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Abstract: In this paper, we study the asymptotic behaviour of the tail probability of the number of
customers in the steady-state M/G/1 retrial queue with Bernoulli schedule, under the assumption
that the service time distribution has a regularly varying tail. Detailed tail asymptotic properties
are obtained for the conditional probability of the number of customers in the (priority) queue
and orbit, respectively, in terms of the recently proposed exhaustive stochastic decomposition ap-
proach. Numerical examples are presented to show the impacts of system parameters on the tail
asymptotic probabilities.
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1. Introduction

As one of the important types of queueing systems, retrial queues have been exten-
sively studied for more than 40 years and hundreds of literature publications have been
produced. Research on retrial queues is still very active due to continuously emerging new
challenges. A general picture of retrial models, together with their applications in various
areas, and basic results on retrial queues can be acquired from books or recent surveys,
such as Falin and Templeton [1], Artajelo and Gómez-Corral [2], Choi and Chang [3], Kim
and Kim [4], Phung-Duc [5], among possible others.

Tail asymptotic analysis of retrial queueing systems, especially asymptotic properties
in tail stationary probabilities for a stable retrial queue, has been a focus of the investigation
in the past 10 years or so, due to two main reasons: first, for most of retrial queues, it is
not expected to have explicit non-transform solutions for their stationary distributions,
and, second, tail asymptotic properties often lead to approximations to performance metrics
and numerical algorithms. Both light-tailed and heavy-tailed properties have been obtained
for a number of retrial queues, including the following incomplete list: Kim, Kim and
Ko [6], Liu and Zhao [7], Kim, Kim and Kim [8], Liu, Wang and Zhao [9], Kim and Kim [10],
Artalejo and Phung-Duc [11], Walraevens, Claeys and Phung-Duc [12], Kim, Kim and
Kim [13], Yamamuro [14], Masuyama [15], Liu, Min and Zhao [16], and Liu and Zhao [17].

In this paper, we consider an M/G/1 retrial queue with a Bernoulli schedule. This
model was first proposed and studied by Choi and Park [18], but tail asymptotic behaviour
was not a focus of the study. This M/G/1 retrial queueing system consists of a (priority)
queue of infinite waiting capacity and an orbit. External customers arrive to this system
according to a Poisson process with rate λ. There is a single server in this system. If the
server is idle upon the arrival of a customer, the customer receives the service immediately
and leaves the system after the completion of the service. Otherwise, if the server is
busy, the arriving customer would join the queue with probability q, becoming a priority
customer waiting for the service according to the first-in-first-out discipline; or the orbit
with probability p = 1− q, becoming a repeated customer who will retry later for receiving
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its service, which is referred to as the Bernoulli scheduling. A priority customer has priority
over a repeated customer for receiving the service. This implies that, upon the completion
of a service, if there is a customer in the queue, the server will serve the customer at the
head of the queue; otherwise, the server becomes idle. Each of the repeated customers in
the orbit independently repeatedly tries to receive service, according to a Poisson process
with the retrial rate µ, until an idle server is found, and then immediately receives its
service. Upon the completion of the service, the customer leaves the system. Service times
for all customers are i.i.d. random variables. By Tβ, we denote the generic service time
whose distribution Fβ(x) with Fβ(0) = 0 is assumed to have a finite mean β1. The Laplace–
Stieltjes transform (LST) of the distribution function Fβ(x) is denoted by β(s). Our interest
in this paper is the tail stationary asymptotic behaviour for this system with the following
assumption on the heavy-tailed service time:

Assumption 1. The service time Tβ has tail probability P{Tβ > t} ∼ t−aL(t) as t→ ∞, where
a > 1, and L(t) is a slowly varying function at ∞ (see Definition A1) .

It should be noted that this assumption is different from that made in [17], where the
low priority customers have the tail probabilities lighter than the high priority customers.
Therefore, the study carried out in this paper is not overlapped with that in [17].

We also mention some literature studies on similar models to that considered in [18],
such as Falin, Artalejo, and Martin [19], in which a model with two independent (primary)
Poisson arrival streams was considered. The priority customers, when blocked upon arrival,
are queued and waiting for service, while the non-priority customers, when blocked, join
the orbit and retry for service later; Li and Yang [20], in which the discrete-time counterpart
to the model studied in this paper, or a Geo/G/1 retrial queue with Bernoulli schedule, was
considered; and Atencia and Moreno [21], in which the M/G/1 retrial queueing system
with Bernoulli schedule has a general retrial time, but only the customer at the head of the
orbit is allowed to retry for service, or retrials with a constant rate. Once again, our focus
and also the method in the study are different from those in the above mentioned studies.

Let λ1 = λq, λ2 = λp, ρ1 = λ1β1, ρ2 = λ2β1 and ρ = ρ1 + ρ2 = λβ1. It follows
from [18] that the system considered in this paper is stable if and only if (iff) ρ < 1, which is
assumed to hold throughout the paper. For obtaining asymptotic properties in various tail
stationary probabilities of this M/G/1 retrial queue with Bernoulli schedule, which is the
focus of this paper, we start with two expressions for probability transformations obtained
in [18]. The method employed in our analysis is the exhaustive stochastic decomposition,
recently proposed in [17]. By assuming a regular varying tail in the service time distribu-
tion, as made in Assumption A, we obtain asymptotic properties for the conditional tail
probabilities of customers:

(1) in the orbit, given that the server is idle (Section 4.1);
(2) in the queue, given that the server is busy (Section 4.2); and
(3) in the orbit, given that the server is busy (Section 4.3).

Numerical curves are presented to demonstrate how system parameters, say the arrival
rate, the expected service time or the retrial rate, impact the tail asymptotic probabilities.

The rest of this paper is organized as follows: preliminary results are provided in
Section 2; exhaustive stochastic decompositions are obtained in Section 3; and the main
results on asymptotic properties for tail probabilities are derived in Section 4; numerical
examples are presented in Section 5; and conclusions are made in the final section.

2. Preliminaries

Assume that the system is in steady state. Let Rque be the number of priority cus-
tomers in the queue, excluding the possible one in the service, let Rorb be the number of
repeated customers in the orbit, and let Iser = 1 or 0, whenever the server is busy or idle,
respectively. Let R0 be a random variable (r.v.) whose distribution coincides with the
conditional distribution of Rorb, given that Iser = 0, and let (R11, R12) be a two-dimensional
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r.v. whose distribution coincides with the conditional distribution of (Rque, Rorb), given that
Iser = 1. Precisely, R0, R11, and R12 are all nonnegative integer-valued r.v.s; and R0 has the

probability generating function (PGF) R0(z2) = E(zR0
2 )

def
= E(zRorb

2 |Iser = 0) and (R11, R12)

has the PGF R1(z1, z2) = E(zR11
1 zR12

2 )
def
= E(z

Rque
1 zRorb

2 |Iser = 1).
Our starting point for tail asymptotic analysis is based on the expressions for R0(z2)

and R1(z1, z2). Following the discussions in [18], let

Ma(z1, z2) =
1
ρ
· 1− β(λ− λ1z1 − λ2z2)

1− pz2 − qz1
, (1)

Mb(z1, z2) = (1− ρ1) ·
h(z2)− z1

β(λ− λ1z1 − λ2z2)− z1
, (2)

Mc(z2) =
1− ρ

1− ρ1
· 1− z2

h(z2)− z2
, (3)

where h(·) is determined uniquely by the following equation:

h(z) = β(λ− λ1h(z)− λ2z). (4)

Since P{Iser = 0} = 1− ρ and P{Iser = 1} = ρ, obtained in [18], we have the following
expressions immediately from Equations (12) and (13) in [18]:

R0(z2) = exp
{
−λ

µ

∫ 1

z2

1− h(u)
h(u)− u

du
}

, (5)

R1(z1, z2) = Ma(z1, z2) ·Mb(z1, z2) ·Mc(z2) · R0(z2). (6)

Next, we provide a probabilistic interpretation for h(z) in (4). Let Tα be the busy period
of the standard M/G/1 queue (without retrial) with arrival rate λ1 and service time Tβ.
By Fα(x), we denote the probability distribution function of Tα, and by α(s), the LST of
Fα(x). The following are classic results on the busy period of this standard M/G/1 queue
(referring, e.g., to [22]):

α(s) = β(s + λ1 − λ1α(s)), (7)

α1
def
= E(Tα) = β1/(1− ρ1). (8)

Throughout this paper, we use the notation Nb(t) to represent the number of Poisson
arrivals, with rate b, within the time interval (0, t], and Nλ2(Tα) to represent the number of
arrivals of a Poisson process, with arrival rate λ2, within the independent random time Tα.
The PGF of Nλ2(Tα) is easily obtained as follows:

E(zNλ2
(Tα)) =

∫ ∞

0

∞

∑
n=0

zn (λ2x)n

n!
e−λ2xdFα(x) = α(λ2 − λ2z). (9)

It follows from (7) that

α(λ2 − λ2z) = β(λ− λ1α(λ2 − λ2z)− λ2z). (10)

By comparing (4) and (10), and noticing the uniqueness of h(z), we immediately have

h(z) = α(λ2 − λ2z) = E(zNλ2
(Tα)). (11)

Remark 1. h(z) is the PGF of the number of arrivals of a Poisson process with arrival rate λ2
within an independent random time Tα, where Tα has the same probability distribution as that for
the busy period of the standard M/G/1 queue with arrival rate λ1 and service time Tβ.
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Since Tα is the busy period of the standard M/G/1 queue with arrival rate λ1 and the
service time Tβ, its asymptotic tail probability is regularly varying according to de Meyer
and Teugels [22] (see Lemma A1 in Appendix A).

3. Exhaustive Stochastic Decompositions

In this section, we verify that R0(z2) can be viewed as the PGF of a r.v., which is written
in a form of stochastic decompositions. The result will be used for the asymptotic analysis
in later sections.

Based on the definition of R0 given earlier, this is a r.v. whose distribution coincides
with the conditional distribution of Rorb, given that Iser = 0. In this section, we provide
a new probabilistic interpretation for R0, which is useful for our tail asymptotic analysis.

Substituting (11) into (5), we have

R0(z2) = exp
{
−λ

µ

∫ 1

z2

1− α(λ2 − λ2u)
α(λ2 − λ2u)− u

du
}

. (12)

In order to rewrite (12), we let

ψ =
ρ

µ(1− ρ)
, (13)

κ(s) =
1− ρ

β1
· 1− α(s)

s− λ2 + λ2α(s)
, (14)

ω(s) = 1−
∫ s

0
κ(u)du, (15)

τ(s) = exp{ψω(s)− ψ}. (16)

From (12)–(16),

R0(z2) = exp
{
−λ

µ

∫ λ2−λ2z2

0

1− α(s)
s− λ2 + λ2α(s)

ds
}

= exp
{
−ψ

∫ λ2−λ2z2

0
κ(u)du

}
= τ(λ2 − λ2z2). (17)

In the following three remarks, we assert that κ(s), ω(s) and τ(s) are the LSTs of three
probability distribution functions on [0, ∞), respectively. For the first assertion, let F(e)

α (x)
be the equilibrium distribution of Fα(x), which is defined as F(e)

α (x) = α−1
1

∫ x
0 (1− Fα(t))dt,

where α1 = E(Tα) is given in (8). The LST of F(e)
α (x) can be written as α(e)(s) = (1−

α(s))/(α1s). From (14), we have

κ(s) =
(1− ϑ)α(e)(s)
1− ϑα(e)(s)

=
∞

∑
k=1

(1− ϑ)ϑk−1(α(e)(s))k, (18)

where
ϑ = λ2α1 = ρ2/(1− ρ1) < 1. (19)

Remark 2. Immediately from (18), κ(s) can be viewed as the LST of the distribution function of a r.v.

Tκ , whose distribution function is denoted by Fκ(x). More precisely, Tκ
d
= T(e)

α,1 + T(e)
α,2 + · · ·+ T(e)

α,J ,

where T(e)
α,j , j ≥ 1 are i.i.d. r.v.s, each with the distribution F(e)

α (x), P(J = j) = (1− ϑ)ϑj−1,

j ≥ 1, and J is independent of T(e)
α,j for j ≥ 1. In the above expression, and also later, the notation

“ d
=” stands for equality in probability distribution.
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For the second assertion, we will use Theorem 1 in Feller [23] (see p. 439): A function
ϕ(s) is the LST of a probability distribution function iff ϕ(0) = 1 and ϕ(s) is completely
monotone, i.e., ϕ(s) possesses derivatives ϕ(n)(s) of all orders such that (−1)n ϕ(n)(s) ≥ 0
for s > 0.

Remark 3. Immediately from (15), ω(0) = 1 and (−1)nω(n)(s) = (−1)n−1κ(n−1)(s) ≥ 0 for
s > 0, which implies that ω(s) is the LST of the probability distribution function of a r.v. Tω , whose
distribution is denoted by Fω(x).

For the third assertion, we write (16) as

τ(s) =
∞

∑
k=0

ψk

k!
e−ψ(ω(s))k. (20)

Remark 4. Immediately from (20), τ(s) can be viewed as the LST of the distribution function of

a r.v. Tτ , whose distribution function is denoted by Fτ(x). More precisely, Tτ
d
= ∑J

j=0 Tω,j, where

Tω,j, j ≥ 1, are i.i.d. r.v.s each with the distribution Fω(x), and P(J = j) = ψj

j! e−ψ, j ≥ 0, where J
is independent of Tω,j for j ≥ 0.

The following remark provides a detailed interpretation on (17).

Remark 5. R0 can be regarded as the number of Poisson arrivals with rate λ2 within an independent

random time Tτ , i.e., R0
d
= Nλ2(Tτ).

4. Tail Asymptotics

In this section, we will study the asymptotic behaviour for the tail probabilities
P{Rorb > j|Iser = 0}, P{Rque > j|Iser = 1} and P{Rorb > j|Iser = 1}, as j→ ∞, respectively.

4.1. Asymptotic Tail Probability for P{Rorb > j|Iser = 0}
To study the asymptotic behaviour for the tail probability P{Rorb > j|Iser = 0} ≡

P{R0 > j}, let us first study the asymptotic properties of the tail probabilities for Tκ , Tω

and Tτ , respectively.
By Lemma A1, we know that P{Tα > t} ∼ (1− ρ1)

−a−1t−aL(t) as t→ ∞, where the
r.v. Tα is the busy period defined in Section 2. Applying Karamata’s theorem (e.g., p. 28
in [24]), we have

∫ ∞
t (1− Fα(x))dx ∼ (a− 1)−1(1− ρ1)

−a−1t−a+1L(t), which implies that

1− F(e)
α (t) ∼ ((a − 1)α1)

−1(1− ρ1)
−a−1t−a+1L(t), t → ∞. By Remark 2 and applying

Lemma A2, we obtain the following tail asymptotic property for Tκ .

Lemma 1.

P{Tκ > t} ∼ cκ · t−a+1L(t), t→ ∞, (21)

where

cκ =
1

α1(1− ϑ)(a− 1)(1− ρ1)a+1 =
1

β1(1− ρ)(a− 1)(1− ρ1)a−1 . (22)

In the following lemma, we present the asymptotic tail probability of Tω.

Lemma 2.
P{Tω > t} ∼ (1− 1/a)cκ · t−aL(t), t→ ∞. (23)
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Proof. Recall that Tω has the distribution function Fω(x), defined in terms of its LST ω(s)
in (15), which is determined by the LST κ(s) of the distribution function of Tκ . We divide
the proof into two parts, depending on whether a is an integer or not.

Case 1: Non-integer a > 1.

Suppose that m < a < m + 1, m ∈ {1, 2, . . .}. Since P{Tκ > t} ∼ cκ · t−a+1L(t), we
have its moments κm−1 < ∞ and κm = ∞. Define κm−1(s) in a manner similar to that
in (A3). Then, κ(s) = ∑m−1

k=0
κk
k! (−s)k + (−1)mκm−1(s). By Lemma A5, we know that

κm−1(s) ∼
[
Γ(a−m)Γ(m + 1− a)/Γ(a− 1)

]
· cκsa−1L(1/s), s ↓ 0. (24)

From (15), there are constants {vk; k = 0, 1, 2, . . . , m} satisfying ω(s) = ∑m
k=0 vk(−s)k +

(−1)m+1
∫ s

0 κm−1(u)du. Define ωm(s) in a manner similar to that in (A3). Then,

ωm(s) =
∫ s

0
κm−1(u)du ∼

[
Γ(a−m)Γ(m + 1− a)/Γ(a)

]
· a− 1

a
cκsaL(1/s), s ↓ 0, (25)

where we have used (24) and Karamata’s theorem (p. 28 in [24]). Applying Lemma A5, we
complete the proof of Lemma 2 for non-integer a > 1.

Case 2: Integer a > 1.

Suppose that a = m ∈ {2, 3, . . .}. Since P{Tκ > t} ∼ cκ · t−m+1L(t) implies that Tκ has
its moment κm−2 < ∞, we can define κm−2(s) and κ̂m−2(s) in a manner similar to that in
(A3) and (A4), respectively. Then, κ(s) = ∑m−2

k=0
κk
k! (−s)k + (−1)m−1κm−2(s). By Lemma A6,

we obtain

κ̂m−2(xu)− κ̂m−2(u) ∼ −(log x)cκ L(1/u)/(m− 2)! as u ↓ 0. (26)

From (15), there exist constants {vk; k = 0, 1, 2, . . . , m − 1} satisfying ω(s) =

∑m−1
k=0 vk(−s)k + (−1)m ∫ s

0 κm−2(u)du. Define ω̂m−1(s) in a manner similar to that in (A4).
Then, we have

ω̂m−1(s) =
1

sm

∫ s

0
um−1κ̂m−2(u)du, (27)

which immediately gives us ω̂m−1(xs) = 1
sm

∫ s
0 um−1κ̂m−2(xu)du. It follows that

ω̂m−1(xs)− ω̂m−1(s) =
1

sm

∫ s

0
um−1[κ̂m−2(xu)− κ̂m−2(u)

]
du

∼ −m− 1
m

cκ log x
L(1/s)
(m− 1)!

as s ↓ 0, (28)

where we have used (26) and Karamata’s theorem (p. 28 in [24]). By applying Lemma A6,
we complete the proof of Lemma 2 for integer a = m ∈ {2, 3, . . .}.

For the tail asymptotic property of Tτ , recall Remark 4, with Tτ
d
= ∑J

j=0 Tω,j, where J
has a Poisson distribution with parameter ψ, Tω,j, j ≥ 1, are i.i.d. r.v.s with the distribution
function Fω(x), and J is independent of Tω,j, j ≥ 1. Then, by Lemmas A2 and 2, we have
the following property.

Lemma 3.

P{Tτ > t} ∼ ψ · P{Tω > t} ∼ (1− 1/a)cκψ · t−aL(t), t→ ∞. (29)

Now, the asymptotic tail probability for P{Rorb > j|Iser = 0} can be obtained based
on Lemma 3. From Remark 5, we know that R0 = Nλ2(Tτ). Lemma A3 leads to:

P{Rorb > j|Iser = 0} = P{R0 > j} ∼ P{Tτ > j/λ2} ∼
λλa

2
aµ(1− ρ)2(1− ρ1)a−1 · j

−aL(j), j→ ∞. (30)
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4.2. Asymptotic Tail Probability for P{Rque > j|Iser = 1}
In this subsection, we will study the asymptotic behaviour of the tail probability

P{Rque > j|Iser = 1} ≡ P{R11 > j} as j→ ∞. For this purpose, we examine the generating
function E(zR11

1 ) of R11. Note that E(zR11
1 ) = R1(z1, 1). Taking z2 → 1 in (3), (5) and (6)

and using the fact that d
dz h(z)

∣∣
z=1 = λ2α1 = ρ2/(1− ρ1), we immediately have Mc(1) = 1,

R0(1) = 1 and
E(zR11

1 ) = Ma(z1, 1)Mb(z1, 1). (31)

It follows from (1) and (2) that

Ma(z1, 1) =
1
ρ1
· 1− β(λ1 − λ1z1)

1− z1
, (32)

Mb(z1, 1) =
(1− ρ1)(1− z1)

β(λ1 − λ1z1)− z1
. (33)

Denote F(e)
β (x) to be the equilibrium distribution of Fβ(x), that is, F(e)

β (x) = β−1
1

∫ x
0 (1−

Fβ(t))dt. The LST of F(e)
β (x) can be written as β(e)(s) = (1− β(s))/(β1s). We now have

Ma(z1, 1) = β(e)(λ1 − λ1z1), (34)

Mb(z1, 1) =
1− ρ1

1− ρ1β(e)(λ1 − λ1z1)
=

∞

∑
n=0

(1− ρ1)ρ
n
1

(
β(e)(λ1 − λ1z1)

)n
. (35)

Substituting (34) and (35) into (31), we have

E(zR11
1 ) = ξ(λ1 − λ1z1), (36)

where

ξ(s) =
∞

∑
n=1

(1− ρ1)ρ
n−1
1 (β(e)(s))n. (37)

Remark 6. Immediately from (37), ξ(s) can be viewed as the LST of the distribution function of the

r.v. Tξ
d
= T(e)

β,1 + T(e)
β,2 + · · ·+ T(e)

β,J , where T(e)
β,j , j ≥ 1, are i.i.d. r.v.s. with a common distribution

F(e)
β (x), P(J = j) = (1− ρ1)ρ

j−1
1 , j ≥ 1, and J is independent of T(e)

β,j , j ≥ 1.

Under Assumption A, by Karamata’s theorem (e.g., p. 28 in [24]), we have
∫ ∞

t (1−
Fβ(x))dx ∼ (a− 1)−1t−a+1L(t), which implies that 1− F(e)

β (t) ∼ ((a− 1)β1)
−1t−a+1L(t),

t→ ∞. By Remark 6 and applying Lemma A2, we have

P{Tξ > t} ∼ 1
(1− ρ1)(a− 1)β1

· t−a+1L(t), t→ ∞. (38)

Remark 7. With (36), one can interpret R11 as the number of Poisson arrivals with rate λ1 within

the independent random time Tξ , i.e., R11
d
= Nλ1(Tξ).

By Remark 7 and applying Lemma A3, we have

P{Rque > j|Iser = 1} = P{R11 > j} ∼ P{Tξ > j/λ1} ∼
λa−1

1
(1− ρ1)(a− 1)β1

· j−a+1L(j), j→ ∞. (39)

4.3. Asymptotic Tail Probability for P{Rorb > j|Iser = 1}
In this subsection, we will study the asymptotic behaviour of the tail probability

P{Rorb > j|Iser = 1} ≡ P{R12 > j} as j→ ∞. By (6),
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E(zR12
2 ) = R1(1, z2) = Ma(1, z2) ·Mb(1, z2) ·Mc(z2) · R0(z2). (40)

Taking z1 → 1 in (1)–(3), we have

Ma(1, z2) ·Mb(1, z2) ·Mc(z2) =
1− ρ

ρ2
· 1− h(z2)

h(z2)− z2
. (41)

=
1− ρ

ρ2
· 1− α(λ2 − λ2z2)

α(λ2 − λ2z2)− z2
( by (11))

= κ(λ2 − λ2z2), (42)

where the last equality follows from (14).
Substituting (42) and (17) into (40), we have

E(zR12
2 ) = κ(λ2 − λ2z2) · τ(λ2 − λ2z2). (43)

Remark 8. With (43), one can interpret R12 as the number of Poisson arrivals with rate λ2 within

an independent random time Tκ + Tτ , i.e., R12
d
= Nλ2(Tκ + Tτ), where Tκ and Tτ are assumed to

be independent.

By (21) and (29), and applying Lemma A4, we have

P{Tκ + Tτ > t} ∼ P{Tκ > t} ∼ cκ · t−a+1L(t), t→ ∞. (44)

Applying Remark 8 and Lemma A3, we have

P{Rorb > j|Iser = 1} =P{R12 > j} ∼ P{Tκ + Tτ > j/λ2}

∼
λa−1

2
β1(1− ρ)(a− 1)(1− ρ1)a−1 · j

−a+1L(j), j→ ∞. (45)

5. Numerical Examples

In this section, using numerical examples, we demonstrate how system parameters,
like the arrival, service and retrial rates, impact the tail decay rate. According to the tail
asymptotic expressions obtained in (30), (39) and (45), it is expected that the tail becomes
fatter (or the tail probability becomes bigger) as the arrival rate (λ) increases while all other
parameter values remain the same for all three types of conditional probabilities. Similar
results are expected as the service rate (β−1

1 ) or the retrial rate (µ) decreases, respectively.
The above claim has been supported by our extensive numerical tests using various slowly
varying functions and a broad range of parameter values. For a quantitative pictorial
example, we take the conditional tail probability P{Rorb > j|Iser = 0} as expressed in (30).

Assume that the service time Tβ follows a Pareto distribution with shape parameter
a > 1 and scale parameter b > 0, i.e.,

Fβ(x) = 1− (1 + x/b)−a, for x ≥ 0, (46)

for convenience, since, in this case, we can easily compute the mean service time, given as
β1 = E(Tβ) = b/(a− 1) and the traffic intensity, given as ρ = λβ1 = λb/(a− 1).

We provide three figures to demonstrate the quantitative changes of the tail probability
as a function of the arrival rate λ, the expected service time β1, and the retrial rate µ,
respectively. In Figure 1, set a = 3/2, b = 1/5, q = 1/2 (Bernoulli probability of joining the
queue), and µ = 1. Then, the tail asymptotic probability is a function of the arrival rate λ.
Four curves in different colours are given to show the changes as λ changes, corresponding
to λ = 3/4, 1, 5/4, 3/2, respectively.
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Figure 1. Impact of the arrival rate λ on the asymptotic tail P{Rorb > j|Iser = 0}.

In Figure 2, we set λ = 1.2, q = 1/2 and µ = 1. Then, the tail asymptotic probability is
a function of the expected service time β1. By further assuming b = 1/5, the tail asymptotic
probability is simply a function of a (see Assumption 1). In order to see the impact of the
service time distribution Fβ(x) on the asymptotic tail P{Rorb > j|Iser = 0}, four curves
in different colours are given, corresponding to β1 = 1/2, 2/5, 1/3, 1/4, respectively (or,
correspondingly, a = 1 + b/β1 = 1.4, 1.5, 1.6, 1.8).
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Figure 2. Impact of the expected service time β1 on the asymptotic tail P{Rorb > j|Iser = 0}.

Finally, we show, in Figure 3, the trend of the change for the tail asymptotic probability
P{Rorb > j|Iser = 0}, as a function of the retrial rate µ. Specifically, we set a = 3/2, b = 1/5,
λ = 1.2 and q = 1/2. The four curves correspond to the following four different retrial
rates: µ = 1/5, 2/5, 4/5, 8/5, respectively.
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Figure 3. Impact of the retrial rate µ on the asymptotic tail P{Rorb > j|Iser = 0}.

6. Conclusions

In this paper, the exhaustive version of the stochastic decomposition method was used
to decompose the generating function R0(z2) (or corresponding r.v. R0) into detailed com-
ponents, each of which has probabilistic interpretations (see Remark 5). This decomposition
leads to a tail asymptotic expression for P{Rorb > j|Iser = 0}, given in (30). By applying
the same decomposition method to the generating function E(zR11

1 ) (see Equation (31) and
Remark 7), we obtained the tail asymptotic expression for P{Rque > j|Iser = 1} given
in (39), and by applying the exhaustive version of decompositions to the generating func-
tion E(zR12

2 ) (see Equation (40) and Remark 8), we obtained the tail asymptotic expression
for P{Rorb > j|Iser = 1} given in (45).

This exhaustive version of the stochastic decomposition method has also been applied
to a priority queueing system in [17] and a retrial queue with batch arrivals in [16]. We
expect that the same method can be applied to many other queueing models.
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Appendix A

Appendix A.1. Definitions and Useful Results from the Literature

Definition A1 (Bingham, Goldie and Teugels [24]). A measurable function U : (0, ∞) →
(0, ∞) is regularly varying at ∞ with index σ ∈ (−∞, ∞) (written U ∈ Rσ) iff limt→∞ U(xt)/
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U(t) = xσ for all x > 0. If σ = 0, we call U slowly varying, i.e., limt→∞ U(xt)/U(t) = 1 for all
x > 0.

Definition A2 (Foss, Korshunov and Zachary [25]). A distribution F on (0, ∞) belongs to the
class of subexponential distribution (written F ∈ S) if limt→∞ F∗2(t)/F(t) = 2, where F = 1− F
and F∗2 denotes the second convolution of F.

It is well known that, for a distribution F on (0, ∞), if F is regularly varying with index
−σ, σ ≥ 0 or F ∈ R−σ, then F is subexponnetial or F ∈ S (see, e.g., Embrechts et al. [26]).

Lemma A1 (de Meyer and Teugels [22]). Under Assumption 1,

P{Tα > t} ∼ 1
(1− ρ1)a+1 · t

−aL(t) as t→ ∞. (A1)

The result (A1) is straightforward due to the main theorem in [22].

Lemma A2 (pp. 580–581 in [26]). Let N be a discrete non-negative integer-valued r.v. with
pk = P{N = k} such that for some ε > 0, ∑∞

k=0 pk(1 + ε)k < ∞, and let {Yk}∞
k=1 be a sequence

of non-negative, i.i.d. r.v.s having a common subexponential distribution F. Define Sn = ∑n
k=1 Yk.

Then, P{SN > t} ∼ E(N) · (1− F(t)) as t→ ∞.

Two special cases:

(1) if pk = (1− σ)σk−1, 0 < σ < 1, k ≥ 1, then P{SN > t} ∼ (1− F(t))/(1− σ) as
t→ ∞;

(2) if pk =
σk

k! e−σ, σ > 0, k ≥ 0, then P{SN > t} ∼ σ · (1− F(t)) as t→ ∞.

Lemma A3 (Proposition 3.1 in [27]). Let Nλ(t) be a Poison process with rate λ and let T be
a positive r.v. with distribution F, which is independent of Nλ(t). If F̄(t) = P{T > t} is heavier
than e−

√
t as t→ ∞, then P(Nλ(T) > j) ∼ P{T > j/λ} as j→ ∞.

Lemma A3 holds for any distribution F with a regularly varying tail because it is
heavier than e−

√
t as t→ ∞.

Lemma A4 (p. 48 in [25]). Let F, F1 and F2 be distribution functions. Suppose that F ∈ S . If
F̄i(t)/F̄(t)→ ci as t→ ∞ for some ci ≥ 0, i = 1, 2, then F1 ∗ F2(t)/F̄(t)→ c1 + c2 as t→ ∞,

where the symbol F̄ def
= 1− F and “F1 ∗ F2" stands for the convolution of F1 and F2.

To prove Lemma 2, we list some notations and results. Let F(x) be any distribution on
[0, ∞) with the LST φ(s). We denote the nth moment of F(x) by φn, n ≥ 0. It is well known
that φn < ∞ iff

φ(s) =
n

∑
k=0

φk
k!
(−s)k + o(sn), n ≥ 0. (A2)

Next, if φn < ∞, we introduce the notation φn(s) and φ̂n(s), defined by

φn(s)
def
= (−1)n+1

{
φ(s)−

n

∑
k=0

φk
k!
(−s)k

}
, n ≥ 0, (A3)

φ̂n(s)
def
= φn(s)/sn+1, n ≥ 0. (A4)

Note that, if φn < ∞, then lims↓0 φ̂n−1(s) = φn/n! and sφ̂n(s) = φn/n! − φ̂n−1(s)
for n ≥ 1. In addition, if φn < ∞, one can define a sequence of functions Fk recursively

by: F1(t) = F(t) and 1− Fk+1(t)
def
=
∫ ∞

t (1− Fk(x))dx, k = 1, 2, . . . , n. It is not difficult
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to check that 1− Fk+1(0) = φk/k! and
∫ t

0 (1− Fk(x))dx has the LST φ̂k−1(s). Namely, for
k = 1, 2, . . . , n,∫ ∞

0
e−st(1− Fk(t))dt =

φk−1
(k− 1)!

1
s
− 1

s

∫ ∞

0
e−stdFk(t)

=
φk−1

(k− 1)!
1
s
− 1

s

∫ ∞

0
e−st(1− Fk−1(t))dt

=
φk−1

(k− 1)!
1
s
− φk−2

(k− 2)!
1
s2 + · · ·+ (−1)k−1 1

sk + (−1)k 1
sk

∫ ∞

0
e−stdF1(t)

= φ̂k−1(s). (A5)

Lemma A5 (pp. 333–334 in [24]). Assume that n < d < n + 1, n ∈ {0, 1, 2, . . .}. Then, the
following are equivalent:

1− F(t) ∼ t−dL(t), t→ ∞, (A6)

φn(s) ∼
[
Γ(d− n)Γ(n + 1− d)/Γ(d)

]
· sdL(1/s), s ↓ 0. (A7)

Definition A3 (e.g., Bingham et al. (1989) [24], p. 128). A function F : (0, ∞) → (0, ∞)
belongs to the de Haan class Π at ∞ if there exists a function H : (0, ∞) → (0, ∞) such that
limt↑∞

F(xt)−F(t)
H(t) = log x for all x > 0, where the function H is called the auxiliary function of F.

Lemma A6. Assume that n ∈ {1, 2, . . .}. Then, the following two statements are equivalent:

1− F(t) ∼ t−nL(t), t→ ∞; (A8)

lim
s↓0

φ̂n−1(xs)− φ̂n−1(s)
L(1/s)/(n− 1)!

= − log x, for all x > 0. (A9)

Proof. Recall the definition of Fk(t). Repeatedly using Karamata’s theorem (p. 27 in [24])
and the monotone density theorem (p. 39 in [24]), we know that 1− F(t) ∼ t−nL(t) is
equivalent to 1− Fn(t) ∼ t−1L(t)/(n− 1)!, which in turn is equivalent to

∫ t
0 (1− Fn(x))dx ∈

Π with an auxiliary function that can be taken as L(t)/(n− 1)! (see, e.g., p. 335 in [24]). By
(A5),

∫ t
0 (1− Fn(x))dx has the LST φ̂n−1(s). Applying Theorem 3.9.1 in [24] (pp. 172–173),

we complete the proof.
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