The power coefficient depends on the tip speed ratio (ratio between the tip velocity of the
blade with respect to the hub height wind velocity) and the pitch angle. The tip speed ratio
is defined as follows:

λ =
Rωr

V
(33)

where V is the effective wind velocity and R is the length of the blade. The power coefficient
can be modelled as follows:
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Cp(λ, β) =
Pa

1
2

ρπR2V3(t)
(34)

where Pa is the aerodynamic power ( Pa = Taωr), ρ is the air density, and Cp(λ, β) is the
power coefficient.

In Figure 8, the power coefficient is given as a function of tip speed ratio at different
pitch angles (in degrees), and the results are compared with the FAST code. As can be seen,
the results are compatible with the FAST simulations.
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θ θ ω ω ω
ω

θ θ ω ω ω
ω
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 − + − + − − =
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Remark 5. The source FAST code is compiled with the SIMULINK/MATLAB and it is possible to
validate the performance of the control algorithm on the open loop model of the wind turbine and
there is a module for designing the tuned mass damper. However, as far as we know, there is no place
to both consider the effect of vibration absorbers and control algorithms on the power generation and
dynamic loads. In addition, the aeroelastic code will be investigated in our future work for designing
various types of vibration absorbers, besides tuned mass dampers.

4. Designing the Sliding Mode Approach in the Low and High Values of Wind Speed

In this section, the power control problem for low and high values of wind speed is
investigated from a load mitigation perspective. According to [3], the aeroelastic interaction
of the blades and tower to the drivetrain is insignificant and can be ignored for control
purposes. Therefore, the simplified model of the drivetrain can be obtained as [22,28]:

.
ωr =

Ta − Kls(θr − θls)− Dls(ωr −ωls)− Drωr

jr
.

ωls =
−Teng + Kls(θr − θls) + Dls(ωr −ωls)− Dgn2

gωls

jgn2
g

(35)

where jr and jg are rotor inertia (including the blades and rotor) and generator inertia

respectively. ωr and ωls are rotor speed and low-speed shaft speed (ωls =
ωg

ng
) respectively.

All the parameters of the model for the NREL 5MW turbine can be found in [11].

Remark 6. In Equation (35), the blade and rotor are assumed as a rigid disk. Therefore, this model
does not give any sense regarding the vibration loads. For considering the vibration loads a full
aeroelastic model is needed which are developed in the previous part.

4.1. Control Problem in the Low-Speed Range of Wind Velocity

In region II, the main goal is to extract as much energy as possible from the wind.
As stated before, the actuator is controlled by the torque from the generator. To achieve
maximum energy, the power coefficient must be at its maximum value. For the NREL
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5MW turbine, the optimum tip speed ratio (λopt) is 7 and the optimum pitch angle is 0
degrees [11]. Therefore, the optimum rotor speed (ωopt) is obtained as:

λopt =
Rωopt

V
⇒ ωopt =

λoptV
R

(36)

where V is the effective wind velocity (EWV). In our previous research [23], we demonstrate
how to estimate EWV, also, a detailed study can be found in [51]. Now, by defining the error
signal as the difference between the optimum speed and the rotor speed, the generator’s
torque must be regulated in order to minimize the error signal. Next, we introduced a novel
super twisting sliding mode control approach with an observer to estimate the unknown
terms to achieve maximum power [52,53].

Theorem 1. The following generator torque (Te) is suitable for maximizing the power coefficient
and output power.

Te = −vl
jr jgn2

g

Dls

vl = aL
∫ t

0 eldt + bL
.
el + cLel −

..
ωopt + ωrej,l

ωrej,l = λ0,l |sl |1/2sign(sl) + ηl
.
ηL = λ1,l |sl |1/2sign(sl)

where



sl =
.
e + ζl.

ζ l = −
..
ωopt + vl −ωrej,l

λ0,l = 1.5
√

L1

λ1,l = 1.1
√

L1∣∣∣∣d∆ψunknown,l

dt

∣∣∣∣ < L1

(37)

where Te is the generator torque, vl is the virtual controller in region II, ωrej,l is the rejection term
in region II (to reject uncertainties and unknown variables).

Proof. By defining the error signal as el = ωr −ωopt, and according to Equation (37), one
can reach the following equation:

..
el =

.
Ta − (Dls + Dr)

.
ωr − Kls(ωr −ωls)

jr

+
Dls

jr jgn2
g
(Dls(ωr −ωls) + Kls(θr − θls))−

Dls
jr jgng

Te −
..
ωopt

(38)

The generator torque (Te) must be defined such that to stabilize the error signal. For
this purpose, the generator torque must satisfy the following equation:

..
el + aL

∫ t

0
eldt + bL

.
el + cLel = 0 (39)

In Equation (39), aerodynamic torque, time derivation of the rotor speed, and low-
speed shaft speed are not measurable. Therefore, these terms must be estimated. Now, by
reorganizing Equation (40), we reach the following equation:
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..
el = ψknown + ∆ψunknown − vl

where

∆ψunknown,l =

.
Ta − (Dls + Dr)

.
ωr − Kls(ωr −ωls)

jr

+
Dls

jr jgn2
g
(Dls(ωr −ωls) + Kls(θr − θls))

ψknown,L = − ..
ωopt

vL = − Dls
jr jgn2

g
Te

(40)

One should note that the term ψknown,l defines the known terms of
..
el and ∆ψunknown,l

denotes the unknown terms, which must be estimated and vl is the virtual control signal.
For designing the control signal vl , we need to estimate the disturbance term ∆ψunknown,l .
For this purpose, a first-order dynamic system is introduced as follows [54]:

sl =
.
el + ξl

.
ζ l = −ψknown,l + vl −ωrej,l

(41)

The Lyapunov function Vl =
1
2 s2

l is introduced, giving:

.
V l = sl

.
sl = sl

(..
el +

.
ξ l

)
(42)

The goal is to design the term ωrej,l to reject the uncertainties. The rejection term must

be designed in such a way
.

V l ≤ −η|sl | where η is a positive number. By a combination of
Equations (42) and (49), one can reach:

.
V l = sl

.
sl = sl

(
∆ψunknown,l −ωrej,l

)
≤ ‖|sL|‖‖∆ψunknown,L‖ − slωrej,l ≤ −η‖sl‖

⇒ ωrej,l ≥ (η + Lslide)sign(sl)
(43)

where Lslide is a positive number which ‖∆ψunknown‖ ≤ Lslide. To reach origin asymptoti-
cally, we must have:

Finally, combining Equations (46) and (50) the control signal gives the control signal vl
(ρL = (η + Lslide)):

vl = aL

∫ t

0
eldt + bL

.
el + cLel −

..
ωopt + ρLsign(sl) (44)

where aL, bL and cL are positive coefficients which can be found in Appendix C. To design
the rejection term, according to [51], the super twisting control method has a better perfor-
mance in chattering rejection as well as better tracking ability. Therefore, the rejection term
is defined as [54]:

ωrej,l = λ0,L|sl |1/2sign(sl) + ηl
.
ηl = λ1,Lsign(sl)

(45)

In [54], a thorough discussion has been provided to select properly the parameters λ0,L
and λ1,L. Accordingly, two acceptable values for these two parameters are λ1,L = 1.1

√
L1

and λ0,L = 1.5
√

L1 where L1 is the upper bound of
.
ψunknown,l .

Finally, by finding the virtual control signal vl , the generator torque in each time step
can be updated as follows:

Te = −vl
jr jgn2

g

Dls
(46)

�
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The whole structure of the designed control system is depicted in Figure 9.
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Remark 7. To obtain the value of
..
ωopt, according to Equation (44), we need the second-time

derivation of EWV. We used the following derivative estimation which is proposed in [54].

vestimate,1 =
.
z0 = −2Lestimate

1/3|z0 −V(t)|2/3sign(z0 −V(t)) + z0

vestimate,2 =
.
z1 = −1.5Lestimate

1/2|z1 − vestimate,1|
1/2sign(z1 − vestimate,1) + z1

.
z2 = −1.1Lestimatesign(z0 − vestimate,2)

(47)

where z0 is the estimation of V(t), z1 is the estimation of
.

V(t), and z2 is the estimation of
..
V(t).

Lestimate is a positive number which must satisfy
...
V(t) ≤ Lestimate. In this research, we assumed

Lestimate = 10. More details can be found in [54].

4.2. Control Problem Inregion III

The output power must be limited to the nominal power in region III to prevent any
damage to the wind turbine due to high winds. For this purpose, the rotor speed must be
compared to the reference rotor speed, which is 12.1 rpm for NREL 5MW. The difference
between the rotor speed and the nominal value (12.1 rpm) can be communicated via an
error signal in each time step. The pitch angle actuator system usually acts as a linear servo
system. According to [9,24,55], the dynamic equation of the pitch system can be described
as follows:

.
β = − 1

τ
(β− u) (48)

where u is the input signal in region III. β is the 11th DOF in the fully coupled model of
NREL 5MW. For the NREL 5MW wind turbine, the pitch angle dynamic can be changed in
the range of 0 and 90 degrees (β ∈ [0, 90]), and the pitch rate cannot exceed 10 degrees per
second (

∣∣∣ .
β
∣∣∣ < 10deg/s) [11,56]. In the following, the pitch angle mechanism is described for

limiting the output power without measuring the aerodynamic torque.

Theorem 2. The following pitch regulator signal (u) can regulate the output power to its nominal
value.
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u = −τvh jr
∂Ta

∂β

vh = ah
∫ t

0 edt+bh
.
e + che− ∂Ta

∂β
β

τ jr + ωrej,h

ωrej,h = λ0,h|sh|1/2sign(sh) + ηh
.
ηh = λ1,hsign(sh)

where



sh =
.
eh + ζh

.
ζh = −

∂Ta

∂β
β

τ jr
+ vh −ωrej,h

λ0,h = 1.5
√

L2

λ1,h = 1.1L2∣∣∣∣d∆ψunknown,h

dt

∣∣∣∣ < L2

(49)

where u is the control signal, vh is the virtual controller, β is the pitch angle, ωrej,h is the rejection

term in region III (to reject uncertainties and unknown variables), and
∂Ta

∂β
is the pitch sensitivity.

Proof. By defining the error signal as eh = ωr − 12.1, and according to Equation (35), the
second derivative of the error signal can be computed as follows (We simplified

.
Ta by the

simple chain derivation rule,
.
Ta(V, ωr, β) =

∂Ta

∂ωr

.
ωr +

∂Ta

∂V

.
V +

∂Ta

∂β

.
β):

..
eh =

∂Ta

∂ωr

.
ωr +

∂Ta

∂V

.
V − ∂Ta

∂β
β
τ − (Dls + Dr)

.
ωr − Kls(ωr −ωls) + Dls

.
ωls

jr
+

∂Ta

∂β

u
τ jr

(50)

Just like the previous part, the pitch angle actuator must stabilize the rotor speed error.
Therefore, the following equation must be satisfied [37]:

..
eh + ah

∫ t

0
ehdt + bh

.
eh + cheh = 0 (51)

where, ah, bh, and ch are some positive numbers. In addition, the time derivative of rotor
speed, low-speed shaft speed, and wind velocity are unknown and must be estimated. To
estimate the uncertainties, after simple calculations, the following equations are obtained:

..
eh = ψknown,h + ∆ψunknown,h − vh

where

∆ψunknown,h =

∂Ta

∂ωr

.
ωr +

∂Ta

∂V

.
V − (Dls + Dr)

.
ωr − Kls(ωr −ωls) + Dls

.
ωls

jr
ψknown = − ∂Ta

∂β
β

τ jr

vh =
∂Ta

∂β
u

τ jr

(52)

The term ∆ψunknown,h is unknown and must be estimated and vh is the virtual controller
in region III. For this purpose, the sliding mode approach is used similarly to the previous
part. At the first, the sliding manifold is chosen as follows:
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sh =
.
eh + ξh

.
ζh = −ψknown,h + vh −ωrej,h

(53)

By considering the Lyapunov function as Vh = 1
2 s2

h and doing the same process as the
previous part:

vh = ah

∫ t

0
edt+bh

.
e + che− ∂Ta

∂β

β

τ jr
+ ρhsign(sh) (54)

Finally, by finding the virtual control signal vh, the pitch controller can be obtained
as follows:

u = −τvh jr
∂Ta

∂β

(55)

�

As stated before, the objective of this part is to design a novel sensorless controller
in region III to both control the output power and reduce the vibration loads. According

to Equation (55),
∂Ta

∂β
is still unknown and must be estimated. The term

∂Ta

∂β
is called

pitch sensitivity and indicates how the aerodynamic torque or the aerodynamic power
varies with pitch angle. Pitch sensitivity depends on EWV, pitch angle, and rotor speed.
In this research, pitch sensitivity is estimated by using ANFIS (Adaptive Neuro-Fuzzy
Inference System), which is a fuzzy inference system that is implanted into the neural
network frame [57]. Fuzzy inference systems can be categorized into the Mamdani and
Takagi-Sugeno (TS) systems [57]. The difference between these systems is the output of each
If-Then fuzzy rule. In the TS fuzzy system, the output of each rule is a linear combination
of the inputs, but in the regular Mamdani fuzzy system, each output is a linguistic variable
that is described by membership functions. Pitch sensitivity depends on the rotor speed,
pitch angle, and EWV. The training data for the estimation process is obtained by FAST.
The grid partition method is used for generating the FIS (fuzzy inference system) and for
training the ANFIS system, the hybrid method is considered. 70% of the extracted data is
used for training and the other 30% is for testing the generated model (The details of extracting
data can be found in [11]). For two inputs (EWV and pitch angle) five Gaussian membership
functions are considered and for the third input (rotor speed) three membership functions are
considered, therefore, for the whole system, 75 rules are required. Figure 10 shows the ANFIS
surface as a function of pitch angle and effective wind velocity.
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Figure 11 shows the pitch sensitivity at different mean wind velocities and a constant
turbulent intensity of 10%. In order to consider the effect of turbulence on the estimation
process, pitch sensitivity is investigated at a constant mean wind velocity of 20 m/s and
different turbulence intensities (Figure 12). As can be observed, the proposed method has
an excellent performance in the estimation of pitch sensitivity. The whole structure of the
control system is shown in Figure 13.
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5. Load Mitigation of the Tower Vibration Loads by Using TMD

In this section, the load mitigation of the tower of the NREL 5MW has been considered
by using a vibration absorber. According to [32,34], load mitigation was considered at a
constant rotor speed and ignoring the drivetrain system of a wind turbine. According
to [58], the standard deviation of the pitch angle can significantly affect the vibration loads
of the tower. The wind turbine’s tower can be modelled as a beam that is fixed at the
bottom with a concentrated mass (the nacelle) attached to the free end. This structure has
two main sources of excitation:

• The vibration loads are transmitted from the blades to the hub and finally to the tower.
These vibration loads can be influenced by the drivetrain control algorithms in the
previous section.

• Aerodynamic loads from the wind.

According to [58], the aerodynamic loads of the tower are negligible in comparison
to the first source of excitation; in other words, designing the vibration absorbers without
considering the control algorithms would result in inaccuracies. To consider the effect of
coupling between the drivetrain dynamic and the turbine on the load analysis, in Figure 14,
the change between STD of nacelle fore-aft displacement and the two cases are considered
in region III. The first case is the fully coupled model which is described in this research
and is validated by FAST. The second case is the uncoupled model with constant rotor
speed (12.1 rpm) and without considering the effect of the drivetrain and the pitch actuator.
For this purpose, we defined the following parameter:

γdi f f erence =
σcouple − σuncouple

σcouple
× 100 (56)

where σcouple is the STD of the parameter (nacelle fore-aft displacement and flapwise
displacement of the blade) in the coupled model, σuncouple is the STD of the parameter
in the uncoupled model, and γdi f f erence denotes the difference between the coupled and
uncoupled model. As can be seen, the difference is significant and any load analysis and
load mitigation perspective must consider the coupled model.
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where ,fa absm , ,fa absk  and ,fa absc  are the mass, stiffness, and damping coefficient of the 

TMD in the fore-aft direction and absorberT , absorberπ , and absorberWδ  are the kinetic en-
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Figure 14. The difference between the STD of the vibration loads of the coupled model and the
uncoupled model. (a) fore-aft displacement of the nacelle (b) flapwise tip displacement of the blade.

In this section, by considering the control algorithm in the previous section, a TMD
system is designed to reduce the fore-aft vibration of the tower. In order to design the
absorber, another DOF must be considered in the aeroelastic model.

{qabsorber} =
{

q f a,abs

}
(57)

Also, the kinetic energy, potential energy, and external work related to the damper of
the absorber system can be calculated as [30]:

Tabsorber =
1
2

m f a,abs
.
q2

f a,abs

πabsorber =
1
2

k f a,abs

(
q f a,abs − q f a

)2

δWabsorber = −c f a,abs

(
q f a,abs − q f a

)(
δq f a,abs − δq f a

) (58)

where m f a,abs, k f a,abs and c f a,abs are the mass, stiffness, and damping coefficient of the TMD
in the fore-aft direction and Tabsorber, πabsorber, and δWabsorber are the kinetic energy, potential
energy, and the virtual work of the damper respectively. The main goal is to design the
parameters

{
m f a,abs, k f a,abs, c f a,abs

}
to minimize the fore-aft vibration signal.

Remark 8. In Sections 2 and 3, we defined an 11 DOFs model. In this section, other DOFs (related
to the TMD) must be considered. In other words, the new size of the matrices M and N in Equation
(38) are 11 × 11 and the size of vector K is 11 × 1.

6. Simulation Results

In this section, a complete aeroelastic simulation has been done by considering the
control signal and the tuned mass damper in the nacelle of the wind turbine. These
simulations considered 12 DOFs (6 DOFs for the blade, 2DOFs for the tower, 2DOFs for
the drivetrain, 1 DOF for the pitch actuator, and 1 DOF for the absorber) of the wind
turbine dynamic system. The simulation was run on MATLAB to investigate two load
cases in region II and region III. The load case in region II was with a mean wind speed
of 8 m/s and turbulence intensity of 10%, and the other load case in region III was with
a mean wind speed of 20 m/s and turbulence intensity of 10%. The performance of
the designed controllers in both regions was compared with conventional controllers (ISC
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control algorithm in region II and the GPI controller in region III) in terms of load mitigation.
The following assumptions have been considered in the aeroelastic simulations:

• The optimum rotor speed in region II is smoothed by a low pass filter with a time
constant = 1 s.

• The simulation time is considered as 10 min (according to the IEC standard [33]).
• In order to prevent chattering in the super twisting sliding mode approach, the rejec-

tion term is smoothed by a low pass filter with a time constant of 1 s.

In Figure 15, the performance of the super twisting control approach was compared
with the ISC algorithm in absorbing wind energy, and also the vibration loads in region
II. As Figure 15 shows, super twisting sliding mode control had a better performance in
increasing power coefficient in region II. However, the performance of both approaches is
very similar in the terms of vibration loads. More details of the simulation can be found in
Table 3.
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Table 3. Detailed simulation with mean wind speed 8 m/s and turbulence intensity 10%.

Control Approach
Edgewise (m) Flapwise (m) Output Power (kw) Generator Torque

(KN·m)

STD Mean STD Mean STD Mean STD Mean

Super twisting
sliding mode 0.3452 −0.3123 0.4823 2.958 368.3 1857 2.765 20.84

MPPT algorithm 0.3457 −0.3159 0.4369 3.023 320.06 1838 2.535 20.05

In Figure 16, the performance of these control approaches is compared in absorbing
energy from the wind. As can be seen, the super twisting control approach can improve
the absorbed energy in comparison to the conventional ISC algorithm by nearly 1%.
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Remark 9. As sketched in Figure 15, the generated power of our novel approach in some regions is
higher than the conventional MPPT method and in other regions, the MPPT approach generates
more power. In order to have a justifiable comparison, in Figure 16 we compare the average value of
the power coefficient. The averaged power coefficient has been calculated as follows:

Cp =
1
T

T∫
0

Cpdt (59)

where Cp is the power coefficient as a function of time, T is the simulation time, which is 10 min in
our work.

In Figure 17, the performance of the designed control system is compared with the
GPI control system in region III. In Table 4, a complete comparison is investigated. As
can be seen, the super twisting control approach has a very good ability to reduce the
vibration loads of the blade in the flapwise and edgewise directions. In addition, according
to Table 4, the super twisting approach has a better ability in tracking the nominal power
and reducing vibration loads.

Table 4. Detailed simulation with mean wind speed = 20 m/s and turbulence intensity = 10%.

Control Approach
Edgewise (m) Flapwise (m) Output Power (MW) Pitch Angle (Degree)

STD Mean STD Mean STD Mean STD Mean

Super twisting
sliding mode 0.3499 −0.07541 1.048 1.413 0.1382 5.294 2.007 17.63

GPI algorithm 0.355 −0.07803 1.062 1.612 0.1503 5.31 2.236 17.18
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In order to consider the performance of the super twisting sliding mode control, in
Figure 18, the STD of pitch angle has been investigated. As can be seen, the proposed
method can reduce the STD of pitch angle by approximately 12%. In Figure 19, the reduction
in the mean value of flapwise vibration has been considered. As can be seen, the super
twisting sliding mode can reduce the flapwise mean value by 7% to 12% in different mean
wind velocities.
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Figure 18. Comparison between the STD of pitch angle signal in gain schedule control approach and
super twisting sliding mode control in different mean wind speed values with turbulence intensity 10%.
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Figure 19. Flapwise displacement mean reduction in different mean wind velocities. The super
twisting sliding mode can reduce the mean value of vibration signal by 7% to 12% in different mean
wind velocities and turbulence intensity 10%.

For designing the TMD in the nacelle, the genetic algorithm was used for optimization
with the root mean square (RMS) of the fore-aft vibration of the tower as the fitness function.
For this purpose, the MATLAB optimization toolbox was used. One should note that the
mass of the damper must not exceed 4% of the total mass of the rotor and nacelle [32]. Also,
the stroke of the TMD in the nacelle is 8 m (because the length of the nacelle is 18 m. The
best and mean individuals of the optimization process have been depicted in Figure 20. As
is observed, the algorithm converges after 14 generations. The optimal results are:

m f a,abs = 12060 kg, k f a,abs = 54070 N/m, c f a,abs = 8995 N·s/m (60)
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The TMD strokes and fore-aft vibration signals are shown in Figure 21. The load
reduction of the fore-aft vibration of the tower is given in Table 5 at different mean wind
speeds with a constant turbulence intensity of 10%. The fore-aft vibration reduction of the
tower at different turbulence intensities with a constant mean wind speed of 20 m/s has
been investigated as seen in Table 6. The load reduction is defined as follows:

ηred =
σWTMD − σTMD

σWTMD
× 100 (61)

where ηred is the reduction rate, σWTMD is the STD of the tower fore-aft vibration without
the TMD, and σTMD is the STD of the vibration signal by considering the TMD effect.
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Figure 21. TMD performance in reducing tower fore-aft vibration. (a) TMD stroke. (b) fore-aft
vibration of the tower with and without TMD.

Table 5. The reduction rate of fore-aft vibration in constant mean wind speed of 20 m/s and different
turbulence intensities.

Turbulence Intensity (%) Tower Fore-Aft Reduction (%)

5 51.65
10 45.65
15 32.73
20 37.21

Table 6. The reduction of fore-aft vibration in constant turbulence intensity of 10%, and different
mean wind speed values.

Mean Wind Velocity (m/s) Tower Fore-Aft Reduction (%)

6 40.00
8 58.46
18 33.49
20 45.65
22 35.44
24 38.27

Remark 10. The main novelty of the TMD design procedure is considering the coupled dynamics
of the wind turbine. Although it must be noted that the coupled model is completely available in the
FAST and other similar aeroelastic codes. However, the accuracy of the constant speed model is the
main concern of this part. As demonstrated in Figure 14, the coupled dynamics of the turbine and
the drivetrain makes much better accuracy in the estimation of the dynamic loads. For doing this,
we compare the standard deviation of the coupled model and the uncoupled model in comparison to
the blades and the tower vibration. The difference between the coupled and uncoupled models in the
estimation of the dynamic loads has been discussed in Figure 14.

7. Conclusions

In this study, the wind turbine control problem has been investigated from the load
reduction perspective. First, an aeroelastic model of the wind turbine was developed
to consider the edgewise and flapwise vibration of the blade and also the fore-aft and
side-side vibration of the tower. The blades were considered rotational beams and the
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tower is considered a beam with one fixed end and the other attached to a lumped mass.
The Euler-Bernoulli beam theory was used to derive the dynamic behaviour of the blades
and the tower. Based on the full-aeroelastic model, a reduced-order model was considered
for control purposes. The control problem was investigated for both low and high wind
velocities by the super twisting sliding mode control approach. In region III (high wind
velocities), an adaptive neural fuzzy inference system (ANFIS) was used for estimating
pitch sensitivity. The inputs of this system were pitch angle, effective wind velocity, and
rotor speed. The training and test data were obtained by FAST aeroelastic code. Finally,
to reduce the vibration loads of the tower, a TMD was used in the nacelle of the wind
turbine to reduce the fore-aft vibration of the tower. The parameters of the TMD were
chosen optimally by using the genetic algorithm. The results were compared to the baseline
controllers in both operational regions which means the performance of the wind turbine
system has been improved. Some findings about this research and future works are
presented as follows:

• The simulation results demonstrate that the novel super twisting sliding mode ap-
proach proposed in this study can increase the power coefficient by approximately
1% (Figure 16) with no need to know state variables and aerodynamic torque (which
is not measurable). In comparison with some recently published works [59,60], this
work renders the stability proof of the proposed method.

• In region III, the power and rotor speed fluctuation is much smoother in comparison
to the GPI control approach. This proposed method can reduce the STD of the pitch
angle by 10% (Figure 19). Also, according to Figure 19, it can reduce the mean value of
the flapwise vibration by 7–12% for different mean wind velocities.

• In comparison to the literature [31,32,34,35], we demonstrate that it is more accurate
to consider the fully coupled model to estimate vibration loads and design vibration
absorbers. In most of the previous works, the rotor speed is considered as a constant
value (12.1 rpm) in region III and the drivetrain dynamic is ignored. In Figure 14, we
compared the load estimation of the fully coupled model (by considering the drivetrain
dynamic) and the uncoupled model (without drivetrain dynamic and constant rotor
speed). As can be seen, the difference is significant in the wide range of wind velocity
in region III (Figure 14).

• The TMD parameters are designed at the mean wind speed of 20 m/s in region
III. Therefore, the results may be improved by considering a semi-active vibration
absorber, which is optimal in both regions II and III.
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Appendix A

Appendix A.1. Aerodynamic Modelling and BEM Approach

It is convenient to non-dimensionalize these forces by the term
1
2

ρV2
relc(r), which yields:

CN =
PN

1
2

ρV2
relc(r)

CT =
PT

1
2

ρV2
relc(r)

(A1)

where c(r) is the chord length of each section. The classical BEM theory assumes an
infinite number of blades. To correct this assumption, Prandtl suggests a correction factor
F. According to [61], the values of induction factors (a and a′) by considering Prandtl
correction can be obtained as:

a =
1

1 +
4F sin2 φ

σsolidCN

a′ =
1

4F sin φ cos φ

σsolidCT
− 1

σsolid =
c(r)Nblade

2πr

(A2)

where σsolid is defined as the solidity, Nblade is the number of blades, and F is the Prandtl
correction which is described as:

F =
2
π

cos−1
(

e− f
)

f =
Nblade

2
R− r
r sin φ

(A3)

when the axial induction factor (a) is larger than 0.4, simple BEM theory is not valid
anymore. In this case, the Glauert correction is expressed as follows:

CT =

{
4a(1− a)F a ≤ ac

4
(
a2

c + (1− 2ac)a
)

F a > ac

ac ' 0.2

(A4)

As well as the norm of the difference between a and a′ with respect to their previous
values is larger than an assumed small quantity, this algorithm continues. Otherwise, the
algorithm converges, and we can obtain the aerodynamic force of each section. For more
details on the dynamic wake model and dynamic stall, one can refer to [42]

Appendix A.2. Wind Profile Modelling

The wind profile is the summation of the mean wind velocity and the turbulence
term. The mean wind velocity is a function of height and surface roughness. There are
two models for describing the mean wind velocity profile, the power-law model, and the
logarithmic law model [42]. The difference between these two models is that the logarithm
law is scale-dependent but the power law is scale-independent. The logarithm law for
modelling the wind time history data can be expressed as:

Vm(z)

Vm

(
zre f

) =
ln(z/zre f )

ln(zre f/z0)
(A5)



Mathematics 2022, 10, 2735 37 of 40

where z is the height above the ground, zre f is the reference height, z0 is the surface
roughness, and is the mean wind velocity. The turbulence of the incoming wind determines
the degree of fluctuation in wind speed. The turbulence in the airflow can be described
by the power density spectrum (PDS) which determines the energy of the vortices. There
are various mathematical expressions for describing PDS and according to [42], one of the
power spectrum models, the Kaimal spectrum function is as follows:

S( f ) =
I2Vml(

1 + 1.5
f ·l
Vm

)5/3
(A6)

where I =
σwind
Vm

is called the turbulence intensity. σwind is the standard deviation of wind

speed, and l is the turbulence length scale (l = 20H for H < 30 and l = 600 for H > 30 (H is
the height of the tower)) [61].
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In order to obtain a 3D model of the wind field (in Figure A1, the grid around the rotor
has been depicted), one should note that wind time histories at different points are not
independent [45]. The coherence function between two points determines the correlation
between different time history data in the grid. In general, the coherence function between
two points j and k in the grid is defined below:

cohjk( f ) =

∣∣∣Sjk( f )
∣∣∣√

Sjj( f )Skk( f )
≈ exp( − 12 f Ljk/Vm ) (A7)

where Ljk is the distance between two points j and k in the grid. To obtain the 3D time
history of the wind, in this research we follow the rotational sampling concept which is
introduced in [62].
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Appendix B

Some important characteristics of the NREL 5MW turbine are given below.

Table A1. General characteristics of the NREL 5MW turbine [11].

Rating 5 MW

Rotor Orientation, Configuration Upwind, 3 Blades
Control Variable Speed, Collective Pitch

Drivetrain High Speed, Multiple-Stage Gearbox
Rotor, Hub Diameter 126 m, 3 m

Cut-in, Rated, Cut-out Wind Speed 3, 11.4, 25 m/s
Rotor Mass 110,000 Kg

Nacelle Mass 240,000 Kg
Tower Mass 347,000 Kg

Also, the main mode shapes of the blade and tower of the wind turbine are:

ϕedg = −0.6952r6 + 2.376r5 − 3.5772r4 + 2.5337r3 + 0.3627r2

ϕ f lp = −2.2555r6 + 4.7131r5 − 3.2452r4 + 1.7254r3 + 0.0622r2

ϕ f a = −2.504h
6
+ 6.2275h

5 − 5.6202h
4
+ 2.1963h

3
+ 0.7004h

2

ϕss = 0.5357h
6 − 2.2395h

5
+ 3.0871h

4 − 1.7684h
3
+ 1.385h

2

(A8)

where r =
r

61.7
and h =

h
87.2

.

Appendix C

Table A2. Control parameters used in this research.

Parameter Value

aL 0.014
bL 0.081
cL 0.34
L1 0.051
ah 0.023
bh 0.062
ch 0.22
L2 0.018
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