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Abstract: Human–object interaction (HOI) recognition is a very challenging task due to the ambiguity
brought by occlusions, viewpoints, and poses. Because of the limited interaction information in the
image domain, extracting 3D features of a point cloud has been an important means to improve the
recognition performance of HOI. However, the features neglect topological features of adjacent points
at low level, and the deep topology relation between a human and an object at high level. In this
paper, we present a 3D human–object mesh topology enhanced method (HOME) for HOI recognition
in images. In the method, human–object mesh (HOM) is built by integrating the reconstructed human
and object mesh from images firstly. Therefore, under the assumption that the interaction comes from
the macroscopic pattern constructed by spatial position and microscopic topology of human–object,
HOM is inputted into MeshCNN to extract the effective edge features by edge-based convolution from
bottom to up, as the topological features that encode the invariance of the interaction relationship. At
last, topological cues are fused with visual cues to enhance the recognition performance greatly. In
the experiment, HOI recognition results have achieved an improvement of about 4.3% mean average
precision (mAP) in the Rare cases of the HICO-DET dataset, which verifies the effectiveness of the
proposed method.

Keywords: mesh topology; interaction recognition; HOME; HOI

MSC: 68T45

1. Introduction

Human–object interaction detection (HOI) is a task to locate pairs of a human and an
object in the scene and detect the interactions between them. It could be applied to many
areas, e.g., video retrieval [1–3] and activity recognition [4–6] in videos. Recently, there are
many methods proposed for object detection and recognition algorithms [7–9], but there
are still some factors that affect the recognition performance seriously: (1) the same type of
interaction may occur in different scenes; (2) multiple people may interact with the same
object, and some different interactions are similar in perception. These factors make HOI
detection a challenging task.

To handle multiple human–object pairs of interaction, many methods are developed
to capture context information from images, using visual features of a human and an object,
as well as their spatial features [10–12]. Generally, existing HOI detection methods could
be roughly divided into three categories: attention mechanism-based methods [11,13],
pose estimation-based methods [12,14,15], and scene graph-based methods [10,16]. First,
some works adopt the idea of attention mechanism to obtain more abundant and effective
features for interactive detection. Second, some works use human pose information to infer
character interactions with more fine-grained human visual features. Third, some methods
obtain context clues by building a scene graph, mainly by building a fully connected
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graph, in which nodes represent all detected objects. All in all, HOI is a multi-stage task,
the success of other computer vision task research greatly promoted the development
of HOI.

Obviously, most of the existing methods are based on the image level. However,
understanding 2D vision-based behavior is difficult due to interference by perspective
occlusions. For a certain interaction, it shows very different appearances in different human
postures or from different views, e.g., different rider–horse appearances shown in the
first row of Figure 1, which hinders extracting visual invariable information related to
interaction action. Apart for the visual cues, the 3D spatial and topological information
also provide the most important cues because they are similar for same action in geometry
and topology, e.g., the similar human meshes with same riding posture shown in the
second row of Figure 1. Therefore, the key to improving the HOI detection is to use the
reconstructed connection information of human and object from the images and extract the
topological from the bottom up during the perception process of HOI recognition. In our
work, the effective edge information that represents the topological invariant features in the
interaction relationship is exacted from the human–object mesh, which can greatly enhance
the performance of the image-based HOI recognition task.

Figure 1. Visual comparison of 3D meshes and topologies from different perspectives of images in
the same HOI.

In this paper, we propose a 3D human–object mesh topology enhancement method
(HOME) for HOI recognition. Firstly, we construct a human–object mesh (HOM) that
contains human geometry and the 3D interaction relation between a human and an object.
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Secondly, we build a framework that fuses both visual cues and topology cues for recogni-
tion. In particular, to find the interaction relation and to extract edge features in the HOM
from bottom to top, we use MeshCNN [17], so as to construct invariant topological features
that can represent interaction relationships from shallow to deep, which greatly promoted
HOI discrimination performance.

In summary, our contributions are twofold:

• We provide the first perspective that human–object interaction is derived from HOM
geometric topology and also propose a novel method of interaction detection that
considers the bottom-up topological cues.

• We propose a HOME framework that fuses both visual cues and topological cues,
respectively, from CNN and MeshCNN. It approaches the state-of-art level.

This paper first introduces the related work in Section 2. Then, this paper introduces
the method in Section 3 and shows the experimental results in Section 4. Finally, we
summarize our method in Section 5.

2. Related Work

Our work involves using mesh perception to enhance the recognition of HOI relation.
Therefore, we will review three aspects of methods, including HOI detection, Graph Models,
and 3D perception.

2.1. HOI Detection

HOI detection is very important for complex scene understanding and has been
studied widely and intensively [18,19]. Human–Object interaction detection mainly in-
cludes two stages: object detection [8,9] and interaction recognition [19]. Previously,
Chao et al. [19] proposed the HORCNN method, which firstly detects people and objects in
the images, and then applies a deep neural network to extract visual and spatial features of
people and objects, and finally, fuses them. The visual cues are quite limited for interaction
relation discovery. Therefore, attention mechanism-based methods [11,13], pose estimation-
based methods [14,15], and scene graph-based methods [10,16] are designed to strengthen
the features. In terms of attention, pooling [20], spatial relations [16], body-part [21] , and in-
stance [11] based attention are proposed from different levels to extract effective context
information for action or interaction recognition. Considering that pose gives very relative
cues to human activity, PMFNet [14] uses the pose-aware multi-level features to adaptively
concentrate on the relevant areas of body parts. PastaNet [15] uses poses to guide part-state
recognition of the body and reduces the representation of movements toward the human
activity knowledge engine. To handle the many-to-many problem between human and
object, GPNN [10] defines a fully connected graph in which the nodes represent all people
and objects in the scene and parse the interaction relationship between people and objects.
Recently, a lot of work has been done to add semantic information to assist interaction
detection [22,23]. DRGNet [22] extends spatial features by embedding word features in
each object. PastaNet [15] obtains the semantic information of each body part and object
through BERT ’s pre-trained model [24], and then learned the model through the fusion of
semantic information and visual features.

2.2. Graph Models

To some extent, visual semantics is thought to be hidden behind the scene graph.
Qi et al. [10] introduced the graph model for HOI detection, in which a fully connected
graph is used to represent the relationship between humans and an object. Node fea-
tures are initialized using appearance features and are updated during message passing.
Wang et al. [25] improved the relation modeling with a heterogeneous graph that is better.
Gao et al. [22] took advantage of the heterogeneity of nodes to construct two sparse sub-
graphs centered on people and objects. Based on these graph models, the pair of spatial
relations is encoded into the node features. The currently known graph model focuses on
the relation extraction from an appearance feature and a coarse spatial feature. In contrast,
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we build the graph relation based on mesh of a human and an object, which discovers the
geometrical semantics of the interaction.

2.3. 3D Perception

In the recent years, the advance of geometry deep learning greatly promoted 3D
perception tasks, e.g., point cloud classification [26–28], segmentation [29,30], and detec-
tion [31,32], mesh registration [33,34], etc. Previously, PointNet [30] adopted maxpooling to
aggregate point set information to maintain the invariance of the point arrangement. Later,
the variant PointNet++ [26] improved it by capturing hierarchical feature information.
Since the perception on point cloud neglects the topology of geometry, mesh-based neural
networks are proposed to perceive the inherent structure. For example, MeshCNN [17]
develops a mesh pooling operation based on edge information for integrating the grid
features from bottom to up that imitates the 2D convolution. In our opinion, the mesh
perception reflects the topological semantics of a scene or object. If we build a triangular
mesh that unifies a human and the corresponding object under an interactive relationship,
the invariant features related to the interaction classification could be better captured.

3. HOME

In this section, we introduce the implemented HOME method in detail. We first
describe how to build human–object mesh (HOM) from images. Then, we introduce the
overall framework that considers HOM perception with respect to topological cues. Finally,
we give the fusing loss for visual cues and topological cues to train HOI recognition model.

3.1. HOM Modeling

To learn interactive actions by using the topological information of a human and an
object, we need to construct mesh data that represent the integration of the human and
the object. Firstly, we detect all the human and object bounding boxes in images. Then,
for each pair of human and object, we reconstruct their 3D shape, and merge them into an
integrated human–object mesh (HOM) model, as shown in Figure 2.

Figure 2. Building HOM from Image. Given the input image I, the bounding boxes of human and
objects <bh,bo> are obtained from the detector firstly. Then, 2D human pose P2d, human body mesh
Mh, and object sphere mesh Mo are estimated and reconstructed subsequently. Finally, Mh and Mo

are merged as HOM model Mho. Note: the red rectangle and blue rectangle are the detection boxes of
human and object respectively; the same below in other figures.

In detail, after the 2D object detection on image I, we obtain the bounding boxes
<bh, bo> of human and object with potential interaction relation. The region of interest
within bh is fed into Openpose [35] to get the human 2D pose P2d and camera parameters π.
The human region is put into SMPLify-X [36] along with pose P2d to recover the 3D body
shape. The original reconstructed 3D body mesh has 10,475 vertices and 20,908 triangular
facets. By considering the problem of GPU memory, the data are simplified to Mh with
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resolution of 3000 facets by considering economic GPU memory. According to π and bo,
we further estimate the object mesh represented by a hollow sphere using DJ-RN [37]: (1)
locating the sphere center (o1, o2) in the image plane according to the camera perspective
projection π, (2) using the prior object size and human–object distance to estimate the depth
o3; and then, (3) the position and size of the object are featured with parameter O(o1, o2, o3)
and r. In particular, r is its prior radius of a certain object category, and the focal length f
of the camera model is set to a fixed value of 5000 for all images. Finally, the 3D shape of
object Mo is represented using a discrete mesh with 162 vertices and 320 facets.

We compute the HOM model by fusing Mh and Mo. To guarantee consistent HOM in a
manifold, we choose three key points from the human and object, respectively, to define the
connection relationship. However, the relative positions of people and objects are always
changeable, because the interactions are in a dynamic manner in the actual scenes and they
are contactless in some scenes. There are also some interaction relations in which there
exist no physical contact between the human and object. Therefore, the key points are
dynamically picked. This process is as follows:

(1) Calculate the space distance set from the object center O to all human body triangle
center points.

(2) Find the closest human body mesh triangle Fh
key according to the distance set, and the

corresponding three vertices (V′1, V′2, V′3).
(3) Calculate the spatial distance set from the human body triangle Fh

key to the object center,
and find the closest object triangle Fo

key and corresponding key points (V′1, V′2, V′3) based
on the same principle.

(4) Eliminate triangle Fh
key and Mo

key, and then merge Mh and Mo into Mho as the final
HOM model.

Some reconstructed HOM examples are shown in Figure 3. We can see that the
HOMs in the second row illustrate the geometry topology of interactions clearly in the
corresponding images in the first row.

Figure 3. HOM examples (the second row) reconstructed from their corresponding images (the
first row).
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3.2. Framework of HOME

Figure 4 shows the framework human–object mesh topology-enhanced interaction
recognition (HOME) framework clearly. On the whole, HOME includes several branches
covering visual cues and topology cues to perceive the interaction in different aspects of
information in the image. For visual cues, we extract the appearance features and the 2D
spatial features, respectively, of the human and object. In addition, for topology cues, we
extract the mesh features of HOM. At last, topology cues are fused into the visual branches
to enhance the interaction classification.

Figure 4. Framework of HOME. On the whole, our network contains two types of clues: 2D visual
cues, including human and object appearance features ( fh, fo), and spatial feature fsp; topological
cues, including human topological feature f 3d

h and human–object topological feature f 3d
ho . We fuse the

corresponding visual clues fh and topological feature f 3d
h as f ′h, and fuse fsp and f 3d

h o as f ′ho. Finally,
the network outputs the scores of three feature branches as Sa

H , Sa
O and Sa

sp, which are utilized for
training and inference.

3.2.1. Visual Cues

Appearance Feature Extraction. In this section, we describe how to extract appearance
features from instance human and object, respectively. After the detection step, we first
extract the global feature of the entire image, and then, we use ROI Pooling to extract the
instance features of human and objects, being noted as fh and fo, from the global feature
heat map.
2D Spatial Feature Extraction. We use a double-channel binary map to represent the 2D
spatial relation of a human and an object. In the channel for the human, the value is set to 1
in the location that is in the human body bounding box while it is set to 0 in other areas. In
addition, in the channel for the object, the value is set to 1 in the region of object while it is
set to 0 in other places. The double-channel map is fed into a convolutional neural network
to extract the 2D spatial feature fsp.

3.2.2. Topological Cues

Apart for the visual cues, the 3D spatial and topological information are also very import
for interaction classification. Here, edge-based convolution is adopted to extract topological
cues from HOM that represent the invariant features of the interaction relationship.
Bottom-up feature extraction. As the interaction semantics is related to body shape, pose,
object orientation, and size, the topological cues locate at the low-dimensional manifold
of the HOM space. So, the information extraction is carried out in a bottom-up manner.
For each image I, HOM models are built for all detected persons and objects, obtaining
{M3d

i }. To feed it into MeshCNN, HOM should be translated to an edge-based feature
in size of ne × 5, where ne is the edge number of the mesh, while 5 means the number of
features corresponding to a central edge. These features cover the angle between adjacent
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triangle faces, the respective vertex angle of the two adjacent triangles, and the ratio of
edge length to height of the two adjacent triangles.

In particular, two branches of MeshCNN networks are used to extract the human
feature f 3d

h and human–object feature f 3d
ho , respectively. Each network consists of four

residual blocks, each of which contains three consecutive Mesh convolution operations,
followed by a Mesh pooling, as shown in Figure 5. At the early stage of pooling, it
captures the microscopic topology feature. At later stages, HOM topological information is
simplified toward macroscopic semantic-related interaction. Figure 6 shows the meshes
with different resolution after mesh pooling.

Figure 5. The network for perceiving the human mesh and HOM. The network consists of four
residual blocks, each of which contains three consecutive Mesh convolution operations, followed by
a Mesh pooling. Then, the network uses average pooling and fully connected network (FC) before
outputting the final topological feature.

Figure 6. The human body meshes in different resolutions by downsampling of the mesh convolution.
According to bottom-up feature extraction, the pooling operation simplifies the resolution from high
to low, but the topological feature is maintained and encoded into the nodes, which reflects the
invariant feature of different actions.
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3.3. Topology-Enhanced Fusion

Through the above work, we obtain the visual cue features fh, fo and fsp, and the
topological cue features f 3d

h , f 3d
ho . We supervise interaction detection on the three branches of

human, object, and space, respectively, but using topological cues to enhance them. In detail,
we concatenate the human feature fh with topological feature f 3d

h , and concatenate the
spatial feature with topological feature f 3d

ho .

f ′h = Concat( fh, f 3d
h ) (1)

f ′ho = Concat( fsp, f 3d
ho ) (2)

At last, we obtain the enhanced human features f ′h and human–object feature f ′ho.
In particular, the dimension of fh, fo, f 3d

h and fsp is 1024, and Enhanced f ′h and f ′sp are of
dimension 2048. Finally, f ′h, f ′ho, and fo are fed into two fully connected layers and one
sigmoid function followed, respectively, to obtain the corresponding confidence Sh, Sho,
and So for the classification of interaction.

3.4. Training and Inference

Loss for Training. Since HOI detection is a multi-label classification task, we choose the
binary cross-entropy loss function during the training stage. The loss terms corresponding
to human, object, and spatial map are Lh

cls, Lo
cls, and Lsp

cls, respectively. Finally, the total loss
Ltotal for training detection is:

Ltotal = Lh
cls + Lo

cls + Lho
cls (3)

Inference. For a given input image, the final interaction classification is computed based
on scores Sa

H , Sa
O, and Sa

sp from different branches. The score for inference is formulated as:

SHOI = sh ∗ so ∗ (Sa
h + Sa

o) ∗ Sa
ho (4)

where <sh, so> is the confidence pair of human and object from the detection result, indicat-
ing the probabilities of interactive subjects.

4. Experimental Results

In this section, we first describe the details of the implementation method. Then, we
introduce the dataset and metrics adopted for the experiments. Finally, we evaluate the
method by comparing with state-of-art methods and ablation studies.

4.1. Implementation Details

For a fair comparison, we use unified detection results, i.e., same bounding boxes and
category prediction, as in ICAN [11]. Based on the Faster-RCNN detector with ResNet-
50 [38] and FPN [39], the bounding boxes of persons and objects are predicted with score
Sh and So, respectively. We only retain detection boxes, satisfying Sh ≤ 0.6 and So ≤ 0.4.
To compute the visual cues, the feature maps of human and objects are scaled to a fixed
size 7 × 7 for extracting the appearance features, and the feature maps to a fixed size
64 × 64 for extracting the spatial features. To compute the topological cues, the MeshCNN
is pre-trained based on reconstructed HOM data.

Our deep learning model is run on Pytorch. We train the model on a NVIDIA 2080Ti
GPU, and the initial learning rate for each branch is set to 0.0025 with optimizer SGD.
The dropout rate in the layer before the last fully connected layer is set to 0.5. The gamma
and weight delay are set to 0.1 and 0.0001, respectively. The batch size is set to 16. The algo-
rithm converges after about the total number of 600 K iterations.
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4.2. Dataset and Metric

Dataset. We adopt the widely-used HOI benchmark HICO-DET [10] to validate the effec-
tiveness of HOME. HICO-DET is an instance-level benchmark consisting of 47,776 images
(38,118 for training and 9658 for testing) and 600 HOI categories. It contains 80 object
categories from COCO [40] 117 verbs and more than 150 thousand annotated HOI pairs.
Based on previous work [11,16,22], we use 80% of the datasets as the training set, and the
other 20% as validation. We reconstruct the meshes of humans and objects, and build HOM
models for each pair of human and object. Particularly, the MeshCNN is pre-trained on the
HOM training set before end-to-end training for fast convergence.
Evaluation Metrics. To evaluate the performance of the methods, we adopt the commonly
used mAP (mean average precision) as in previous works [11,12,19,21]. Predicting is valid
when it satisfies: (i) the predicted bounding boxes locate people and objects with IOU ≤ 0.5,
and (ii) the interaction is classified correctly.

4.3. Quantitative Evaluation

In order to explore the impact of human spatial topological information on detection
results, we conduct experiments and report the mAP on Full, Rare, and Non-Rare parts of
the HCIO-DET dataset, respectively. The comparison is mainly made through two types of
interaction frameworks: (1) the interaction detection framework that only uses 2D images
information, (2) 3D topology information is integrated into the interaction detection module
of 2D image information.
Performance. For the datasets, we select several classical algorithms for quantitative com-
parison. Table 1 shows the results of our method compared with other
methods [10,11,13,14,19,22,41]. In order to make a fair comparison, we adopt the same
object detection results as DRG [22], ICAN [11], and PMFNet [14]. Unlike other approaches,
GPNN [10] utilizes additional knowledge graphs to detect human–object pair interac-
tions. We adopt the same backbone network ResNet50-FPN for visual feature extraction
as in PMFNet [14] and DRG [22]. Among them, PMFNet uses human pose information
to amplify local areas of the human body to obtain fine-grained information. DRG [22]
made use of the heterogeneity of nodes to construct two sparse subgraphs centered on
people and objects. The 2D-baseline method is a pruned DRG [22] that excludes two sparse
subgraphs. HOME* is a HOME plus version that fusing HOM topological feature into
DGR method by referring to the HOME framework. We can see that the HOME method
shows the improvement of 0.37, 0.71, 0.33 mAP on Full, Rare, Non-Rare in contract with
the 2d-baseline, and that HOME* shows 0.26, 0.32, 0.21 improvement in contrast to DGR.
Both HOME and HOME* achieve state-of-art performance, validating the significance of
the HOM topological cue to interaction recognition.

Table 1. Comparison of results in HICO-DET.

Method Visual Feature Backbone Full Rare Non-Rare

HORCNN [19] CaffeNet 7.81 5.37 8.54
InteractNet [13] ResNet50-FPN 9.94 7.16 10.77
GPNN [10] ResNet101 13.11 9.34 14.23
ICAN [11] ResNet50 14.84 10.45 16.15
No-Frills [41] ResNet152 17.18 12.17 18.68
PMFNet [14] ResNet50-FPN 17.46 15.65 18.00
DRG [22] ResNet50-FPN 19.26 17.74 19.71

2d-baseline ResNet50-FPN 18.78 16.52 19.32
HOME ResNet50-FPN 19.15 17.23 19.66
HOME* ResNet50-FPN 19.52 18.06 19.92

Quantitative results. We compute the predicted interaction scores and visualize them in
Figure 7. Figure 7 shows the quantitative comparison between the 2d-baseline method
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and HOME. On the whole, HOME predicts a higher score for correct category than the
2d-baseline method.

Figure 7. Qualitative results. Blue labels score value output by the 2d-baseline model and red
labels that of HOME. The prediction results and the correct action annotations are shown for the
human–object pair located by the bounding boxes.

To further validate the effectiveness for different categories, we compute the mean of
mAP values for each type of interaction, and report them in Figure 8. The results also show
that topology information improves the performance in almost all categories.

4.4. Ablation Studies

In order to study the influence of different modules of the network model on the
detection results, we completed a series of ablation experiments.
Multiple branches. To validate the effectiveness of multi-branch fusion, we ablate spatial
features, topological features, and both of them for comparison. For the first, we delete
the 2D spatial feature by extracting a branch during inference. For the second, we delete
the 3D human–object topological cue branch. In addition, for the third, we delete both the
spatial feature branch and the topological cue branch for testing.

In Table 2, we can observe that the detection results are reduced by 3.29, 4.17, and
2.96 mAP, respectively, if not utilizing both 2D spatial features and HOM topological
features. In addition, the results are reduced by 0.37, 0.71, and 0.34 mAP, respectively, if
not using HOM topological features. Moreover, without 2D spatial features, the detection
results are reduced by 2.96, 2.99, and 2.79 mAP, respectively, in contrast with HOME. The
above results validate the effectiveness of our multi-branch fusion.
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Figure 8. Performance (Mean of mAP values) comparison on different actions between our method
and 2d-baseline on HICO-DET.

Table 2. Effects of different branches (mAP).

Method Full Rare Non-Rare

HOME 19.15 17.23 19.66

w/o spatial & Topology 15.86 13.06 16.7
w/o spatial 16.19 14.24 16.87
w/o Topology 18.78 16.52 19.32

Fusion mode with HOM. We test two fusion methods: early fusion and late fusion of 2D
human visual features and 3D human–object topological features. Early fusion firstly fuses
two feature vectors and then sends them into the interaction detection. Late fusion is to
fuse the detection results after obtaining the results from different branches. The evaluation
results are reported in Table 3. We can see that both fusion modes achieve improvement in
contrast with the 2D-baseline, and that the early fusion performs the best. The late fusion
shows worse improvement than the early one due to the fact that human–object topologies
of some different interactive actions may be similar and may result in ambiguity. To some
extent, the early fusion method, which we used in HOME, complements appearance
features with human–object topological features in a coarse-to-fine manner, showing its
better generalization.

Table 3. Performance (mAP) comparison of different fusion modes.

Method Full Rare Non-Rare

2D-baseline 18.78 16.52 19.32

HOME-late fusion 18.96 17.03 19.57
HOME-early fusion 19.15 17.23 19.66
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Failure Case. Although HOME assists rough visual features and improves the judgment of
interactive behavior by utilizing 3D human–object topology information, there also exists
some specific scenes that could not be handled, as shown in Figure 9. Firstly, in the multi
human–object scene, if two people are next to each other, the category may be fused since
they have similar spatial relation to the object, as shown in Figure 9a,b. Secondly, due
to lacking temporal information, it is difficult to understand if both of the two persons
are washing one car, resulting in missed detection, as shown in Figure 9c. In addition,
the object detector fails to detect objects that occluded by body, e.g., the phone cannot be
detected in Figure 9d.

Figure 9. The failure cases: (a,b) not matching human and object when the people are next to each
other under interaction; (c) missing detection when two persons are washing one car; (d) missing
detection when the phone is covered by the human body.

5. Discussion

The advantage of the using the human–object mesh is that it suppresses interference of
self-occlusion and external occlusion brought by pose. The improvement is obvious when
the action is strongly related to the human posture. Although the topological cue could be
used to cover the shortage of visual features for HOI recognition and shows improvements
in most scenes, there still exists special action that is not easy to handle. For example,
the fusion may be confused when the object is underfoot. The topological feature may be
redundancy or unnecessary for “stand on” because the relation “on” is weakly relative
to the human pose, resulting in an inconspicuous improvement on the verb “stand on”,
as shown in Figure 8. In addition, the method is limited by results of the object detector.
When detection results are wrong or unfaithful, incorrect mesh reconstruction must have a
negative impact on the recognition. At last, the inference time of our method is about 3fps
when running on RTX 2080Ti GPU, which is a little time-consuming.

6. Conclusions

We propose a 3D human–object mesh topology enhancement method (HOME) for
HOI recognition. In the method, topological cues of HOM integrated with human geometry
and the 3D human–object interaction relation can be fused to the visual cues to enhance
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the HOI recognition. The two key contributions are: we provide the first perspective that
human–object interaction is derived from HOM geometric topology; and the interaction
relation is dug by extracting edge features of HOM from bottom to top, so as to construct
invariant topological features for significant enhancement. The experiments validate that
the topology-fused method greatly promotes HOI discrimination performance. However,
there still exists a weak point: HOME relies on reconstruction of human–object meshes and
MeshCNN perception, which is a little costly on storing edges and edge-based convolution.
In the future, we will try using the geometry of a topology-guided graph network to accept
visual feature, such that HOI recognition could be processed efficiently. Moreover, we hope
that the idea of geometry topology could inspire more interesting work in the area of HOI
recognition in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

DRG Dual relation graph
GPNN Graph parsing neural networks
HICO-DET Human Interacting with Common objects for the HOI Detection Task
HOI Human–Object Interaction
HOM Human–Object Mesh
HOME Human–Object Mesh Topology Enhanced Interaction Recognition Method
HORCNN Human Object Region-based CNN
ICAN Instance-centric attention network

InteractNet
Refer to the method in the work Detecting and Recognizing Human–Object Interac-
tions [13]

IOU Intersection over Union
mAP mean average precision
No-Frills Refer to the no-frills approach for HOI Detection [10]
PMFNet Pose-aware Multi-level Feature Network
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