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Abstract: The intelligent manufacturing of power systems has led to many challenges. The cyber-
physical system (CPS) was introduced to solve the problem of insufficient integration of equipment
and systems. It brings advantages, but also risks. In the distribution network CPS, malicious attacks
on the PC-PLC communication network can cause significant incidents and affect system safety. The
paper discusses two challenges, of possible mutated virus attacks and multi-delay in the PC-PLC
coupled network. We present for the first time a virus-mutation and multi-delay propagation model.
Then, to effectively control the virus propagation in the network and minimize the cost, the paper
proposes five control measures, introduces their possible control combinations, and solves the optimal
control problem with the Pontryagin maximum theorem. Finally, simulations verify the optimal control
strategies for all combinations. By comparing the effects of maximum control, minimum control, average
control, and optimal control, the optimal control strategy has been proven to be effective.

Keywords: distribution network CPS; optimal control; PLC-PC worms; time-delay model

MSC: 49K35; 37G99

1. Introduction

With the development of intelligent manufacturing, the technology of electric power
equipment has been improving, but there is still the problem of insufficient equipment and
systems integration [1,2]. This problem leads to the intelligence of power production and
operation not being fully realized in the smart grid [3]. The distribution network is one
of the important links of power transmission, and intelligence is a major issue [4,5]. The
cyber-physical system (CPS) [6] provides a new way to solve this problem. The information
and physical space in the distribution network are organically integrated and deeply
linked [7–10], forming the distribution network CPS. The effectiveness of resource allocation
has increased with the addition of the cyber-physical system. Still, the emergence of new
network dynamics characteristics has introduced different security risks to the distribution
network CPS [11]. The secure operation of the distribution network faces a significant
impact when the system is subject to active faults or malicious attacks [12]. In severe cases,
it can even cause chain failures through information and physical interaction, threatening
the safe operation of the distribution network and even the grid system. The distribution
network CPS is usually based on a communication network between a PC and a PLC [13].
The protocols and devices used make them more vulnerable to cyber-attacks [14], leading
to frequent security incidents. In January 2003, the Davis-Besse nuclear power plant in
Ohio, USA, was attacked by the SQL Slammer worm, causing a system crash [15]. In June
2010, the malicious worm Stuxnet exploited vulnerabilities in industrial control systems to
attack Iran’s nuclear power plants, destroying nearly one-fifth of the centrifuges [16]. In
December 2015, the Ukrainian electricity network was struck by the BlackEnergy Trojan
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malware, resulting in a significant blackout of hundreds of thousands of households [17].
Therefore, distribution network system security has been particularly challenging [18].

Among the research methods for distribution network system security, Yang et al. [12]
proposed a technique for CPS security assessment of distribution networks based on correla-
tion matrix modeling analysis. Bai et al. [19] proposed a simulation method for distribution
network faults based on CPS. Yao et al. [20] first proposed a mathematical model of PC-PLC
worm reproduction based on an epidemiological kinetic approach. Among them, infectious
epidemic dynamics play a guiding role in the transmission and treatment of diseases [21].
Since the transmission of computer viruses in particular networks is analogous to the
spread of diseases, they are commonly exploited in industrial production [22,23]. As a re-
sult, by building a virus propagation model in computer networks, it is possible to examine
the spread of viruses from their initial conditions, reveal propagation features, forecast
change trends, and assess the effectiveness of various control methods [24,25]. Several
studies have exploited infectious epidemic dynamics principles in the field of distribution
network information security. Fu et al. [26] explored the dynamics of malware propagation
by modeling epidemics with immunity and isolation. Sheng et al. [27] suggested an intelli-
gent honeynet model to evaluate and prevent industrial virus proliferation in supervisory
control and data acquisition (SCADA) networks.

Dynamical models are well known to be significantly impacted by delays. However, the
above-proposed models ignore the delay in the virus propagation process. Zhang and Yang’s
paper [28] mentioned the delay induced by the recovery node’s temporary immunity period.
Wang and Chai [29] considered the delay caused by viral latency on top of it. Moreover, their
study did not mention the isolation period of the quarantined nodes. In addition, the above
delay exists during the virus propagation in the PC-PLC communication network. In this
paper, we mainly consider the impact of the aforementioned delays on control.

Furthermore, there is a high likelihood of error codes being transmitted or the spread
of the virus. This leads to the possibility of mutation of the virus [30]. Xu [31] mentioned the
effect of mutated viruses during epidemic transmission in complex networks. Liu et al. [32]
proposed a mutation model and an optimal control strategy for wireless rechargeable
sensors (WRSN). In most networks, virus-mutations exist. Based on the above investi-
gations, few people have studied the problem of optimal control under multi-delay and
virus variation simultaneously in PC-PLC networks. Therefore, this paper focuses on this
problem and provides optimal control strategies.

Using epidemic dynamics theory and optimal control theory to study the security
of the distribution network CPS can reduce the harm of the virus invasion system with
minimum cost. As a method to analyze optimal dynamic strategies [33], optimal control [34]
is widely used in the safety assessment analysis of industrial systems. In the epidemic
dynamics model, the primary means of virus control are vaccination, quarantine, and
treatment [35]. The control methods in the PC-PLC coupled network described in this paper
are mainly the installation of antivirus software or mitigating virus attacks by injecting
patches [36].

In studying the virus propagation mechanism and optimal control strategies, this
paper introduces a novel virus-mutation and multi-delay model to depict PC-PLC virus
propagation. The contribution of this work is as follows:

1. Through introducing the effect of mutated viruses and delays into the existing PC-PLC
model, a PLC-PC virus propagation model considering multi-delay is established.

2. Five model control measures are proposed, and 31 control combinations are given to
solve the optimal control strategies by using the Pontryagin maximum theorem.

3. The optimal control outcomes of 31 control combinations of average constant and
removing average constant control are described separately, and the optimal control
strategies are studied and contrasted.

The subsequent sections of this paper are organized as follows: In Section 2, a PLC-PC
virus-mutation and multi-delay propagation model is proposed. In Section 3, 31 control
combinations of the model are proposed, and their optimal control strategies are solved.
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Section 4 shows the control simulation results, and the optimal control combination is analyzed.
In Section 5, the conclusions of the proposed optimal control strategy are described.

2. Modeling Formulation

In this section, the problem of mutated viruses [37] is introduced into the PC-PLC
coupled network, and the effect of multi-delay causes on the system is considered in a more
realistic model for analysis.

For the problem of mutated viruses, parameters uA and uB are given as the probability
of virus-mutation in PC and PLC, respectively. Mutated viruses are usually variable and
unpredictable [38]. Therefore, mutated viruses should have higher infection rates, lower
recovery rates, and isolation rates than viruses.

Delay has a significant impact on the stability of the system. Inspired by the work
on multi-delay systems in [39,40], three different delay parameters, τ1, τ2, and τ3, are
introduced in the model. Their definitions are as follows:

τ1: The delay between PC-exposed nodes and PLC-susceptible nodes transforming
into infected nodes after being infected by PC is caused by virus latency time;

τ2: The delay of the quarantined nodes’ failure is caused by the isolation validity
period;

τ3: The delay of the recovery nodes’ failure is caused by the immunity validity period.
In summary, this paper proposes a virus-mutation and multi-delay propagation model,

and its differential equations are specified as follows:

dSA(t)
dt = bAΛA(t) + lARA(t− τ3)− dASA(t)− βA SA(t)IA

1 (t)
NA(t)

dEA(t)
dt = βA SA(t)IA

1 (t)
NA(t) − dAEA(t)− εEA(t− τ1)

dIA
1 (t)
dt = εEA(t− τ1) + cA

1 QA(t− τ2)− ηA
1 IA

1 (t)− dA IA
1 (t)− uA IA

1 (t)− γA
1 IA

1 (t)
dIA

2 (t)
dt = uA IA

1 (t) + cA
2 QA(t− τ2)− ηA

2 IA
2 (t)− dA IA

2 (t)− γ2 IA
2 (t)

dQA(t)
dt = ηA

1 IA
1 (t) + ηA

2 IA
2 (t)− cA

1 QA(t− τ2)− cA
2 QA(t− τ2)− dAQA(t)−ωAQA(t)

dRA(t)
dt = γ1 IA

1 (t) + γ2 IA
2 (t) + (1− bA)ΛA(t) + ωAQA(t)− lARA(t− τ3)− dARA(t)

dSB(t)
dt = ΛB(t) + lBRB(t− τ3) + cBQB(t− τ2)− ηBSB(t)− dBSB(t)− βB

1
SB(t)IB

1 (t)
NB(t)

−βB
2

SB(t)IB
2 (t)

NB(t) − βAB
1 SB(t− τ1)IA

1 (t− τ1)− βAB
2 SB(t− τ1)IA

2 (t− τ1)

dIB
1 (t)
dt = βB

1
SB(t)IB

1 (t)
NB(t) + βAB

1 SB(t− τ1)IA
1 (t− τ1)− dB IB

1 (t)− uB IB
1 (t)− γB

1 IB
1 (t)

dIB
2 (t)
dt = βB

2
SB(t)IB

2 (t)
NB(t) + βAB

2 SB(t− τ1)IA
2 (t− τ1)− uB IB

1 (t)− dB IB
2 (t)− γB

2 IB
2 (t)

dQB(t)
dt = ηBSB(t)− cBQB(t− τ2)− dBQB(t)−ωBQB(t)

dRB(t)
dt = ωBQB(t) + γB

1 IB
1 (t) + γB

2 IB
2 (t)− lBRB(t− τ3)− dBRB(t)

, (1)

with initial conditions SA(θ) = 0, IA
1 (θ) = 0, IA

2 (θ) = 0, RA(θ) = 0, QA(θ) = 0, EA(θ) = 0,
SB(θ) = 0, IB

1 (θ) = 0, IB
2 (θ) = 0, RB(θ) = 0, QB(θ) = 0, θ ∈ [−max(τ1, τ2, τ3), 0],

SA(0) = ΦsA , IA
1 (0) = ΦIA

1
, SB(0) = ΦsB , IA

2 (0) = 0, RA(0) = 0, QA(0) = 0, EA(0) = 0,

IB
1 (0) = 0, IB

2 (0) = 0, RB(0) = 0, QB(0) = 0, ΦsA ,IA
1
≥ 0, ΦsB = ΦsA + ΦIA

1
.

Figure 1 shows the nodes’ state transformation process, and Table 1 lists its symbols
and meanings. In Figure 1, the dashed line shows the delayed transformation.
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Table 1. Definition of parameters in the system.

Notation Definition

SA(t) Number of PC susceptible nodes at time t
IA
1 (t) Number of PC infected nodes at time t

IA
2 (t) Number of PC mutated infected nodes at time t

RA(t) Number of PC recovered nodes at time t
QA(t) Number of PC quarantined nodes at time t
EA(t) Number of PC exposed nodes at time t
SB(t) Number of PLC susceptible nodes at time t
IB
1 (t) Number of PLC infected nodes at time t

IB
2 (t) Number of PLC mutated infected nodes at time t

RB(t) Number of PLC recovered nodes at time t
QB(t) Number of PLC quarantined nodes at time t
NA(t) Number of nodes in PC network at time t
NB(t) Number of nodes in PLC network at time t
ΛA(t) Number of PC nodes placements at time t
ΛB(t) Number of PLC nodes placements at time t
βAB

1 Infection rate of susceptible PLC nodes infected with the virus through PC nodes
βAB

2 Infection rate of susceptible PLC nodes infected with the mutated virus through PC nodes
βA Probability of exposure of susceptible PC nodes to the virus
βB

1 Infection rate of susceptible PLC nodes infected with the virus through PLC nodes
βB

2 . Infection rate of susceptible PLC nodes infected with the mutated virus through PLC nodes
µA Mutaon rate of PC nodes infected with the virus
µB Mutation rate of PLC nodes infected with the virus
ε Probability of transforming exposed nodes into infected nodes

bA Susceptibility rate of PC newly added nodes
lA Rate at which the recovered PC nodes lose immunity
lB Rate at which the recovered PLC nodes lose immunity
γA

1 Recovered rate of PC infected nodes
γA

2 Recovered rate of PC mutated infected nodes
γB

1 Recovered rate of PLC infected nodes
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Table 1. Cont.

Notation Definition

γB
2 Recovered rate of PLC mutated infected nodes

ηA
1 Quarantined rate of PC infected nodes

ηA
2 Quarantined rate of PC mutated infected nodes

ηB Quarantined rate of infectious PC nodes
cA

1 Rate of infected PC nodes quarantined failure
cA

2 Rate of mutated infected PC nodes quarantined failure
cB Rate of susceptible PLC nodes quarantined failure
ωA Rate of quarantined PC nodes recovered
ωB Rate of quarantined PLC nodes recovered
dA Rate of PC nodes dead
dB Rate of PLC nodes dead
τ1 Delay of Virus incubation period
τ2 Delay of virus quarantined failure
τ3 Delay of recovered nodes immune failure

For convenience and necessity, the model must satisfy the following conditions:

1. In the model, the total number of nodes at the PC and PLC ends is fixed (i.e., equip-
ment inputs equal deaths). Thus, the PC network satisfies the constraint relation:

NA(t) = SA(t) + IA
1 (t) + IA

2 (t) + RA(t) + QA(t) + EA(t), (2)

the PLC network satisfies the constraint relation:

NB(t) = SB(t) + IB
1 (t) + IB

2 (t) + RB(t) + QB(t). (3)

2. Parameters (βAB
1 , βAB

2 , βA, βB
1 , βB

2 , µA, µB, ε, bA, lA, lB, γA
1 , γA

2 , γB
1 , γB

2 , ηA
1 , ηA

2 , ηB, cA
1 , cA

2 ,
cB,ωA, ωB, dA, dB) in the model take values ranging from 0 to 1, except for ΛA, ΛB, τ1,
τ2 , and τ3.

3. Optimal Control

The optimal control strategy is established to make the distribution network cyber-
physical system resistant to viruses and mutated viruses with minimal cost and loss.

To effectively combat the invasion of viruses and their mutated viruses, two mea-
sures are provided: injecting infected nodes and mutated infected nodes with immunity
patches and injecting newly added PC nodes with pre-patch. Set γA

1 = α1(t), γA
2 = α2(t),

γB
1 = α3(t), γB

2 = α4(t),
(
1− bA) = α5(t). Among them, injecting immune patches of

virus and mutated virus can improve the system’s recovery rate of infection and mutated
infected nodes. Higher control intensity means a higher recovery rate of infected nodes and
mutated infected nodes. Injecting newly added PC nodes with pre-patch aims to reduce the
number of susceptible nodes in the system, thus reducing the rate of the virus and mutated
virus propagation. Therefore, each control parameter is defined as follows:

α1(t): The intensity of injected immune patch of virus in the PC nodes at the moment t;
α2(t): The intensity of injected immune patch of mutated virus in the PC nodes at the

moment t;
α3(t): The intensity of injected immune patch of virus in the PLC nodes at the moment t;
α4(t): The intensity of injected immune patch of mutated virus in the PLC nodes at

the moment t;
α5(t): The intensity of injected pre-patch in the newly added nodes at the moment t.
There are 31 combinations of the five control methods. This section discusses the

optimal control strategies by comparing each combination’s control effectiveness.
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First, the control strategies will be applied during
[
0, t f

]
. The control variable u(t) and

the Lagrange function are introduced. The control variables u(t) for the optimal control
strategy of each combination are given in Table 2.

Table 2. Control parameters, optimal control variables.

Case Items u(t)

1–5 αi , i = 1, · · · , n, n = 5 αi(t), i = 1, · · · , n, n = 5

6–15
(
αi ,
(
αj , j = i + 1, · · · , n

)
, i = 1, · · · , n− 1

)
, n = 5

(
αi(t),

(
αj(t), j = i + 1, · · · , n

)
, i = 1, · · · , n− 1

)
, n = 5

16–25
(αi ,

(
αj , (αk , k = j + 1, · · · , n), j = i + 1, · · · , n− 1

)
,

i = 1, · · · , n− 2 ), n = 5
(αi(t),

(
αj(t), (αk(t), k = j + 1, · · · , n), j = i + 1, · · · , n− 1

)
,

i = 1, · · · , n− 2 ), n = 5

26–30
(αi , (αj , (αk , (αl , l = k + 1, · · · , n), k = j + 1, · · · , n− 1),

j = i + 1, · · · , n− 2), i = 1, · · · , n− 3), n = 5
(αi(t), (αj(t), (αk(t), (αl(t), l = k + 1, · · · , n), k = j + 1, · · · , n− 1),

j = i + 1, · · · , n− 2), i = 1, · · · , n− 3), n = 5

31 α1, α2, α3, α4, α5 (α1(t), α2(t), α3(t), α4(t), α5(t))

Define the set of control function as:

U =
{

αi(t) ∈ L2
[
0, t f

]
: 0 ≤ t ≤ t f , 0 ≤ αi(t) ≤ 1, i = 1, 2, 3, 4, 5

}
. (4)

The objective function is given:

J(u) =
∫ t f

0 L(u(t))dt
=
∫ t f

0
[
EA(t) + IA

1 (t) + IA
2 (t) + IB

1 (t) + IB
2 (t) +

m
2 α2

1(t) +
n
2 α2

2(t) +
p
2 α2

3(t) +
q
2 α2

4(t) +
s
2 α2

5(t)
]
dt.

(5)

Our objective is to obtain the optimal control u∗ such that J(u∗) = min
u(u)∈U

J(u). The

optimal control strategy of each combination can be viewed as a particular case where
some control parameters are set to constants. For example, when α2(t) = α2, α3(t) = α3,
α4(t) = α4, α5(t) = α5, is the optimal control system expressed in Case 1. Parameters of
optimal control for Cases 1–30 showed in Table 3.

Table 3. Optimal control parameters of Cases 1–30.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α1 α1(t) α1 α1 α1 α1 α1(t) α1(t) α1(t) α1(t) α1 α1 α1 α1 α1 α1

α2 α2 α2(t) α2 α2 α2 α2(t) α2 α2 α2 α2(t) α2(t) α2(t) α2 α2 α2

α3 α3 α3 α3(t) α3 α3 α3 α3(t) α3 α3 α3(t) α3 α3 α3(t) α3(t) α3

α4 α4 α4 α4. α4(t) α4 α4 α4 α4(t) α4 α4 α4(t) α4 α4(t) α4 α4(t)

α5 α5 α5 α5 α5 α5(t) α5 α5 α5 α5(t) α5 α5 α5(t) α5 α5(t) α5(t)

Case 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

α1 α1(t) α1(t) α1(t) α1(t) α1(t) α1(t) α1 α1 α1 α1 α1(t) α1(t) α1(t) α1(t) α1

α2 α2(t) α2(t) α2(t) α2 α2 α2 α2(t) α2(t) α2(t) α2 α2(t) α2(t) α2(t) α2 α2(t)

α3 α3(t) α3 α3 α3(t) α3(t) α3 α3(t) α3(t) α3 α3(t) α3(t) α3(t) α3 α3(t) α3(t)

α4 α4 α4(t) α4 α4(t) α4 α4(t) α4(t) α4 α4(t) α4(t) α4(t) α4 α4(t) α4(t) α4(t)

α5 α5 α5 α5(t) α5 α5(t) α5(t) α5 α5(t) α5(t) α5(t) α5 α5(t) α5(t) α5(t) α5(t)

The following is an example of Case 31. The optimal control objective function and
the costing are as follows:
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dSA(t)
dt = (1− α5(t))ΛA(t) + lARA(t− τ3)− dASA(t)− βA SA(t)IA

1 (t)
NA(t)

dEA(t)
dt = βA SA(t)IA

1 (t)
NA(t) − dAEA(t)− εEA(t− τ1)

dIA
1 (t)
dt = εEA(t− τ1) + cA

1 QA(t− τ2)− ηA
1 IA

1 (t)− dA IA
1 (t)− uA IA

1 (t)− α1(t)IA
1 (t)

dIA
2 (t)
dt = uA IA

1 (t) + cA
2 QA(t− τ2)− ηA

2 IA
2 (t)− dA IA

2 (t)− α2(t)IA
2 (t)

dQA(t)
dt = ηA

1 IA
1 (t) + ηA

2 IA
2 (t)− cA

1 QA(t− τ2)− cA
2 QA(t− τ2)− dAQA(t)−ωAQA(t)

dRA(t)
dt = α1(t)IA

1 (t) + α2(t)IA
2 (t) + α5(t)ΛA(t) + ωAQA(t)− lARA(t− τ3)− dARA(t)

dSB(t)
dt = ΛB(t) + lBRB(t− τ3) + cBQB(t− τ2)− ηBSB(t)− dBSB(t)− βB

1
SB(t)IB

1 (t)
NB(t)

βB
2

SB(t)IB
2 (t)

NB(t) − βAB
1 SB(t− τ1)IA

1 (t− τ1)− βAB
2 SB(t− τ1)IA

2 (t− τ1)

dIB
1 (t)
dt = βB

1
SB(t)IB

1 (t)
NB(t) + βAB

1 SB(t− τ1)IA
1 (t− τ1)− dB IB

1 (t)− uB IB
1 (t)− α3(t)IB

1 (t)
dIB

2 (t)
dt = βB

2
SB(t)IB

2 (t)
NB(t) + βAB

2 SB(t− τ1)IA
2 (t− τ1)− uB IB

1 (t)− dB IB
2 (t)− α4(t)IB

2 (t)
dQB(t)

dt = ηBSB(t)− cBQB(t− τ2)− dBQB(t)−ωBQB(t)
dRB(t)

dt = ωBQB(t) + α3(t)IB
1 (t) + α4(t)IB

2 (t)− lBRB(t− τ3)

(6)

and

J(α1, α2, α3, α4, α5)

= min
u(t)∈U

{∫ t f
0
[
EA(t) + IA

1 (t) + IA
2 (t) + IB

1 (t) + IB
2 (t) +

m
2 α2

1(t) +
n
2 α2

2(t) +
p
2 α2

3(t) +
q
2 α2

4(t) +
s
2 α2

5(t)
]
dt
}

, (7)

where m, n, p, q, and s are the weight coefficients of the five control parameters, and
m
2 α2

1(t),
n
2 α2

2(t),
p
2 α2

3(t),
q
2 α2

4(t),
s
2 α2

5(t) reflect the cost of the injected immune patch of virus
in the PC node, the cost of the injected immune patch of mutated virus in the PC node,
the cost of the injected immune patch of virus in the PLC node, the cost of the injected
immune patch of mutated virus in the PLC node, and the cost of the injected pre-patch
in the newly added nodes, respectively. Generally, they have the following limitations:
0 ≤ αi(t) ≤ 1, i = 1, 2, 3, 4, 5.

The goal of optimal control is to keep control costs as low as possible while reducing
the number of infected and mutated infected nodes. Therefore, it is necessary to determine
their optimal ratios under multiple control parameters. First, define the corresponding
Hamiltonian function as:
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H
(
SA, EA, IA

1 , IA
2 , QA, RA, SB, IB

1 , IB
2 , QB, RB, α1, α2, α3, α4, α5, t

)
= EA(t) + IA

1 (t) + IA
2 (t) + IB

1 (t) + IB
2 (t) +

m
2 α2

1(t) +
n
2 α2

2(t) +
p
2 α2

3(t) +
q
2 α2

4(t) +
s
2 α2

5(t)

+λ1(t)
[
(1− α5(t))ΛA(t) + lARA(t− τ3)− dASA(t)− βA SA(t)IA

1 (t)
NA(t)

]
+λ2(t)[βA SA(t)IA

1 (t)
NA(t) − dAEA(t)− εEA(t− τ1)]

+λ3(t)
[
εEA(t− τ1) + cA

1 QA(t− τ2)− ηA
1 IA

1 (t)− dA IA
1 (t)− uA IA

1 (t)− α1(t)IA
1 (t)

]
+λ4(t)

[
uA IA

1 (t) + cA
2 QA(t− τ2)− ηA

2 IA
2 (t)− dA IA

2 (t)− α2(t)IA
2 (t)

]
+λ5(t)

[
ηA

1 IA
1 (t) + ηA

2 IA
2 (t)− cA

1 QA(t− τ2)− cA
2 QA(t− τ2)− dAQA(t)−ωAQA(t)

]
+λ6(t)

[
α1(t)IA

1 (t) + α2(t)IA
2 (t) + α5(t)ΛA(t) + ωAQA(t)− lARA(t− τ3)− dARA(t)

]
+λ7(t)[ΛB(t) + lBRB(t− τ3) + cBQB(t− τ2)− ηBSB(t)− dBSB(t)− βB

1
SB(t)IB

1 (t)
NB(t)

−βB
2

SB(t)IB
2 (t)

NB(t) − βAB
1 SB(t− τ1)IA

1 (t− τ1)− βAB
2 SB(t− τ1)IA

2 (t− τ1)]

+λ8(t)
[

βB
1

SB(t)IB
1 (t)

NB(t) + βAB
1 SB(t− τ1)IA

1 (t− τ1)− dB IB
1 (t)− uB IB

1 (t)− α3(t)IB
1 (t)

]
+λ9(t)

[
βB

2
SB(t)IB

2 (t)
NB(t) + βAB

2 SB(t− τ1)IA
2 (t− τ1) + uB IB

1 (t)− dB IB
2 (t)− α4(t)IB

2 (t)
]

+λ10(t)
[
ηBSB(t)− cBQB(t− τ2)− dBQB(t)−ωBQB(t)

]
+λ11(t)

[
ωBQB(t) + α3(t)IB

1 (t) + α4(t)IB
2 (t)− lBRB(t− τ3)− dBRB(t)

]

(8)

where λi(t)(i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) is the covariate of the optimal control system.
According to the Pontryagin maximum theorem, the transversality conditions are:

λi(t f ) = 0, i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. (9)

In addition to,

χ[0,T−τi ]
=

{
0, t ∈ [t f − τi, t f ]
1, t ∈ [0, t f − τi]

, i = 1, 2, 3. (10)

The differential equations of covariates are as follows:
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dλ1(t)
dt = −HSA (t)− χ[0, T−τ1]HSA

τ1
(t + τ1)− χ[0, T−τ2]HSA

τ2
(t + τ2)− χ[0, T−τ3]HSA

τ3
(t + τ3)

= λ1(t)
[
(α5(t)− 1)dA + dA + βA IA

1 NA−IA
1 SA

NA2

]
− λ2(t)βA IA

1 NA−IA
1 SA

NA2 − λ6(t)α5(t)dA;
dλ2(t)

dt = −HEA (t)− χ[0, T−τ1]HEA
τ1
(t + τ1)− χ[0, T−τ2]HEA

τ2
(t + τ2)− χ[0, T−τ3]HEA

τ3
(t + τ3)

= −1 + λ1(t) · (α5(t)− 1)dA + λ2(t)dA − X[0,T−τ1]ε[λ3(t + τ1)− λ2(t + τ1)]− λ6(t) · α5(t)dA;
dλ3(t)

dt = −HIA
1
(t)− χ[0, T−τ1]HIA

1 τ1
(t + τ1)− χ[0, T−τ2]HIA

1 τ2
(t + τ2)− χ[0, T−τ3]HIA

1 τ3
(t + τ3)

= −1 + λ1(t)
[
(α5(t)− 1)dA + βA SA NA−IA

1 SA

NA2

]
− λ2(t)βA SA NA−IA

1 SA

NA2

+λ3(t)
(
ηA

1 + dA + uA + α1(t)
)
− λ4(t)uA − λ5(t)ηA

1 − λ6(t)
(
α1(t) + α5(t)dA)

−X[0,T−τ1]

(
λ8(t + τ1)βAB

1 SB − λ7(t + τ1)βAB
1 SB);

dλ4(t)
dt = −HIA

2
(t)− χ[0, T−τ1]HIA

2 τ1
(t + τ1)− χ[0, T−τ2]HIA

2 τ2
(t + τ2)− χ[0, T−τ3]HIA

2 τ3
(t + τ3)

= −1 + λ1(t) · (α5(t)− 1)dA + λ4(t)
(
ηA

2 + dA + α2(t)
)
− λ5(t) · ηA

2 − λ6(t)
(
α2(t) + α5(t)dA)

+χ[0,T−τ1]

[
λ7(t + τ1)βAB

2 SB − λ9(t + τ1)βAB
2 SB];

dλ5(t)
dt = −HQA (t)− χ[0, T−τ1]HQA

τ1
(t + τ1)− χ[0, T−τ2]HQA

τ2
(t + τ2)− χ[0, T−τ3]HQA

τ3
(t + τ3)

= λ1(t) · (α5(t)− 1)dA + X[0,T−τ2]c
A
1 [λ5(t + τ2)− λ3(t + τ2)] + X[0,T−τ2]c

A
2 [λ5(t + τ2)− λ4(t + τ2)]

+λ5(t)
(
dA + ωA)− λ6(t)

(
α5(t)dA + ωA);

dλ6(t)
dt = −HRA (t)− χ[0, T−τ1]HRA

τ1
(t + τ1)− χ[0, T−τ2]HRA

τ2
(t + τ2)− χ[0, T−τ3]HRA

τ3
(t + τ3)

= λ1(t) · (α5(t)− 1)dA − λ6(t)dA(α5(t)− 1) + X[0,T−τ3]l
A[λ6(t + τ3)− λ1(t + τ3)];

dλ7(t)
dt = −HSB (t)− χ[0, T−τ1]HSB

τ1
(t + τ1)− χ[0, T−τ2]HSB

τ2
(t + τ2)− χ[0, T−τ3]HSB

τ3
(t + τ3)

= λ7(t)
(

ηB + βB
1

IB
1 NB−SB IB

1

NB2 + βB
2

IB
2 NB−SB IB

2

NB2

)
+ X[0,T−τ1]

(
λ7(t + τ1)βAB

1 IA
1 − λ8(t + τ1)βAB

1 IA
1
)

−λ8(t) · βB
1

IB
1 NB−SB IB

1
NB + X[0,T−τ1]

(
λ7(t + τ1)βAB

2 IA
2 − λ9(t + τ1)βAB

2 IA
2
)

−λ9(t) · βB
2

IB
2 NB−SB IB

2

NB2 − λ10(t) · ηB;
dλ8(t)

dt = −HIB
1
(t)− χ[0, T−τ1]HIB

1 τ1
(t + τ1)− χ[0, T−τ2]HIB

1 τ2
(t + τ2)− χ[0, T−τ3]HIB

1 τ3
(t + τ3)

= −1− λ7(t)
(

dB − βB
1

SB NB−IB
1 SB

NB2

)
− λ8(t)

(
βB

1
SB NB−IB

1 SB

NB2 − dB − uB − α3(t)
)
− λ9(t)uB − λ11(t)α3(t);

dλ9(t)
dt = −HIB

2
(t)− χ[0, T−τ1]HIB

2 τ1
(t + τ1)− χ[0, T−τ2]HIB

2 τ2
(t + τ2)− χ[0, T−τ3]HIB

2 τ3
(t + τ3)

= −1− λ7(t)
(

dB − βB
2

SB NB−IB
2 SB

NB2

)
− λ9(t)

(
βB

2
SB NB−IB

2 SB

NB2 − dB − α4(t)
)
− λ11(t)α4(t);

dλ10(t)
dt = −HQB (t)− χ[0, T−τ1]HQB

τ1
(t + τ1)− χ[0, T−τ2]HQB

τ2
(t + τ2)− χ[0, T−τ3]HQB

τ3
(t + τ3)

= −λ7(t)dB + X[0,T−τ2]c
B[λ10(t + τ2)− λ7(t + τ2)] + λ10(t)

(
dB + ωB)− λ11(t)ωB;

dλ11(t)
dt = −HRB (t)− χ[0, T−τ1]HRB

τ1
(t + τ1)− χ[0, T−τ2]HRB

τ2
(t + τ2)− χ[0, T−τ3]HRB

τ3
(t + τ3)

= −λ7(t)dB + X[0,T−τ3]l
B[λ11(t + τ3)− λ7(t + τ3)] + λ11(t)dB.

(11)

Substituting the above conditions, we obtain:

∂H(t)
∂α1

∣∣∣
α1(t)=α∗1(t)

= −mα∗1(t) + [λ3(t)− λ6(t)]IA
1
∗(t);

∂H(t)
∂α2

∣∣∣
α2(t)=α∗2(t)

= −nα∗2(t) + [λ4(t)− λ6(t)]IA
2
∗(t);

∂H(t)
∂α3

∣∣∣
α3(t)=α∗3(t)

=−pα∗3(t) + [λ8(t)− λ11(t)]IB
1
∗(t);

∂H(t)
∂α4

∣∣∣
α4(t)=α∗4(t)

=−qα∗4(t) + [λ9(t)− λ11(t)]IB
2
∗(t);

∂H(t)
∂α5

∣∣∣
α5(t)=α∗5(t)

=−sα∗5(t) + [λ1(t)− λ6(t)]dANA∗(t).

(12)

The optimal control ratio of the system is:
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α∗1(t) = min
{

max
(

0, [λ3(t)−λ6(t)]IA
1
∗(t)

m

)
, 1
}

;

α∗2(t) = min
{

max
(

0, [λ4(t)−λ6(t)]IA
2
∗(t)

n

)
, 1
}

;

α∗3(t) = min
{

max
(

0, [λ8(t)−λ11(t)]IB
1
∗(t)

p

)
, 1
}

;

α∗4(t) = min
{

max
(

0, [λ9(t)−λ11(t)]IB
2
∗(t)

q

)
, 1
}

;

α∗5(t) = min
{

max
(

0, [λ1(t)−λ6(t)]dA NA∗(t)
s

)
, 1
}

.

(13)

Other combinations of optimal control solutions are unusual examples of the preceding
solutions. Table 4 gives the specifics of these optimal solutions.

Table 4. Solutions of optimal control problems 1–30.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α1 α∗1(t) α1 α1 α1 α1 α∗1(t) α∗1(t) α∗1(t) α∗1(t) α1 α1 α1 α1 α1 α1

α2 α2 α∗2(t) α2 α2 α2 α∗2(t) α2 α2 α2 α∗2(t) α∗2(t) α∗2(t) α2 α2 α2

α3 α3 α3 α∗3(t) α3 α3 α3 α∗3(t) α3 α3 α∗3(t) α3 α3 α∗3(t) α∗3(t) α3

α4 α4 α4 α4 α∗4(t) α4 α4 α4 α∗4(t) α4 α4 α∗4(t) α4 α∗4(t) α4 α∗4(t)

α5 α5 α5 α5 α5 α∗5(t) α5 α5 α5 α∗5(t) α5 α5 α∗5(t) α5 α∗5(t) α∗5(t)

Case 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

α1 α∗1(t) α∗1(t) α∗1(t) α∗1(t) α∗1(t) α∗1(t) α1 α1 α1 α1 α∗1(t) α∗1(t) α∗1(t) α∗1(t) α1

α2 α∗2(t) α∗2(t) α∗2(t) α2 α2 α2 α∗2(t) α∗2(t) α∗2(t) α2 α∗2(t) α∗2(t) α∗2(t) α2 α∗2(t)

α3 α∗3(t) α3 α3 α∗3(t) α∗3(t) α3 α∗3(t) α∗3(t) α3 α∗3(t) α∗3(t) α∗3(t) α3 α∗3(t) α∗3(t)

α4 α4 α∗4(t) α4 α∗4(t) α4 α∗4(t) α∗4(t) α4 α∗4(t) α∗4(t) α∗4(t) α4 α∗4(t) α∗4(t) α∗4(t)

α5 α5 α5 α∗5(t) α5 α∗5(t) α∗5(t) α5 α∗5(t) α∗5(t) α∗5(t) α5 α∗5(t) α∗5(t) α∗5(t) α∗5(t)

4. Numerical Simulations

In this section, we will simulate optimal control strategies for all combinations. Matlab
is used in all of the simulations below. The parameters setting [21] is given in Table 5.

Patching a PLC requires exiting the node. Forced removal will affect access to in-
formation and network security. When a PC is removed, other nodes can usually take
over [19]. Therefore, the PC will have less security impact and lower control costs. Mutated
viruses are variable and unpredictable, causing high control costs. Thus, the value of cost
weighting factors should follow: 0 < s < m < n < p < q. The cost weighting factors
are set as follows: m = 300, n = 400, p = 500, q = 600, s = 1. The simulation time
is set as follows: t f = 50. The delays are set as follows: τ1 = 2, τ2 = 1.5, τ3 = 1. The
other initial conditions are set as follows: SA(θ) = 0, IA

1 (θ) = 0, IA
2 (θ) = 0, RA(θ) = 0,

QA(θ) = 0, EA(θ) = 0, SB(θ) = 0, IB
1 (θ) = 0, IB

2 (θ) = 0, RB(θ) = 0, QB(θ) = 0, θ ∈ [−2, 0],
SA(0) = 9000, IA

1 (0) = 1000, IA
2 (0) = 0, RA(0) = 0, QA(0) = 0, EA(0) = 0, SB(0) = 10000,

IB
1 (0) = 0, IB

1 (0) = 0, RB(0) = 0, QB(0) = 0.
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Table 5. Simulation parameters.

Notation Definition

βAB
1 0.0000008

βAB
2 0.0000016

βA 0.08
βB

1 0.000008
βB

2 0.00001
µA 0.005
µB 0.001
ε 0.05

lA 0.001
lB 0.001
ηA

1 0.001
ηA

2 0.0008
cA

1 0.001
cA

2 0.004
cB 0.004
ωA 0.001
ωB 0.001
dA 0.004
dB 0.004

4.1. Analysis of the Optimal Control Strategies with Average Constant Control

In Cases 1–30, the parameters are the average of the control parameters obtained in case

31, and are set as follows: α1 =
∫ t f

0 〈α1(t)〉/t f = 0. 2217, α2 =
∫ t f

0 〈α2(t)〉/t f = 0. 0471,

α3 =
∫ t f

0 〈α3(t)〉/t f = 0. 0445, α4 =
∫ t f

0 〈α4(t)〉/t f = 0. 0178, α5 =
∫ t f

0 〈α5(t)〉/t f = 0. 1370.
The control parameters are shown in Table 6. The results of the optimal control

strategies are shown in Figures 2–5. As shown in Figures 2–5, four small plots on the left
show infected node curves over time (in clockwise order, the number of infected nodes in
PC, mutated infected nodes in PC, infected nodes in PLC, and mutated infected nodes in
PLC, respectively). In addition, the node states of the four nodes under average control,
maximum control, minimum control, and optimal control are depicted. The last two graphs
show optimal control parameter curves over time and control cost histograms for the four
control scenarios. The control parameter tends to zero over time, as shown in the control
parameter curve in Figure 2. The goal of this change is to lower the cost of control. It allows
the system to have nearly the same virus suppression effect under optimal and maximum
control at a significantly lower cost.
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Table 6. Parameters of Figures 2–6.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α1

min 0 0.2217 0.2217 0.2217 0.2217 0 0 0 0 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217

average 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217

max 1 0.2217 0.2217 0.2217 0.2217 1 1 1 1 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217

optimal - 0.2217 0.2217 0.2217 0.2217 - - - - 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217

α2

min 0.0471 0 0.0471 0.0471 0.0471 0 0.0471 0.0471 0.0471 0 0 0 0.0471 0.0471 0.0471

average 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471

max 0.0471 1 0.0471 0.0471 0.0471 1 0.0471 0.0471 0.0471 1 1 1 0.0471 0.0471 0.0471

optimal 0.0471 - 0.0471 0.0471 0.0471 - 0.0471 0.0471 0.0471 - - - 0.0471 0.0471 0.0471

α3

min 0.0445 0.0445 0 0.0445 0.0445 0.0445 0 0.0445 0.0445 0 0.0445 0.0445 0 0 0.0445

average 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445

max 0.0445 0.0445 1 0.0445 0.0445 0.0445 1 0.0445 0.0445 1 0.0445 0.0445 1 1 0.0445

optimal 0.0445 0.0445 - 0.0445 0.0445 0.0445 - 0.0445 0.0445 - 0.0445 0.0445 - - 0.0445

α4

min 0.0178 0.0178 0.0178 0 0.0178 0.0178 0.0178 0 0.0178 0.0178 0 0.0178 0 0.0178 0

average 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178

max 0.0178 0.0178 0.0178 1 0.0178 0.0178 0.0178 1 0.0178 0.0178 1 0.0178 1 0.0178 1

optimal 0.0178 0.0178 0.0178 - 0.0178 0.0178 0.0178 - 0.0178 0.0178 - 0.0178 - 0.0178 -

α5

min 0.1370 0.1370 0.1370 0.1370 0 0.1370 0.1370 0.1370 0 0.1370 0.1370 0 0.1370 0 0

average 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370

max 0.1370 0.1370 0.1370 0.1370 1 0.1370 0.1370 0.1370 1 0.1370 0.1370 1 0.1370 1 1

optimal 0.1370 0.1370 0.1370 0.1370 - 0.1370 0.1370 0.1370 - 0.1370 0.1370 - 0.1370 - -

Case 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

α1

min 0 0 0 0 0 0 0.2217 0.2217 0.2217 0.2217 0 0 0 0 0.2217 0

average 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217

max 1 1 1 1 1 1 0.2217 0.2217 0.2217 0.2217 1 1 1 1 0.2217 1

optimal - - - - - - 0.2217 0.2217 0.2217 0.2217 - - - - 0.2217 -

α2

min 0 0 0 0.0471 0.0471 0.0471 0 0 0 0.0471 0 0 0 0.0471 0 0

average 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471

max 1 1 1 0.0471 0.0471 0.0471 1 1 1 0.0471 1 1 1 0.0471 1 1

optimal - - - 0.0471 0.0471 0.0471 - - - 0.0471 - - - 0.0471 - -

α3

min 0 0.0445 0.0445 0 0 0.0445 0 0 0.0445 0 0 0 0.0445 0 0 0

average 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445

max 1 0.0445 0.0445 1 1 0.0445 1 1 0.0445 1 1 1 0.0445 1 1 1

optimal - 0.0445 0.0445 - - 0.0445 - - 0.0445 - - - 0.0445 - - -

α4

min 0.0178 0 0.0178 0 0.0178 0 0 0.0178 0 0 0 0.0178 0 0 0 0

average 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178

max 0.0178 1 0.0178 1 0.0178 1 1 0.0178 1 1 1 0.0178 1 1 1 1

optimal 0.0178 - 0.0178 - 0.0178 - - 0.0178 - - - 0.0178 - - - -

α5

min 0.1370 0.1370 0 0.1370 0 0 0.1370 0 0 0 0.1370 0 0 0 0 0

average 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370 0.1370

max 0.1370 0.1370 1 0.1370 1 1 0.1370 1 1 1 0.1370 1 1 1 1 1

optimal 0.1370 0.1370 - 0.1370 - - 0.1370 - - - 0.1370 - - - - -
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Case 31 contains the uncertainty of all control variables, and it should be optimal
among all control combinations. For the rigor of the study, this still requires detailed simu-
lation data to illustrate this conclusion. The implications of including different uncertainties
in the cases are discussed below.

Cases 1–5 are the optimal control under one control measure. By observing Figure 3a–e,
the impact of different control measures on infected system nodes is as follows: α1(t)
inhibits both infected nodes and mutated infected nodes of PC and PLC; α2(t) inhibits
mutated infected nodes of PC and PLC; α3(t) inhibits infected nodes and mutated infected
nodes of PLC; α4(t) inhibits mutated infected nodes of PLC; α5(t) slightly inhibits PC and
PLC infected nodes and mutated infected nodes. The above is used as a basis to observe
the control effect of the subsequent combinations.

First, we discuss the effect of the control of α1(t) and α2(t) (i.e., Figure 3f). Under
this combination, the system effectively controls all infections. Under control with α1(t)
and α3(t) (i.e., Figure 3g), there is better control of the infection on the PLC side but less
effective control of the mutated virus than the control of α1(t) and α2(t). In control with
α1(t) and α4(t) (i.e., Figure 3h), the system is only marginally more resistant to mutated
viruses on the PLC side. When Cases 10–15 (i.e., Figures 3j and 4a–e) are compared with
Cases 22–25 and 30 (i.e., Figure 5b–e,j), it finds the system is difficult to suppress the spread
of viruses and mutated viruses in the short term with the control without α1(t).

According to Zhang’s paper [35], vaccination is not as effective as a treatment. It can
significantly reduce the number of infections, but the number remains high in the short
term. The purpose of vaccination is to reduce the susceptible population, similar to the
parameter α5(t). The control with α5(t) (i.e., Figure 3e) is effective in suppressing infected
and mutated infected nodes but less effective in controlling the virus for a short period.

Following the above comparison, we found that effective virus control at the early
stage can significantly reduce the rate of virus propagation. α1(t) is mainly used to control
the virus that is put into the PC side system at the beginning. Therefore, α1(t) is the
leading force in the five controls, and the rest are used as auxiliary means to cooperate with
the controls and reduce costs. The effect of α5(t) is mainly in prevention, not removal. It
effectively slows the spread of the virus, but relatively slowly. To show this effect, extending
the system’s running time is necessary. Thus, α5(t) is a low-cost, long-term type of control.

Compared to combinations with α1(t) (i.e., Figure 2, Figure 3f–i, Figure 4f–j,
Figure 5a,f–i), there is no significant difference in effectiveness except cost. Thus, we
must focus on their cost comparisons when considering these groups. Then, compared to
typical combinations in Figure 5, the result still illustrates that α1(t) is critical and shows
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us that Case 31 is the least costly way to control. It also has the best control results by
observing the magnified curve. It proves that Case 31 is the least costly and most effective
control combination.

4.2. Analysis of the Optimal Control Strategies with Removing Average Constant Control

In this section, we remove the influence of the control constants (the averaged con-
trol amount is now taken as 0). The control parameters are shown in Table 7. This
gives a more precise visualization of the impact of the optimal control parameters on
the system. Figures 7–11 are the experiment’s results (i.e., Figures 2–6) after remov-
ing the control constants. Compared to the combination with α1(t) control (i.e., Fig-
ure 7, Figure 8f–i, Figure 9f–j, Figure 10a,f–i) and without α1(t) control (i.e., Figure 8b–e,j,
Figure 9a–e, Figure 10b–e,j), other controls can significantly reduce the number of infected
and mutated infected nodes when α1(t) control is not implemented. However, it is impos-
sible to rapidly reduce the number of infected and mutated infected nodes to a low level in
a short time.
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Table 7. Parameters of Figures 7–11.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α1

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0.2217 0 0 0 0 0.2217 0.2217 0.2217 0.2217 0 0 0 0 0 0

max 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

optimal - 0 0 0 0 - - - - 0 0 0 0 0 0

α2

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0 0.0471 0 0 0 0.0471 0 0 0 0.0471 0.0471 0.0471 0 0 0

max 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

optimal 0 - 0 0 0 - 0 0 0 - - - 0 0 0

α3

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0 0 0.0445 0 0 0 0.0445 0 0 0.0445 0 0 0.0445 0.0445 0

max 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0

optimal 0 0 - 0 0 0 - 0.0445 0 - 0 0 - - 0

α4

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0 0 0 0.0178 0 0 0 0.0178 0 0 0.0178 0 0.0178 0 0.0178

max 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1

optimal 0 0 0 - 0 0 0 - 0 0 - 0 - 0 -

α5

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0 0 0 0 0.1370 0 0 0 0.1370 0 0 0.1370 0 0.1370 0.1370

max 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

optimal 0 0 0 0 - 0 0 0 - 0 0 - 0 - -

Case 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

α1

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0.2217 0.2217 0.2217 0.2217 0.2217 0.2217 0 0 0 0 0.2217 0.2217 0.2217 0.2217 0 0.2217

max 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1

optimal - - - - - - 0 0 0 0 - - - - 0 -

α2

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0.0471 0.0471 0.0471 0 0 0 0.0471 0.0471 0.0471 0 0.0471 0.0471 0.0471 0 0.0471 0.0471

max 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1

optimal - - - 0 0 0 - - - 0 - - - 0 - -

α3

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0.0445 0 0 0.0445 0.0445 0 0.0445 0.0445 0 0.0445 0.0445 0.0445 0 0.0445 0.0445 0.0445

max 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1

optimal - 0 0 - - 0 - - 0 - - - 0 - - -

α4

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0 0.0178 0 0.0178 0 0.0178 0.0178 0 0.0178 0.0178 0.0178 0 0.0178 0.0178 0.0178 0.0178

max 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1

optimal 0 - 0 - 0 - - 0 - - - 0 - - - -

α5

min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

average 0 0 0.1370 0 0.1370 0.1370 0 0.1370 0.1370 0.1370 0 0.1370 0.1370 0.1370 0.1370 0.1370

max 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1

optimal 0 0 - 0 - - 0 - - - 0 - - - - -
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Figure 8. Solutions of the optimal control strategies for Cases 1–10 (removing average constant).
(a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5; (f) Case 6; (g) Case 7; (h) Case 8; (i) Case 9;
(j) Case 10.
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Figure 9. Solutions of the optimal control strategies for Cases 11–20 (removing average constant). 
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Figure 9. Solutions of the optimal control strategies for Cases 11–20 (removing average constant).
(a) Case 11; (b) Case 12; (c) Case 13; (d) Case 14; (e) Case 15; (f) Case 16; (g) Case 17; (h) Case 18;
(i) Case 19; (j) Case 20.
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Figure 10. Solutions of the optimal control strategies for Cases 21–30 (removing average constant).
(a) Case 21; (b) Case 22; (c) Case 23; (d) Case 24; (e) Case 25; (f) Case 26; (g) Case 27; (h) Case 28; (i)
Case 29; (j) Case 30.
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In the comparison of Figure 6 and Figure 11, Cases 6, 26, and 31 are the more prominent.
However, there is no significant difference in the effect, but Case 6 has a substantial
difference in cost from the other two combinations. The remaining two groups are not
remarkably different in cost and control effect, but Case 31 is slightly better than Case 26. In
summary, among the 31 combinations of control strategies proposed, Case 31 is the optimal
control combination.

To analyze the effectiveness of the optimal control strategy, the optimal control
schemes are compared with the maximum, minimum, and average control parameters. In
Figure 7, we can see that the effect of management is ordered as follows: maximum ≈
optimal > average > minimum, and the cost is ordered as follows: optimal < average <
maximum < minimum. In maximum control, the control intensity is at its maximum all
the time, so the effect of its control is slightly better than the effect of the optimal control.
However, the cost is much higher than that of optimal control. Moreover, the average and
minimum cases have poorer control effects and higher costs than the optimal. Therefore, it
can be confirmed that the optimal control of Case 31 is effective.

5. Conclusions

To better control the propagation of viruses in the distribution network CPS, a novel
model of virus propagation was developed after considering virus-mutation, immune
delay, isolation delay, and infection delay. In addition, five control measures for the model
are proposed. The 31 control strategies are listed, and the optimal control strategy under
the optimal control combination is calculated.

In the simulation section, we compare the control effect and cost of all control combi-
nations under maximum control, minimum control, average control, and optimal control.
Then, the above situations are analyzed under average constant and without average
constant control. It shows that injecting the immune patch of the virus into the PC network
is the key to controlling the spread of viruses in the system. The optimal control under five
control measures is derived as the optimal combination, and its effectiveness is verified.

This paper discusses a virus propagation model considering multi-delay and virus-
mutation. Although optimal control is proposed, more research is needed to determine
how to apply the proposed optimal control strategy to actual scenes. However, with the
development of networks, control studies under mutation and multi-delay models are
inevitable. We hope that the results of this paper can provide some reference for related
researchers.
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