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Abstract: Image encryption is an effective way to protect image data. However, existing image
encryption algorithms are still unable to strike a good balance between security and efficiency. To
overcome the shortcomings of these algorithms, an image encryption algorithm based on plane-level
image filtering and discrete logarithmic transformation (IEA-IF-DLT) is proposed. By utilizing the
hash value more rationally, our proposed IEA-IF-DLT avoids the overhead caused by repeated
generations of chaotic sequences and further improves the encryption efficiency through plane-
level and three-dimensional (3D) encryption operations. Aiming at the problem that common
modular addition and XOR operations are subject to differential attacks, IEA-IF-DLT additionally
includes discrete logarithmic transformation to boost security. In IEA-IF-DLT, the plain image is
first transformed into a 3D image, and then three rounds of plane-level permutation, plane-level
pixel filtering, and 3D chaotic image superposition are performed. Next, after a discrete logarithmic
transformation, a random pixel swapping is conducted to obtain the cipher image. To demonstrate
the superiority of IEA-IF-DLT, we compared it with some state-of-the-art algorithms. The test and
analysis results show that IEA-IF-DLT not only has better security performance, but also exhibits
significant efficiency advantages.

Keywords: image encryption; cryptanalysis; image filtering; discrete logarithm; security analysis

MSC: 94-08; 94A60

1. Introduction

Due to the rapid rise and popularization of information technology, a huge amount
of digital information is generated every second in the world today and spread through
various channels. Among these different formats of digital information, digital images
are especially widely used because they can convey information concisely and vividly.
However, for reasons such as privacy protection, commercial security, and military security,
it is desirable to provide these disseminated images with effective protection against
unauthorized access [1–4]. Because of this, how to provide more secure and efficient
protection for digital images has been the focus of researchers in recent years [5–8]. Among
several protection methods, image encryption is increasingly preferred as a straightforward
and effective one. After being processed by image encryption, digital images will become
unrecognizable cipher images, similar to noise images. Without the correct secret key,
unauthorized users cannot obtain useful information from these noise-like images. On
the other hand, these unrecognizable cipher images can be decrypted into useful normal
images when the correct secret key is applied. It is worth noting that digital images have
many characteristics different from text data, such as high information redundancy and
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strong correlation between adjacent pixels. This makes traditional encryption algorithms,
including Data Encryption Standard (DES), Advanced Encryption Standard (AES), and
Internationale Data Encrypt Algorithm (IDEA), not well suited to the encryption of digital
images [9–11]. Therefore, in order to securely and effectively safeguard digital images,
researchers are increasingly using new technologies and methodologies to design image
encryption algorithms, such as chaotic systems [7,12,13], DNA computing [14–16], quantum
computing [11,17,18], and compressed sensing [19–21].

Chaotic systems have many properties that conform to the design principles of cryp-
tosystems, such as initial value sensitivity, ergodicity, and unpredictability. Many image
encryption algorithms based on chaotic systems are proposed every year [1,3,5]. Through
the coupling of logistic and tent maps, Hua et al. [22] constructed a two-dimensional
(2D) map with excellent chaotic performance and further proposed a novel color image
encryption algorithm based on this 2D map. In [23], after introducing two new one-
dimensional (1D) chaotic systems, Wang et al. presented an image encryption algorithm
employing dynamic row permutation and Zigzag transformation. Based on a chaotic map,
Bezerra et al. [24] suggested an image encryption algorithm using a permutation and diffu-
sion structure. In [25], exploiting a circular bit-level scrambling method, Diaconu presented
a chaotic image encryption algorithm. Based on a hybrid model of DNA computing, chaotic
systems, and hash functions, Zefreh [26] designed an image encryption algorithm that
mainly includes two steps of DNA-level permutation and DNA-level diffusion. Benefiting
from the unique characteristics of chaotic systems and the excellent randomness of the
chaotic sequences generated by them, existing image encryption algorithms based on
chaotic systems have demonstrated good encryption effects. To the best of our knowledge,
there are no cases where these algorithms have been successfully broken by ciphertext-only
attacks. However, based on our cryptanalysis research [27–31] and the work done by other
researchers [3,5,32,33], we found that existing image encryption algorithms still have the
following shortcomings.

(1) The secret key design of some algorithms is not reasonable, resulting in the need to
change the secret key every time a different image is encrypted. Such a design is not
practical when there are a large number of images to be encrypted.

(2) Inappropriate use of the plain image hash value. This makes it necessary to repeatedly
generate chaotic sequences when encrypting different images.

(3) Some algorithms only make simple use of modular addition or XOR operations,
making them vulnerable to differential attacks.

(4) Bit-level or pixel-by-pixel encryption operations make some algorithms inefficient at
encrypting images.

In this research, to address the shortcomings of existing algorithms, we propose an
image encryption algorithm based on plane-level image filtering and discrete logarithmic
transform (IEA-IF-DLT). The following is a summary of the novelties and contributions of
our proposed algorithm.

(1) A standardized and reasonable secret key design is adopted, and there is no need to
change the secret key when encrypting different images.

(2) The hash value is used to truncate chaotic sequences and to determine the generator of
the finite multiplicative group Z∗257. This allows the chaotic sequences to be generated
in advance and reused once the secret key is determined.

(3) A discrete logarithmic transformation based on Z∗257 is employed, thereby rendering
common differential attack strategies ineffective.

(4) The plane-level permutation, plane-level image filtering, and three-dimensional (3D)
chaotic image superposition make the encryption efficiency extremely high while
ensuring security.

(5) The random pixel swapping performed at the end makes it impossible for attackers
to isolate the diffusion operation through special plain images.
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The rest of this paper is structured as follows. In Section 2, the chaotic systems,
SHA-256 hash value, and discrete logarithm are introduced. In Section 3, our proposed
IEA-IF-DLT is described in detail. In Section 4, simulation tests and related analyses are
presented to verify the superiority of IEA-IF-DLT. In the last section, we conclude the work
done in this paper.

2. Preliminaries

In our proposed IEA-IF-DLT, two chaotic systems are exploited to generate chaotic
sequences, the SHA-256 hash function is employed to improve the plain image sensitivity
of IEA-IF-DLT, and the discrete logarithm is utilized to enhance the non-linearity of the
encryption process, thereby improving the security of the entire algorithm.

2.1. Chaotic Systems

In the related research of image encryption, compared with low-dimensional chaotic
systems, high-dimensional chaotic systems have more complex dynamics, so it is favored
by many researchers. In IEA-IF-DLT, we leverage the 4D hyper-chaotic Chen system
introduced in [34]. Mathematically, this 4D hyper-chaotic system can be defined as follows.

ẋ = α(y− x),
ẏ = γx− xz + µy− w,
ż = xy− βz,
ẇ = x + λ,

(1)

where x, y, z, w are four system state variables, and α, β, µ, γ, λ are five system control
parameters. When (α, β, µ, γ) = (36, 3, 28,−16) and λ ∈ [−0.7, 0.7], this system is hyper-
chaotic. Figure 1 demonstrates the rich dynamic features of this 4D hyper-chaotic system,
which makes it an excellent choice for image encryption.

In addition to high-dimensional continuous chaotic systems, the study of discrete
chaotic maps has also attracted the attention of many researchers [22,35,36]. In [22], to over-
come the shortcomings of existing chaotic maps, Hua et al. proposed a two-dimensional
logistic tent modular map (2D-LTMM). This newly reported chaotic map has a wide and
continuous chaotic range and more evenly distributed trajectories, making it ideal for
image encryption. Specifically, the 2D-LTMM has the following mathematical definition.

xi+1 =

{
(4r1xi(1− xi) + 2r2yi) mod 1 when yi < 0.5,
(4r1xi(1− xi) + 2r2(1− yi)) mod 1 when yi ≥ 0.5,

yi+1 =

{
(4r1yi(1− yi) + 2r2xi) mod 1 when xi < 0.5,
(4r1yi(1− yi) + 2r2(1− xi)) mod 1 when xi ≥ 0.5,

(2)

where xi and yi are the outputs of the i-th iteration as well as the inputs of the (i + 1)-th
iteration, while r1 and r2 are the control parameters of 2D-LTMM. When r1, r2 ∈ [1, 100],
the 2D-LTMM is in a hyperchaotic state.
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Figure 1. Six hyper-chaotic attractors of adopted hyper-chaotic Chen system: (a) x-y plane; (b) x-z
plane; (c) x-w plane; (d) x-y-z plane; (e) x-y-w plane; (f) y-z-w plane.

2.2. SHA-256 Hash Value

The SHA-256 hash function was released by the National Institute of Standards and
Technology (NIST) in 2001. Due to its outstanding performance, SHA-256 is now widely
used in numerous fields, such as blockchain. For any input message with a length of
less than 264 − 1 bits, SHA-256 can generate a hash value with a fixed length of 256 bits.
Furthermore, SHA-256 is extremely sensitive to input—even a single bit change in the
input message can drastically alter the hash value generated. Because of its remarkable
input sensitivity, many image encryption algorithms incorporate SHA-256 to boost their
plain image sensitivity [23,24,37,38]. However, it is worth mentioning that these algorithms
employ the plain image hash value in an unreasonable way, either directly as a secret key or
to produce the parameters of chaotic systems. Both of these pose a practical problem; that
is, when there are a large number of images to be encrypted, users must constantly change
secret keys or iterate the chaotic systems constantly to obtain the desired key streams. As a
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result, in our suggested IEA-IF-DLT, we improve the method of utilizing the plain image
hash value. Specifically, for the the plain image P of size M× N, the hash value of P is
first split into 32 bytes, which are h1, h2, . . . , h32. Then, two parameters to be used in the
encryption process are generated, H(1) =

(
∑32

i=1 hi

)
mod M,

H(2) =
(

∑32
i=1 hi

)
mod N.

(3)

2.3. Discrete Logarithm

For a prime integer p, under the modulo-p multiplication operation, we can con-
struct the modulo-p multiplicative group Z∗p = {1, 2, . . . , p− 1}. Furthermore, discrete
logarithms can be defined over Z∗p. If a = gb mod p holds, where g is a generator of Z∗p,
then b is referred to as the discrete logarithm of a, denoted by b = logg a mod p [14,39].
Considering the characteristics of image encryption, in our proposed IEA-IF-DLT, we adopt
the discrete logarithmic operation based on the finite multiplicative group Z∗257. In contrast
to the modular addition and XOR operations widely used in existing image encryption
algorithms, the discrete logarithmic operation is a sort of non-linear operation. Therefore,
applying the discrete logarithmic operation to image encryption can make the mathemat-
ical relationship between plain pixels and cipher pixels more complicated, thus making
common differential attack strategies ineffective. Since the solution of discrete logarithms
is a complex mathematical problem, directly performing discrete logarithmic operations in
IEA-IF-DLT will undoubtedly reduce its encryption efficiency. To solve this problem, we
calculate all the discrete logarithms of each a ∈ Z∗257 under different generators in advance
and then store them in the 2D matrix Θ of size 128× 256. In this way, the IEA-IF-DLT
can retrieve the results of discrete logarithmic operations immediately by accessing the
matrix Θ, rather than actually doing the complex discrete logarithmic calculations. In the
matrix Θ, the row index represents the generator under which the discrete logarithm is
calculated, and the column index represents the operand whose discrete logarithm needs to
be calculated. The relationship between row indices and generators can be seen in Table 1.

Table 1. First 64 generators of Z∗257.

Row Index (Generator g)

1 (3) 2 (5) 3 (6) 4 (7) 5 (10) 6 (12) 7 (14) 8 (19)
9 (20) 10 (24) 11 (27) 12 (28) 13 (33) 14 (37) 15 (38) 16 (39)
17 (40) 18 (41) 19 (43) 20 (45) 21 (47) 22 (48) 23 (51) 24 (53)
25 (54) 26 (55) 27 (56) 28 (63) 29 (65) 30 (66) 31 (69) 32 (71)
33 (74) 34 (75) 35 (76) 36 (77) 37 (78) 38 (80) 39 (82) 40 (83)
41 (85) 42 (86) 43 (87) 44 (90) 45 (91) 46 (93) 47 (94) 48 (96)
49 (97) 50 (101) 51 (102) 52 (103) 53 (105) 54 (106) 55 (107) 56 (108)

57 (109) 58 (110) 59 (112) 60 (115) 61 (119) 62 (125) 63 (126) 64 (127)

3. Proposed Encryption Algorithm

As stated in Section 1, to address some shortcomings in some current image encryption
algorithms, we suggest an image encryption algorithm called IEA-IF-DLT. The essential
components of our suggested IEA-IF-DLT are following encryption steps: determination of
three dimensions, generation of chaotic sequences, plane-level permutation, plane-level
image filtering, 3D chaotic image superposition, discrete logarithmic transformation, and
random pixel swapping, as illustrated in Figure 2. To enhance security and maximize
the efficiency advantage of plane-level operations, among them, plane-level permutation,
plane-level image filtering, and 3D chaotic image superposition are iterated for three rounds
in different forms. Below, we go into depth about each encryption step.
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Figure 2. Flowchat of IEA-IF-DLT.

3.1. Determination of Three Dimensions

To begin, we need to change the representation of the plain image P from 2D to 3D.
For the 2D image P of size M× N, the following steps are devised to transform it into the
intermediate cipher image C(1) in 3D form.

• Step 1: Determine the total number t(P) of the pixels in P. If t(P) is not a power of 2 or
less than 8, fill P with the pixels whose values are zeros, until t(P) is a power of 2 and
not less than 8. Otherwise, go to the next step.

• Step 2: According to t(P), calculate

φ =
⌊
(log2 t(P))/3

⌋
, (4)

where b•c represents the round down operation on an operand.
• Step 3: Determine the size d(1) of the first dimension, let d(1) = 2φ.
• Step 4: For the size d(2) of the second dimension, let d(2) = d(1).
• Step 5: According to t(P), d(1), and d(2), calculate the size

d(3) = 2log2 t(P)−d(1)−d(2) (5)

of the third dimension.
• Step 6: Reshape P into C(1) with the size of d(1) × d(2) × d(3).

Following the steps above, for a test image of size 256× 256, it will be transformed
into the 3D form of size 32 × 32 × 64. Similarly, two other common sizes, 512 × 512
and 1024× 1024, will be transformed into 64× 64× 64 and 64× 64× 256, respectively.
Please keep in mind that, for the sake of clarity and convenience, this paper solely cov-
ers the case where the plain image is not padded. In other words, it is assumed that
d(1) × d(2) × d(3) = M× N is always true.

3.2. Generation of Chaotic Sequences

As described in Section 2.1, our proposed IEA-IF-DLT leverages chaotic sequences to
encrypt the plain image, and these chaotic sequences are generated by the hyper-chaotic
Chen system and 2D-LTMM. Firstly, according to Equations (18) and (19), the secret key K
is converted into the initial state values and control parameters of the two chaotic system.
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Then, together with the other fixed system control parameters, they are input into the
chaotic systems to generate the chaotic sequence S(1) and S(2). More specifically, S(1) is
generated by the 2D-LTMM, and its length is

L(1) = H(1) + σ(d), (6)

where H(1) is defined in Section 2.2, σ(d) = d(1)+ d(2)+ d(3), and d(1), d(2), d(3) represent the
sizes of the three dimensions, which are also already given in Section 3.1. S(2) is generated
by the hyper-chaotic Chen system, and its length is

L(2) = σ(d) + 4π(d) + 3, (7)

where π(d) = d(1) × d(2) × d(3). Finally, S(1) and S(2) are transformed into ten chaotic
sequences Ŝ(1), Ŝ(2), Ŝ(3), Ŝ(4), Ŝ(5), Ŝ(6), Ŝ(7), Ŝ(8), Ŝ(9), Ŝ(10) used in subsequent encryption
steps as follows. 

Ŝ(1) = S(1)(H(1) + 1 : H(1) + d(1)),

Ŝ(4) = S(1)(H(1) + d(1) + 1 : H(1) + d(1) + d(2)),

Ŝ(7) = S(1)(H(1) + d(1) + d(2) + 1 : H(1) + σ(d)),

(8)


Ŝ(2) =

⌊∣∣∣S(2)(1 : d(3) + 1)
∣∣∣× 1015

⌋
mod 256,

Ŝ(5) =
⌊∣∣∣S(2)(d(3) + π(d) + 2 : d(2) + d(3) + π(d) + 2)

∣∣∣× 1015
⌋

mod 256,

Ŝ(8) =
⌊∣∣∣S(2)(d(2) + d(3) + 2π(d) + 3 : σ(d) + 2π(d) + 3)

∣∣∣× 1015
⌋

mod 256,

(9)


Ŝ(3) =

⌊∣∣∣S(2)(d(3) + 2 : d(3) + π(d) + 1)
∣∣∣× 1015

⌋
mod 256,

Ŝ(6) =
⌊∣∣∣S(2)(d(2) + d(3) + π(d) + 3 : d(2) + d(3) + 2π(d) + 2)

∣∣∣× 1015
⌋

mod 256,

Ŝ(9) =
⌊∣∣∣S(2)(σ(d) + 2π(d) + 4 : σ(d) + 3π(d) + 3)

∣∣∣× 1015
⌋

mod 256,

(10)

Ŝ(10) =
(⌊∣∣∣S(2)(σ(d) + 3π(d) + 4 : σ(d) + 4π(d) + 3)

∣∣∣×1015
⌋

mod π(d)
)
+ 1, (11)

where Ŝ(1), Ŝ(4), Ŝ(7) will be used for the plane-level permutation operations described
in Section 3.3; Ŝ(2), Ŝ(5), Ŝ(8) will be used for the plane-level image filtering operations
described in Section 3.4; Ŝ(3), Ŝ(6), Ŝ(9) will be used to generate the chaotic pixel matrices
described in Section 3.5, and Ŝ(10) will be used for random pixel swapping described in
Section 3.7.

3.3. Plane-Level Permutation

When compared to pixel-by-pixel permutation methods, vector-level permutation
methods can improve encryption efficiency while maintaining the effect of confusion [40,41].
As shown in Figure 2, in order to quickly scramble the pixels in the intermediate cipher
image C(1), our proposed IEA-IF-DLT performs three rounds of plane-level permutation
operations from the x-axis, y-axis, and z-axis directions, respectively. More specifically, in
the plane-level permutation along the x-axis, IEA-IF-DLT first sorts the chaotic sequence Ŝ(1)

to obtain the index vector I(x). Then, according to I(x), the y-z planes of C(1) are scrambled
along the x-axis. Figure 3 presents a simple example of the plane-level permutation along
the x-axis.
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Figure 3. Plane-level permutation of IEA-IF-DLT along x-axis.

In this example, Ŝ(1) = (0.6159, 0.9368, 0.5642, 0.9024, 0.4267, 0.9943, 0.5774, 0.5756) is
first sorted in ascending order to obtain I(x) = (5, 3, 8, 7, 1, 4, 2, 6), then the eight y-z planes
of C(1) are scrambled along the x-axis according to I(x). Obviously, scrambling the y-z
planes can only change the relative positional relationship between pixels in the x-axis
direction, but cannot change the relative positional relationship between pixels in each
y-z plane. Consequently, after scrambling the y-z planes along the x-axis, our proposed
IEA-IF-DLT then similarly scrambles the x-z planes and x-y planes in turn. The difference
is that when scrambling the x-z planes along the y-axis, IEA-IF-DLT uses the sorting result
of Ŝ(4) for permutation, and when scrambling the x-y planes, the sorting result of Ŝ(7)

is utilized.

3.4. Plane-Level Image Filtering

Image filtering is a popular image processing technique that is commonly used in
applications such as image smoothing, noise removal, and edge detection. Because tra-
ditional image filtering is irreversible, it cannot be applied directly to image encryption.
However, with appropriate adjustments, some researchers have applied it to the diffusion
operation of image encryption [42,43]. Different from the classic pixel diffusion method,
image filtering can simultaneously diffuse multiple pixels to the current pixel in the form of
convolution. Figure 4 shows the basic principle of pixel-level image filtering. In this simple
example, it is the pixel p9 that currently needs to be filtered. Pixel-level image filtering
utilizes a filter mask of size 3× 3 to diffuse adjacent pixels p1, p2, p3, p4, p5, p6, p7, p8 to p9,
so as to obtain

c9 =

((
8

∑
i=1

ki×pi

)
+ 1× p9

)
mod 256, (12)

where k1, k2, k3, k4, k5, k6, k7, and k8 are the convolution coefficients of the filter mask. Like-
wise, in the reverse image filtering operation, one can restore c9 to p9 with the filter mask.

p9 =

(
c9 −

8

∑
i=1

ki×pi

)
mod 256. (13)

As can be seen, although the diffusion effect of pixel-level image filtering is relatively
better, it is still a pixel-by-pixel diffusion method. Therefore, to further improve the
efficiency of diffusion process, a novel plane-level image filtering method is devised in our
proposed IEA-IF-DLT. Figure 5 presents an example of plane-level image filtering along the
z-axis. In the demonstrated example, it is the x-y plane P(:, :, 5) that currently needs to be
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filtered. Plane-level image filtering exploits a filter mask of size 1× 5 to diffuse adjacent
planes P(:, :, 1), P(:, :, 2), P(:, :, 3), P(:, :, 4) to P(:, :, 5), so as to obtain

C(:, :, 5) =

((
4

∑
i=1

ki×P(:, :, i)

)
+ 1× P(:, :, 5)

)
mod 256, (14)

where k1, k2, k3, and k4 are the convolution coefficients of the filter mask. Similarly, utilizing the
same filter mask, one can restore C(:, :, 5) to P(:, :, 5) in the reverse image filtering operation.

P(:, :, 5) =

(
C(:, :, 5)−

4

∑
i=1

ki×P(:, :, i)

)
mod 256. (15)

Image
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Figure 4. Basic principle of pixel-level image filtering.
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Figure 5. An example of plane-level image filtering.

Actually, in order to further enhance the sufficiency of pixel diffusion and thus ensure
the plain image sensitivity of IEA-IF-DLT, we arranged three rounds of plane-level image
filtering operations in IEA-IF-DLT, as shown in Figure 2. Among them, the first round
of plane-level image filtering is to filter the x-y planes along the z-axis, and the used
convolution coefficients come from the chaotic sequence Ŝ(2). Next, the second round
of plane-level image filtering is a filtering operation on the x-z planes along the y-axis,
adopting the convolution coefficients from the chaotic sequence Ŝ(5). Finally, the third
round of plane-level image filtering processes the y-z planes along the x-axis, and adopts
the convolution coefficients from the chaotic sequence Ŝ(8).
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3.5. 3D Chaotic Image Superposition

The randomness of chaotic sequences is exceedingly high. By superimposing chaotic
pixels in the form of modular addition or XOR operations, image encryption algorithms
can improve their security by increasing the randomness of cipher images and masking the
statistical properties of plain images. As a result, many recent image encryption algorithms
employ modular addition or XOR operations to superimpose chaotic pixels during the
diffusion phase. However, there are two disadvantages to this methodology. First, pixel-
by-pixel superimposing reduces the efficiency of the encryption process. Second, the
single superimposing method is easily exploited by attackers, which leads to many image
encryption algorithms being broken by them through chosen-plaintext attacks. To address
these shortcomings, as illustrated in Figure 6, our proposed IEA-IF-DLT leverages three
rounds of 3D chaotic image superposition.

Modular addition

or XOR

Chaotic sequence 

32 122 218 ... ... 197

Reshape

3D Intermediate cipher image

generated by plane-level image filtering

3D Intermediate cipher image

generated by 3D chaotic image superposition

3D chaotic image

220 161

Figure 6. Chaotic image superposition of IEA-IF-DLT.

In the first round of 3D chaotic image superposition, the chaotic sequence Ŝ(3) is
reshaped into a 3D chaotic image, which is then superimposed on the intermediate cipher
image created by plane-level image filtering in the manner of modular addition operation.
In the second round of 3D chaotic image superposition, the chaotic sequence Ŝ(6) is utilized
to obtain a 3D chaotic image, and the chaotic image is superimposed on the intermediate
cipher image in the form of XOR operation. The last round of 3D chaotic image superposi-
tion uses the chaotic sequence Ŝ(9) to generate a 3D chaotic image, and then superimposes
it in the form of modular addition operation. Because the three rounds of chaotic image
superposition employ two distinct operations, the mathematical relationship between plain
and cipher pixels can be more convoluted, thereby effectively resisting common plaintext
attack methodologies.

3.6. Discrete Logarithmic Transformation

The discrete logarithm operation is a complex nonlinear operation that differs from
the common modular addition and XOR operations used in some image encryption al-
gorithms. To further improve the security of our proposed IEA-IF-DLT, we perform a
discrete logarithmic transformation on the intermediate cipher image C̃(1) obtained after
three rounds of plane-level permutation, plane-level image filtering, and 3D chaotic image
superposition. The infinite multiplicative group Z∗257, as mentioned in Section 2.3, con-
tains up to 128 generators that can be exploited, and the discrete logarithms of the same
value under different generators are significantly different. Table 2 provides the discrete
logarithms of 9 under various generators. It is clear that when the generator differs, the
discrete logarithm of 9 differs. Consequently, we must first identify the generator of the
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discrete logarithm operation before applying the discrete logarithmic transformation. In
IEA-IF-DLT, the generator g can be determined in the manner described below.

g =
((

H(1) × H(2) + Ŝ(2)(1) + Ŝ(3)(1) + Ŝ(5)(1) + Ŝ(6)(1)
)

mod 128
)
+ 1, (16)

where H(1) and H(2) are parameters linked to the hash value of the plain image, as estab-
lished in Section 2.2, while Ŝ(2), Ŝ(3), Ŝ(5), Ŝ(6) are the chaotic sequences given in Section 3.1.
Since g is associated with both the hash value and the chaotic sequences, this design can
improve not only the plain image sensitivity of IEA-IF-DLT but also its key sensitivity.
Next, we can perform the discrete logarithmic transformation on the intermediate cipher
image C̃(1) of size d(1) × d(2) × d(3) as follows. It is worth noting that Θ is the 2D matrix
of size 128× 256 that contains all the discrete logarithms of each a ∈ Z∗257 under different
generators. The definition and usage of Θ is given in Section 2.3.

• Step 1: Initialize the 3D intermediate cipher image C̃(2) of size d(1)× d(2)× d(3), which
is used to save the transformation result.

• Step 2: Set the index i(x) of the first dimension to 1.
• Step 3: Set the index i(y) of the second dimension to 1.
• Step 4: Let C̃(2)(i(x), i(y), :) = Θ(g, C̃(1)(i(x), i(y), :) + 1))− 1.
• Step 5: For i(y) = 2 to d(2), repeat Step 4.
• Step 6: For i(x) = 2 to d(1), repeat Step 3 to Step 5.

Table 2. Discrete logarithms of 9 ∈ Z∗257 under different generators.

Generator g (Discrete Logarithm)

3 (2) 5 (14) 6 (162) 7 (250) 10(174) 12(66) 14 (154) 19(170)
20 (78) 24 (226) 27 (86) 28 (58) 33 (26) 37 (166) 38 (74) 39 (134)

40 (238) 41 (54) 43 (94) 45 (18) 47 (42) 48 (130) 51 (146 53 (210
54 (246) 55 (102) 56 (218) 63 (206) 65 (194) 66 (186) 69 (106) 71 (22)
74 (70) 75 (30) 76 (234) 77 (82) 78 (38) 80 (142) 82 (214) 83 (222)

85 (158) 86 (254) 87 (62) 90 (178) 91 (126) 93 (118) 94 (202) 96 (34)
97 (46) 101 (198) 102 (50) 103 (242) 105 (138) 106 (114) 107 (190) 108 (150)

109 (230) 110 (6) 112 (122) 115 (182) 119 (10) 125 (90) 126 (110) 127 (98)

3.7. Random Pixel Swapping

According to prior studies on cryptanalysis, the majority of chosen-plaintext attack al-
gorithms initiate the attack by using the special plain images of single pixel values [31,44,45].
Because encryption steps that alter pixel positions, such as permutation operations, are inef-
fective for such special plain images, attackers can effectively isolate the diffusion operation,
thereby establishing the groundwork for further differential analysis [30,46]. Therefore, to
avoid this, an encryption step called random pixel swapping is added to the end of our
proposed IEA-IF-DLT. In random pixel swapping, the pixels of the intermediate cipher
image generated by the discrete logarithmetic transform are randomly repositioned once
more. In this way, the attackers’ strategy of conducting differential attacks by exploiting
the special plain images of single pixel values is rendered ineffective.

One straightforward instance of random pixel swapping is shown in Figure 7. In this
example, the size of the 3D intermediate cipher image that requires random pixel swapping
is 2× 2× 4. Firstly, the 3D image is converted into a 2D intermediate cipher image of
size 4× 4. Next, the 1D chaotic sequence of 1× 16 is also converted into a 2D chaotic
matrix of size 4× 4, which is exactly the same size as the intermediate cipher image to
be processed. In a one-to-one correspondence, each chaotic matrix element controls the
swapping operation of the intermediate cipher pixel with the same coordinate. That is, the
first chaotic matrix element is in charge of the first intermediate cipher pixel, the second
chaotic matrix element is in charge of the second intermediate cipher pixel, and so on. For
instance, the intermediate cipher pixel with a pixel value of 196 at (1,1) is controlled by the
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chaotic matrix element at (1,1) with a value of 14. Finally, each chaotic matrix element is
turned into a 2D coordinate, and the corresponding intermediate cipher pixel is swapped
based on this coordinate. Since the elements of the chaotic matrix are random, the generated
2D coordinates are also random. In this example, the first chaotic matrix element is turned
into the coordinate (4,2), hence the first intermediate cipher pixel is swapped with the pixel
at (4,2) with a value of 111. Likewise, the second chaotic matrix element is turned into the
coordinate (3,4), and the second intermediate cipher pixel is swapped with the pixel with a
value of 14 according to this coordinate.

3D Intermediate cipher 

image of size 2×2×4

Reshape

14

152196

111

14

152196

111

2D Intermediate cipher 

image of size 4×4

14 1214 12

(4,2) (3,4)

111 14

152

196

111 14

152

196

After random

pixel swapping

1D Chaotic

sequence of size 1×16

14 12 ... ...14 12 ... ...
Reshape

2D Final cipher

image of size 4×4

2D Chaotic 

matrix of size 4×4

Figure 7. Random Pixel Swapping of IEA-IF-DLT.

More specifically, in our proposed IEA-IF-DLT, the random pixel swapping is per-
formed as follows.

• Step 1: The 3D intermediate cipher image C̃(2) of size d(1) × d(2) × d(3) is reshaped
into the 2D final cipher image C of size M× N.

• Step 2: The 1D chaotic sequence Ŝ(10) of length 1× (d(1) × d(2) × d(3)) is reshaped
into the 2D chaotic matrix Φ of size M× N.

• Step 3: Convert Φ into the random coordinate matrices Υ(r) and Υ(c) as follows. Υ(c) =
(
(Ŝ(10) − 1) mod N

)
+ 1,

Υ(r) =
⌊
(Ŝ(10) − Υ(c))/N

⌋
+ 1,

(17)

where Υ(r) holds the row numbers of the coordinates, and Υ(c) holds the column
numbers of the coordinates.

• Step 4: Set the row index i(r) to 1.
• Step 5: Set the column index i(c) to 1.
• Step 6: Swap C(i(r), i(c)) with C(Υ(r)(i(r), i(c)), Υ(c)(i(r), i(c))).
• Step 7: For i(c) = 2 to N, repeat Step 6.
• Step 8: For i(r) = 2 to M, repeat Step 5 to Step 7.

Please note that, since our proposed IEA-IF-DLT is an image encryption algorithm
with a symmetric structure, its decryption process is the inverse of the encryption process.
For the sake of brevity, the description of decryption procedure is not repeated in this study.
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3.8. Discussion

Because of the good randomness of chaotic sequences, most image encryption algo-
rithms can ensure that the cipher images have good randomness. However, the main
reason why many image encryption algorithms are cracked is that they cannot effectively
resist differential attacks, especially chosen-plaintext attacks. Therefore, we have designed
the following measures to ensure the security of our proposed IEA-IF-DLT.

(1) The hash value of the plain image is used to truncate the chaotic sequences and
determine the generator of the finite multiplicative group, which makes the equivalent
key stream depend not only on the secret key but also on the plain image, thus helping
to resist plaintext attacks.

(2) Three rounds of plane-level permutation, plane-level image filtering, and 3D chaotic
image superposition can realize good confusion and diffusion properties.

(3) IEA-IF-DLT alternately uses modular addition and XOR operations to superimpose
chaotic images, and the mathematical relationship between plain and cipher pixels
becomes more complex, which helps to resist common plaintext attacks.

(4) The discrete logarithmic operation is a complex nonlinear operation, which is different
from the modular addition and XOR operations commonly used. Therefore, the
discrete logarithmic transformation of the intermediate cipher image can enhance the
ability of IEA-IF-DLT to resist plaintext attacks.

(5) For the attackers’ strategy of exploiting the special plain images of single pixel values
to conduct differential attacks, the random pixel swapping added at the end of IEA-
IF-DLT can effectively protect the previous encryption steps from being simplified
or isolated.

As can be seen from the above measures, we do not rely solely on a single encryption
step to ensure the security of IEA-IF-DLT. Our design idea is to ensure the security of
IEA-IF-DLT through the targeted design of all encryption steps. To improve encryption
efficiency, we adopt an S-box-like strategy to implement complex discrete logarithmic
operations while employing a relatively small multiplicative group. However, it is worth
noting that the purpose of introducing the discrete logarithmic transformation is not just to
achieve the substitute effect it exhibits, but to ensure that there is an extremely complex
mathematical relationship between plain and cipher pixels, together with other encryption
steps, so as to effectively resist differential attacks. Next, in order to verify the advantages of
IEA-IF-DLT in terms of security and efficiency, we conducted a large number of simulation
tests and related analyses, and compared the test results with other advanced algorithms.
As shown in Section 4, IEA-IF-DLT shows superiority in many security indicators, including
information entropy.

4. Simulation Tests and Analyses

In order to comprehensively evaluate the performance and security of IEA-IF-DLT, we
have completed a large number of simulation tests and related analyses, which include the
visual effect test, key space analysis, key sensitivity analysis, differential attack analysis,
histogram analysis, correlation analysis, information entropy analysis, robustness analysis,
and efficiency analysis. These simulation tests and analyses were performed with the
following hardware and software configurations: Intel(R) Xeon(R) CPU E3-1231 v3, 8 GB
RAM, Window 7 operating system, and MATLAB R2017a (9.2.0538062). Besides, all test
images are from The USC-SIPI Image Database (http://sipi.usc.edu/database/, accessed
on 20 June 2022).

4.1. Visual Effect Test

A qualified image encryption algorithm must be able to transform plain images of
different styles into unrecognizable random-like images. Without the correct secret key,
no one can get any useful information from cipher images. However, once the correct
secret key is used, one can fully recover the plain images. Figure 8 shows the relevant test
results. After the processing of IEA-IF-DLT, the perceptible visual features of the plain

http://sipi.usc.edu/database/
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images are completely eliminated. Then, with the help of the correct secret key, random-like
cipher images are turned into the plain images again without any loss of visual information.
This means that, in a visual sense, the encryption and decryption effect of IEA-IF-DLT
is qualified.

(a) (b) (c)

Figure 8. Results of visual effect test for IEA-IF-DLT: (a) plain images; (b) cipher images; (c) de-
crypted images.

4.2. Key Space Analysis

Some researchers have pointed out that, to effectively deal with brute force attacks,
the key space of an image encryption algorithm should be at least greater than 2128 [5,32].
Considering the significant improvement in the computing power of computing hard-
ware, we believe that this indicator should be increased to 2256 [14,15]. Furthermore, the
representation of the secret key should also use a more canonical binary sequence form,
otherwise it easily leads to the key sensitivity problem pointed out by Li et al [3,44]. In
our proposed IEA-IF-DLT, the secret key is represented in the form of a binary sequence
with the length of 260 bits, that is, K = b1b1 . . . b260. Specifically, the 260 bits of K will
be converted into the initial state values and control parameters of the adopted chaotic
systems in the following way.

x(1)0 = a1a2 . . . a52 × 2−52,

y(1)0 = a53a54 . . . a104 × 2−52,

r(1)1 = 1 + (a105a106 . . . a156 + a157a158 . . . a208)× 2−52,

r(1)2 = 1 + (a157a158 . . . a208 + a209a210 . . . a260)× 2−52,

(18)
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x(2)0 = a1a2 . . . a52 × 2−52,

y(2)0 = a53a54 . . . a104 × 2−52,

z(2)0 = a105a106 . . . a156 × 2−52,

w(2)
0 = a157a158 . . . a208 × 2−52,

λ(2) = −0.3 + a209a210 . . . a260 × 2−52,

(19)

where (x(1)0 , y(1)0 ), and (r(1)1 , r(2)1 ) are the initial state values and control parameters of 2D-

LTMM; (x(2)0 , y(2)0 , z(2)0 , w(2)
0 ) and λ(2) are the initial state values and control parameter of

the hyper-chaotic Chen system. According to Equations (18) and (19), one can derive the
key space of IEA-IF-DLT, S = 252 × 252 × 252 × 252 × 252 × 252 = 2260. Thus, IEA-IF-DLT
has a large enough key space, and can effectively resist brute force attacks.

4.3. Key Sensitivity Analysis

For the design of a strong encryption algorithm, Claude Shannon suggests the concepts
of confusion and diffusion. When it comes to image encryption, the confusion mentioned is
to make the statistical relationship between the cipher image and the secret key as complex
as possible, so that even if some statistical properties of the cipher image are obtained, at-
tackers still cannot infer the secret key. In other words, a secure image encryption algorithm
must have extremely high key sensitivity—even if the secret key changes only minimally,
the resulting cipher image must change drastically. To evaluate the key sensitivity of our
proposed IEA-IF-DLT, we randomly generated a secret key

K(1) = D1801F11BAB61949DF8B2B33FA03B582
EBA65B435F7433E2B08AA33F4A59AC5E6.

Then, we inverted the least significant bit of K(1), resulting in the secret key

K(2) = D1801F11BAB61949DF8B2B33FA03B582
EBA65B435F7433E2B08AA33F4A59AC5E7

that differs by only one bit. With these two secret keys with only one minimal difference,
we obtained the key sensitivity test results for the encryption process, as shown in Figure 9.
In the first row of the figure, the first image is the plain image 5.2.09, the second image
is the cipher image obtained by encrypting 5.2.09 with K(1), the third image is the cipher
image obtained by encrypting 5.2.09 with K(2), and the last image is the difference image
of the first two cipher images; the pixel value distribution histograms of the images in the
first row are shown in the second row. As one can see, using our proposed IEA-IF-DLT to
encrypt the same plain image, even a small change in the secret key of only one bit will
completely change the cipher image. Therefore, in the encryption process, IEA-IF-DLT has
extremely high key sensitivity.

Similarly, we also tested the key sensitivity of IEA-IF-DLT during encryption, as shown
in Figure 10. It can be seen that for the same cipher image, the plain image can be fully
recovered if decrypted with the correct secret key. In contrast, the decrypted image looks
like a noisy image even if the secret key changes only slightly. Therefore, in the decryption
process, IEA-IF-DLT also has extremely high key sensitivity.
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Figure 9. Key sensitivity test results for the encryption process: (a) 5.2.09; (b) cipher image C̃(1)

obtained with K(1); (c) cipher image C̃(2) obtained with K(2); (d) Difference image obtained by
(C̃(2) − C̃(1)) mod 256.
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Figure 10. Key sensitivity test results for the decryption process: (a) cipher image C̃(1) obtained
with K(1); (b) decrypted image D̃(1) obtained with K(1); (c) decrypted image D̃(2) obtained with K(2);
(d) Difference image obtained by (D̃(2) − D̃(1)) mod 256.

4.4. Differential Attack Analysis

In the past few years, many image encryption algorithms have been cracked by
attackers through differential attacks [27–31,44–46]. In order to reconstruct the plain image,
differential attacks typically work by calculating and evaluating the changes in the cipher
image brought on by little alterations to the plain image. Generally, one can exploit
NPCR (number of pixels change rate) and UACI (unified average changing intensity) to
quantitatively detect the ability of an encryption algorithm to resist differential attacks.
These two metrics can be described mathematically as follows.

NPCR(I1, I2) =
M

∑
x=1

N

∑
y=1

D(x, y)
M× N

× 100%, (20)

UACI(I1, I2) =
M

∑
x=1

N

∑
y=1

|I1(x, y)− I2(x, y)|
255×M× N

× 100%, (21)

where I1 and I2 are two images whose difference needs to be evaluated, both have the
size of M × N; D represents the difference between I1 and I1. When I1(x, y) 6= I2(x, y),
D(x, y) = 1, otherwise D(x, y) = 0. To evaluate the ability of our proposed IEA-IF-DLT to
resist differential attacks, we tested it with 20 commonly used test images of different sizes,
as shown in Tables 3 and 4. For each test image, we randomly changed one bit of it, and
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then calculated the NPCR and UACI values between the cipher images before and after the
change. As can be seen from Tables 3 and 4, the NPCR and UACI average of IEA-IF-DLT is
closer to the optimum values of 99.6094% and 33.4635%, and the stability is better when
compared to several recent image encryption algorithms.

Table 3. NPCR test results of IEA-IF-DLT and other image encryption algorithms.

Image Size Filename IEA-IF-DLT Ref. [40] Ref. [47] Ref. [48] Ref. [49] Ref. [50]

256× 256 5.1.09 99.6025 99.6136 99.6658 99.6292 99.6084 99.6140
5.1.10 99.6094 99.6258 99.6475 99.6292 99.6155 99.5880
5.1.11 99.6189 99.5787 99.6674 99.7055 99.6094 99.6033
5.1.12 99.6178 99.6265 99.5941 99.7055 99.5758 99.5651
5.1.13 99.5956 99.6246 99.6445 99.6765 99.6170 99.5789
5.1.14 99.6075 99.6134 99.5975 99.6765 99.6353 99.6765

512× 512 5.2.08 99.6136 99.6251 99.6281 99.6250 99.6151 99.6037
5.2.09 99.5850 99.5703 99.6197 99.6292 99.6094 99.6029
5.2.10 99.6181 99.6031 99.6288 99.6212 99.6166 99.6124
7.1.01 99.6006 99.6124 99.6273 99.6208 99.5872 99.6082
7.1.02 99.6170 99.6116 99.5892 99.6025 99.6109 99.6174

boat.512 99.6178 99.6052 99.6006 99.6181 99.5998 99.6101
elaine.512 99.6128 99.6131 99.6128 99.6076 99.6227 99.6087
gray21.512 99.6052 99.6173 99.6082 99.6029 99.5949 99.6159

numbers.512 99.6231 99.5912 99.6059 99.6081 99.6006 99.9075
ruler.512 99.6069 99.6168 99.6265 99.6033 99.6091 99.6212

1024× 1024 5.3.01 99.6082 99.6124 99.6098 99.6061 99.6035 99.6072
5.3.02 99.6136 99.6231 99.6119 99.6190 99.6117 99.6116
7.2.01 99.6128 99.6278 99.6156 99.6077 99.6013 99.6204

testpat.1k 99.6037 99.6153 99.6124 99.6099 99.6048 99.6091
Average 99.6095 1 99.6115 99.6207 99.6302 99.6075 99.6241
Std. Dev. 0.00913 1 0.01565 0.02185 0.03311 0.01274 0.06993

1 The bolded values emphasize that IEA-IF-DLT has the best performance in terms of average and stability.

Table 4. UACI test results of IEA-IF-DLT and other image encryption algorithms.

Image Size Filename IEA-IF-DLT Ref. [40] Ref. [47] Ref. [48] Ref. [49] Ref. [50]

256× 256 5.1.09 33.4823 33.4698 33.5980 33.3651 33.5253 33.4032
5.1.10 33.4801 33.4425 33.5366 33.5240 33.5115 33.3557
5.1.11 33.5077 33.3855 33.4398 33.5106 33.5174 33.4696
5.1.12 33.4835 33.3982 33.4228 33.4172 33.4202 33.4634
5.1.13 33.5054 33.5099 33.4205 33.5065 33.5019 33.3046
5.1.14 33.4667 33.3925 33.4696 33.4875 33.4939 33.4796

512× 512 5.2.08 33.4357 33.4410 33.4720 33.4973 33.4766 33.4493
5.2.09 33.4687 33.4675 33.4921 33.4778 33.4528 33.5077
5.2.10 33.4323 33.4502 33.4914 33.4327 33.3925 33.4457
7.1.01 33.4514 33.5002 33.5212 33.4154 33.5017 33.4890
7.1.02 33.4628 33.5121 33.4846 33.4698 33.4415 33.4190

boat.512 33.4590 33.5100 33.5097 33.4472 33.4519 33.5414
elaine.512 33.4593 33.4650 33.5477 33.4337 33.5083 33.4791
gray21.512 33.4435 33.4919 33.3930 33.4781 33.4314 33.4331

numbers.512 33.4743 33.4759 33.3993 33.4772 33.3567 33.5396
ruler.512 33.4256 33.4539 33.5129 33.3883 33.3984 33.4363

1024× 1024 5.3.01 33.4611 33.3901 33.4532 33.4683 33.4741 33.4886
5.3.02 33.4760 33.3851 33.4853 33.4428 33.4393 33.4384
7.2.01 33.4289 33.5356 33.4965 33.4688 33.4548 33.4192

testpat.1k 33.4755 33.4425 33.4455 33.4616 33.4447 33.4452
Average 33.4640 1 33.4560 33.4796 33.4585 33.4597 33.4504
Std. Dev. 0.02312 1 0.04684 0.05158 0.04102 0.04602 0.05610

1 The bolded values emphasize that IEA-IF-DLT has the best performance in terms of average and stability.



Mathematics 2022, 10, 2751 18 of 24

4.5. Histogram Analysis

Natural images usually have significant pixel distribution characteristics, and attack-
ers also hope to find similar distribution characteristics from cipher images. In order to
prevent such attacks, an image encryption algorithm must completely eliminate these
characteristics, thus preventing attackers from deducing useful information. Figure 11
presents the histograms of some plain images and the corresponding cipher images gen-
erated by IEA-IF-DLT. These histograms indicate that the pixel distribution of the plain
images is extremely uneven, whereas in the cipher images, these salient features are no
longer present. Therefore, IEA-IF-DLT can effectively resist the attacks based on pixel
distribution characteristics.

(a) (b) (c) (d)

Figure 11. Histograms of plain images and corresponding cipher images: (a) plain images; (b) his-
tograms of plain images; (c) cipher images; (d) histograms of cipher images.

4.6. Correlation Analysis

Adjacent pixels in natural images usually have an extremely high correlation, as shown
in the first row of Figure 12. Therefore, a secure image encryption algorithm should be
able to effectively eliminate this correlation. The second row of Figure 12 presents the
encryption effect of our proposed IEA-IF-DLT. Obviously, the strong correlation of the plain
image in the horizontal, vertical, and diagonal directions has been completely eliminated.

Additionally, we introduced the correlation coefficient (CC) to do a quantitative study,
so as to more precisely assess how well IEA-IF-DLT performs in reducing the correlation
between adjacent pixels. The following is a mathematical definition of CC.

CC =
E((νx − E(νx))× (νy − E(νy)))√

D(νx)× D(νy)
, (22)

where E(ν) and D(ν) represent the expectation and variance of the pixel value ν, and νx,
νy stand for the pixel values of two adjacent pixels in a specific direction. After repeated
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calculations, we found that plain images usually have extremely high CC values (>0.8),
as demonstrated in Table 5. In contrast, in the cipher images generated by our proposed
IEA-IF-DLT, the CC values are extremely low in any direction (<0.005). This further proves
that IEA-IF-DLT does have an excellent performance in removing the strong correlation of
adjacent pixels in natural images.
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Figure 12. Correlation between adjacent pixels in plain and cipher images: (a) 5.1.12 and its cipher
image; (b) horizontal direction; (c) vertical direction; (d) diagonal direction.

Table 5. CCs of different plain and cipher images.

Image Size Image Type Filename
CC

Horizontal Vertical Diagonal

256× 256 Plain image 5.1.09 0.9389 0.9023 0.9035
5.1.10 0.8606 0.9051 0.8217
5.1.11 0.9368 0.9574 0.8921

Cipher image 5.1.09 0.0014 −0.0007 −0.0019
5.1.10 −0.0014 −0.0008 −0.0038
5.1.11 0.0034 0.0026 −0.0046

512× 512 Plain image 5.2.08 0.8912 0.9366 0.8580
5.2.09 0.8606 0.9008 0.8028
5.2.10 0.9279 0.9401 0.8972

Cipher image 5.2.08 0.0019 −0.0025 −0.0051
5.2.09 −0.0005 0.0018 0.0022
5.2.10 0.0010 −0.0017 −0.0039

1024× 1024 Plain image 5.3.01 0.9812 0.9775 0.9669
5.3.02 0.9032 0.9104 0.8590
7.2.01 0.9467 0.9646 0.9448

Cipher image 5.3.01 0.0012 −0.0020 −0.0004
5.3.02 0.0018 0.0004 −0.0004
7.2.01 0.0006 0.0012 0.0009

4.7. Information Entropy Analysis

Information entropy is an indicator that can measure the randomness and distribution
uniformity of a signal well, and is widely used to evaluate the security of an encryption
algorithm. In a mathematical sense, information entropy can be defined as

H(ζ) = −
T

∑
i=1

δ(ζi) log2 δ(ζi), (23)

where ζi represents one of the symbols whose total number is T, and δ(ζi) indicates the
probability of ζi. In general, a higher information entropy value signifies that the signal is
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more random and evenly distributed. For an image whose representation depth is eight
bits, the ideal information entropy value is 8. We conducted the information entropy test
with 20 test images, as shown in Table 6. The information entropy values of the cipher
images generated by IEA-IF-DLT are very close to the ideal information entropy value,
indicating that they have extremely high randomness. In addition, we also compared
the information entropy test results of IEA-IF-DLT with other encryption algorithms, and
Table 7 provides the relevant test results. Compared with eight encryption algorithms, the
cipher images generated by IEA-IF-DLT have the highest information entropy value, thus
demonstrating the excellent performance of IEA-IF-DLT.

Table 6. Information entropy values of commonly used test images and corresponding cipher images
generated by IEA-IF-DLT.

Image Size Image Filename
Information Entropy Value

Plain Image Cipher Image

512× 512 5.2.08 7.2010 7.9992
5.2.09 6.9940 7.9992
5.2.10 5.7056 7.9993
7.1.01 6.0274 7.9994
7.1.02 4.0045 7.9992
7.1.03 5.4957 7.9992
7.1.04 6.1074 7.9993
7.1.05 6.5632 7.9994
7.1.06 6.6953 7.9994
7.1.07 5.9916 7.9993
7.1.08 5.0534 7.9993

boat.512 7.1914 7.9993
elaine.512 7.5060 7.9992
gray21.512 4.3923 7.9994

numbers.512 7.7292 7.9994
ruler.512 0.5000 7.9992

1024× 1024 5.3.01 7.5237 7.9998
5.3.02 6.8303 7.9998
7.2.01 5.6415 7.9998

testpat.1k 4.4077 7.9998

Table 7. Information entropy values of Lena cipher images generated by different image encryp-
tion algorithms.

Encryption Algorithm Information Entropy Value

Ref. [47] 7.9992
Ref. [51] 7.9971
Ref. [25] 7.9980
Ref. [52] 7.9909
Ref. [48] 7.9992
Ref. [40] 7.9992
Ref. [43] 7.9992
Ref. [26] 7.9976

IEA-IF-DLT 7.9993 1

1 The bolded value emphasizes that the cipher image generated by IEA-IF-DLT has the highest information
entropy value.

4.8. Robustness Analysis

During storage or transmission, images may lose data or be contaminated by noise. In
fact, attackers sometimes may also deliberately perform similar attacks on cipher images.
Therefore, a robust image encryption algorithm must be able to resist such attacks effectively.
To test the robustness of IEA-IF-DLT, that is, its ability to withstand data loss or noise
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contamination, we deliberately performed special processing on the House cipher image
generated by IEA-IF-DLT. Firstly, we obtained four cipher images by adding different
intensities of salt and pepper noise (SPN) to the original cipher image. Then, four additional
cipher images were obtained by removing 384× 384 pixels at different areas of the red
plane. Finally, we decrypted these cipher images. The relevant test results are shown in
Figure 13. As one can see, when the cipher image is contaminated by noise, IEA-IF-DLT can
still reconstruct the image with high quality, so that almost all the visual information of the
plain image can be effectively communicated. Not only that, even if up to 384× 384 cipher
pixels are missing in different areas, the decrypted images still maintain a very high level of
visual quality, thus demonstrating the excellent ability of IEA-IF-DLT to resist such attacks.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Test results of IEA-IF-DLT in terms of robustness analysis. The first row presents four
noise contaminated cipher images, and the second row presents the corresponding decrypted images.
The third row shows four cipher images with data loss, and the fourth row shows the corresponding
decrypted images. (a) intensity of SPN is 0.005; (b) intensity of SPN is 0.01; (c) intensity of SPN is
0.015; (d) intensity of SPN is 0.02; (e) data loss at top-left corner; (f) data loss at top-right corner;
(g) data loss at bottom-left corner; (h) data loss at bottom-right corner.

4.9. Efficiency Analysis

As we all know, in addition to security, improving the efficiency of image encryption
is another most important motivation for researchers to design new image encryption
algorithms. Therefore, a well-designed image encryption algorithm should not only ensure
extremely high security, but also have extremely high encryption efficiency. In our proposed
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IEA-IF-DLT, many measures are taken to improve encryption efficiency. Firstly, the way
to use the hash value of the plain image is improved. Thus, it is no longer necessary
to repeatedly generate chaotic sequences. In other words, once the key is determined,
the chaotic sequences can be generated in advance before encryption. Secondly, many
high-dimensional operations are employed. Compared with the pixel-by-pixel processing
method, the one-dimensional vector-level, two-dimensional plane-level, and especially
the three-dimensional operations adopted by IEA-IF-DLT can significantly improve the
encryption efficiency. Table 8 provides the times required by IEA-IF-DLT to encrypt test
images of four common sizes. It can be seen that IEA-IF-DLT outperforms several state-of-
the-art algorithms in terms of encryption efficiency.

Table 8. Times (in seconds) required by different encryption algorithms to encrypt images of four
common sizes.

Image Size 256 × 256 512 × 512 1024 × 1024

Ref. [47] 0.0538 s 0.2338 s 1.1494 s
Ref. [40] 0.0800 s 0.4842 s 2.2848 s
Ref. [49] 0.9261 s 3.8887 s 19.3147 s
Ref. [50] 0.3243 s 1.6113 s 7.7342 s
Ref. [48] 0.0949 s 0.4010 s 1.9857 s
Ref. [25] 0.2224 s 0.9731 s 3.8377 s
Ref. [42] 0.6347 s 2.4913 s 9.9185 s
Ref. [53] 0.9810 s 3.8539 s 15.4565 s

IEA-IF-DLT 0.0324 s 0.1638 s 0.9118 s

5. Conclusions

In this paper, a novel image encryption algorithm called IEA-IF-DLT is proposed.
The proposed algorithm adopts a binary sequence of length 260 bits as the secret key and
uses it to generate the initial state values and parameters of the two employed chaotic
systems. This not only avoids the problem of constantly changing secret keys when
encrypting different images, but also avoids the need to regenerate chaotic sequences. After
transforming the plain image into a 3D image, IEA-IF-DLT utilizes the chaotic sequences
to perform three rounds of plane-level permutation, plane-level image filtering, and 3D
chaotic image superposition. When compared to bit-level or pixel-by-pixel encryption
operations, these encryption operations can significantly improve encryption efficiency.
Next, IEA-IF-DLT performs a discrete logarithmic transformation on the intermediate
cipher image to ensure that it can effectively resist common differential attacks. Finally, for
common plaintext attack strategies, random pixel swapping is incorporated to avoid the
diffusion operation being isolated. To evaluate the performance and security of IEA-IF-DLT,
we systematically tested and analyzed it, and compared the test results with other advanced
algorithms. The test and analysis results show that our proposed algorithm does have
better security performance and it also exhibits significant efficiency advantages. In the
future, we will further optimize this algorithm and apply it to video encryption.
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