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Abstract: Understanding the effects of fear, quadratic fixed effort harvesting, and predator-dependent
refuge are essential topics in ecology. Accordingly, a modified Leslie–Gower prey–predator model
incorporating these biological factors is mathematically modeled using the Beddington–DeAngelis
type of functional response to describe the predation processes. The model’s qualitative features are
investigated, including local equilibria stability, permanence, and global stability. Bifurcation analysis
is carried out on the temporal model to identify local bifurcations such as transcritical, saddle-node,
and Hopf bifurcation. A comprehensive numerical inquiry is carried out using MATLAB to verify the
obtained theoretical findings and understand the effects of varying the system’s parameters on their
dynamical behavior. It is observed that the existence of these factors makes the system’s dynamic
behavior richer, so that it involves bi-stable behavior.

Keywords: fear; predator-dependent refuge; quadratic fixed effort harvesting; Leslie–Gower
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1. Introduction

The exploitation of natural resources has increased as a result of the rising need for food
and energy. Therefore, in theoretical ecology and evolutionary biology throughout the past few
decades, many scientists have examined prey–predator interactions, and mathematical models
have tremendously benefited in better understanding these challenging scenarios [1–4]. In the
early Nineteenth Century, Malthus seems to have utilized mathematical models to explain the
patterns of prey–predator relationships. In order to simulate prey–predator interactions with
realistic accuracy, the well-known Lotka–Volterra model was modified to include a prey logistic
growth factor, as well as a number of population-dependent reaction functions [1,3].

In order to improve the birth rate of prey animals, fear effects were also exploited.
Numerous studies in basic ecology and environmental biology have examined the impact
of fear [5–15]. In addition to preventing direct ingestion, fear of predators has been found
to increase vigilance and reduce the amount of time spent searching for wild animals living
in social groups when population sizes decline. When averaged across numerous trials, the
impact of population-level anxiety on prey survival may be comparable to that of direct
predator eating. The cost of fear in prey reproduction, which was recently developed
and tested by Sarkar and Khajanchi [10], is utilized in this paper. They demonstrated
how strong anti-predator reflexes could maintain relationships between prey and predator.
Regarding fear, Maghool and Naji [12] built and researched a tri-trophic Leslie–Gower
food-web system. A time-delayed predator–prey model with Holling type II functional
response was put forth by Liu et al. [13] and includes the gestation period and the cost
of fear on prey reproduction. In their study of the dynamics of a Leslie–Gower ratio-
dependent predator–prey model that took into consideration the prey population’s fear,
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Vinoth et al. [14] also took into account the Allee effect in the predator growth from both
a biological and mathematical standpoint. Due to the prey group’s protective skills, the
Sokol–Howell kind of function response is employed to describe the predation process.
The effects of predation anxiety on the dynamics of the three-species food chain system
at the first and second levels were postulated and studied by Maghool and Naji [15]. An
investigation of the dynamics of a prey–predator model took into account the predator
stage structure, and the fear effect was performed recently in [16].

A refuge is a term used in ecology to describe a location where an organism might
hide from predators in order to avoid being discovered. Due to population dynamics,
populations of both predators and prey are much larger, and a region can support a
significant number of additional species when shelters are present. Therefore, any method
that lowers the risk of predation, such as prey aggregations, geographic or temporal
refuges, or reduced prey search activity, can be broadly referred to as a refuge. There is
a natural occurrence that serves as a haven for it to survive. The prey’s use of regional
shelters is one of the more significant behavioral traits that influences the dynamics of
predator–prey systems. By using shelters, some of the prey population is partially protected
from predators. The coexistence of the predator–prey system is significantly impacted by
the presence of shelters. The most widely used definitions of refuge in the literature at
this time are a constant refuge and refuge proportionate to prey; see for example [17,18]
and the references therein. Researchers are now being drawn to novel, diverse refuge
concepts [19–21]. Due to the danger that predators cause, this study explores a refuge
notion proportional to the predator. Prey refuges grow as predators do because as fears
grow, so do the predators’ numbers.

On the other hand, harvesting is a substantial and regular occurrence. Fisheries
frequently use harvesting since natural systems are largely regenerative. In an exploited
fishing system with two interacting species, researchers are looking into capturing either
prey or predator species or both prey and predator species. Many different harvesting
techniques have been used. Some people use continuous threshold harvesting, fixed effort
harvesting (or proportional harvesting), and constant harvesting [20,22–24], while others
researched nonlinear harvesting [18,25,26].

The Leslie–Gower model of prey and predators places a strong emphasis on the fact
that both prey and predator growth rates have upper bounds and that the quantity of
available prey affects the predator’s carrying capacity. This is not taken into consideration
by the Lotka–Volterra model. Both predators and prey can reach these upper limits under
ideal circumstances: for predators, when there is much prey per predator, and for prey,
when there are few predators. Numerous scholars have become interested in Leslie–Gower
prey–predator systems [4,12,14,25–27]. The Leslie–Gower model of prey and predator in
the presence of fear, quadratic fixed effort harvesting, and predator-dependent refuge is
therefore suggested and explored in this study.

2. Model Construction

The modified Leslie–Gower prey–predator model with the Sarkar and Khajanchi
fear function [10] that influences the prey’s birth rate and the quadratic fixed effort har-
vesting with the Beddington–DeAngelis type of functional response can be stated in the
following form:

dN
dT

= N
[

r1

(
m +

n(1−m)

n + P

)
− d− bN − aP

c + N + eP
− q1EN

]
= N f (N, P),

dP
dT

= P
[

r2

(
1− eP

K + N

)
− q2EP

]
= Pg(N, P), .

(1)

where N(T) and P(T) are the prey and predator densities at time T, respectively.
Due to the importance of the prey’s refuge, it is observed that prey refugees are

thought to reduce predator–prey oscillations and avoid prey extinction. An examination
of the empirical evidence reveals that refuges can fulfill the former function. Therefore,
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the Beddington–DeAngelis response function is used to create a harvested in the above
dynamical model so that the quantity of prey refuge is dependent on both species. Assume
that the amount of prey refuge is δNP [19], with δ being the refuge coefficient. The remaining
(N − δNP) prey species are vulnerable to predators. Throughout the manuscript, it is also
assumed that 0 < δ < 1, which is due to the fact that only a portion of the prey will have a
refuge, and 0 ≤ 1− δP ≤ 1 ensures an appropriate range of refuge for a realistic environment.

Accordingly, the dynamics of the above-described model can be represented in the
following form:

dN
dT

= N
[
r1

(
m + n(1−m)

n+P

)
− d− bN − a(1−δP)P

c+N(1−δP)+eP − q1EN
]
= N f (N, P),

dP
dT

= P
[
r2

(
1− eP

K+N(1−δP)

)
− q2EP

]
= Pg(N, P), .

(2)

where all the parameters are nonnegative and described in Table 1.

Table 1. Parameters’ description.

Parameter Description

r1, r2 The birth rate of prey population and predator population, respectively.

m The minimum cost of fear with m ∈ [0, 1].

n The level of fear.

d The natural death rate of the prey.

b Decay rate due to intraspecific competition.

a Attack rate.

c Half saturation constant.

e A measure of the food quantity that the prey provides converted to predator birth.

q1, q2 The catchability coefficients of the prey and predator, respectively.

E The effort level for harvesting the prey and predator.

K The carrying capacity of the predator in the absence of its prey.

δ The refuge coefficient.

Theorem 1. System (2) is a positively invariant.

Proof. According to the form of System (2), it is clear that the system is a Kolmogorov
system in which f (N, P) and g(N, P) are continuously differentiable functions representing
the growth rates of the prey and predator, respectively. Hence, using the positive conditions
(N(0),P(0)), we can solve (2) to obtain:

N(T) = N(0) e

∫ t
0 [r1(m+

n(1−m)

n + P(s)
)−d−bN(s)−

a(1− δP(s))P(s)
c + N(s)(1− δP(s)) + eP(s)

−q1EN(s)]ds

P(T) = P(0)e

∫ t
0

[
r2

(
1−

eP(s)
K + N(s)(1− δP(s))

)
−q2EP(s)

]
ds

Consequently, from the definition of the exponential function, any solution in the
interior of R2

+ =
{
(N, P) ∈ R2 : N(T) ≥ 0, P(T) ≥ 0

}
that starts with positive initial con-

ditions (N(0), P(0)) stays there indefinitely, according to the previous two equations. �

Theorem 2. All the solutions of System (2) are uniformly bounded in the region.

Y =

{
(N, P) ∈ R2

+ : N ∈
[

0,
r1 − d

b

]
, P ∈

[
0,

r2

δ

]}
,
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where r1, r2, d, and b are positive constants that satisfy r1 − d > 0, which represents the survival
condition of the prey species in the absence of the predator, while all the new symbols are given in
the proof.

Proof. According to the first equation of System (2), it is observed that

dN
dT
≤ (r1 − d)N − bN2.

As a result of solving the differential inequality above:

N(T) ≤ r1 − d
b
[
1− e−(r1−d)T

]
+ (r1 − d)N(0)e−(r1−d)T

Therefore, when T → ∞ , it is obtained that N(T) ≤ r1−d
b = ε > 0, since the birth rate

for the survivor species is biologically greater than the death rate. Using the prey’s bound
in the second equation of System (2), it is deduced that:

dP
dT
≤ r2P−

[
r2e

K + ε
+ q2E

]
P2 = r2P− δP2.

Similarly, solving the last differential inequality gives:

P(T) ≤ r2

δ [1− e−r2T ] + r2N(0)e−r2T .

Therefore, as T → ∞ , we obtain P(T) ≤ r2
δ . Consequently, the proof is complete. �

In light of the preceding, System (2) comprises continuous partial derivative interaction
functions in the R2

+ domain. As a result, for any given beginning condition, System (2) has
a unique solution.

3. Equilibria and Their Stability

There are only four non-negative equilibrium points (EP) in System (2), and the
existing conditions and their forms are as follows:

The trivial equilibrium point (TEP), which is defined by W1 = (0, 0), always exists.
The predator-free equilibrium point (PDFEP) is denoted by W2 =

(
N, 0

)
, where

N = r1−d
b+q1E , which can be obtained from solving f (N, 0) = 0, exists on the N− axis if and

only if
d < r1. (3)

The prey-free equilibrium point (PYFEP), which is written as W3 =
(
0, P̃

)
, where

P̃ =
r2K

r2e + Kq2E
, which can be obtained from solving g(0, P) = 0, always exists.

Note that all the above EPs are the same as those of System (1).
Finally, there is the survival equilibrium point (SEP), which is expressed as

W4 = (N∗, P∗), where

N∗ =
er2P∗ − K(r2 − Eq2P∗)
(1− δP∗)(r2 − Eq2P∗)

(4)

However, P∗ is the positive root of the next sixth-order polynomial equation.

B6P6 + B5P5 + B4P4 + B3P3 + B2P2 + B1P + B0 = 0, (5)
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where:

B6 = −aδ2E2q2
2 < 0,

B5 = δEq2[Eq2(2a− aδn + de− emr1) + 2aδr2],
B4 = E2q2

2[−a + cdδ− de− dδK + beK + 2aδn + dδen + eEKq1
−cδmr1 + emr1 + δKmr1 − δenr1] + Eq2[−4aδr2 − 3dδer2 ,

+be2r2 + 2aδ2nr2 + e2Eq1r2 + 3δemr1r2
]
− aδ2r2

2,
B3 = E2q2

2[−cd + bcK + dK− bK2 − an + cdδn− den− dδKn + beKn
+cEKq1 − EK2q1 + eEKnq1 + cmr1 − Kmr1 − cδnr1 + enr1 + δKnr1

]
+Eq2[2ar2 − 2cdδr2 + bcer2 + 3der2 + 2dδKr2 − 4beKr2 − 4aδnr2
−3dδenr2 + be2nr2 + ceEq1r2 − 4eEKq1r2 + e2Enq1r2 + 2cδmr1r2 .
−3emr1r2 − 2δKmr1r2 + 3δenr1r2] + 2aδr2

2 + 2dδer2
2 − 2be2r2

2

−aδ2nr2
2 − 2e2Eq1r2

2 − 2δemr1r2
2

B2 = E2q2
2[−cdn + bcKn + dKn− bK2n + cEKnq1 − EK2nq1 + cnr1

−Knr1] + Eq2r2
[
2cd− 2bcK− 2dK + 2bK2 + 2an− 2cdδn + bcen

+3den + 2dδKn− 4beKn] + E2q1q2r2
[
−2cK + 2K2 + cen− 4eKn

]
,

+Eq2r1r2[−2cm + 2Km + 2cδn− 3en− 2δKn] + r2
2[−a + cdδ

−bce− 2de− dδK + 3beK + 2aδn + 2dδen− 2be2n− ceEq1
+3eEKq1 − 2e2Enq1 − cδmr1 + 2emr1 + δKmr1 − 2δenr1

]
.

B1 = Enq2r2[2c(d− bK)− 2K(d− bK)− 2EKq1(c− K)− 2r1(c− K)]
+r2

2[−cd + bcK + dKr2
2 − bK2 − an + cdδn− bcen− 2den ,

−dδKn + 3beKn + cEKq1r2
2 − EK2q1 − ceEnq1 + 3eEKnq1

+cmr1 − Kmr1 − cδnr1 + 2enr1 + δKnr1],
B0 = nr2

2(c− K)[EKq1 + r1 − (d− bK)].

Therefore, the SEP exists in the interior of a positive quadrant of the NP− plane
uniquely if the following conditions are met.

0 < K(r2 − Eq2P∗) < er2P∗, (6)

with one set of the following sets of sufficient conditions.

B0 > 0, B1 > 0, B2 > 0, B4 < 0, B5 < 0
B0 > 0, B1 > 0, B2 > 0, B3 > 0, B4 > 0, B5 < 0

B0 > 0, B1 > 0, B2 < 0, B3 < 0, B4 < 0, B5 < 0
B0 > 0, B1 > 0, B2 > 0, B3 > 0, B4 > 0, B5 > 0
B0 > 0, B1 < 0, B2 < 0, B3 < 0, B4 < 0, B5 < 0

. (7)

In order to study the local asymptotic stability (LAS) of System (2), the Jacobian matrix
(JM) of System (2) is computed at the point (N, P) by:

J(N, P) =

N
∂ f
∂N

+ f (N, P) N
∂ f

∂P

P
∂g

∂N
P

∂g

∂P
+ g(N, P)

, (8)

where:

∂ f

∂N
= −b + a(1−δP)2P

Ω2
1
− q1E,

∂ f

∂P
= − r1n(1−m)

(n+P)2 −
[c + N(1− δP) + eP](a− 2δP)− a(1− δP)P(−Nδ + e)

Ω2
1

,

∂g

∂N
=

r2eP(1− δP)
Ω2

2
,

∂g

∂P
= −q2E− r2e(K + N)

Ω2
2

,
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with Ω1 = c + N(1− δP) + eP, Ω2 = K + N(1− δP).
Accordingly, for W1, the JM becomes

J(W1) =

(
r1 − d 0

0 r2

)
.

Hence, J(W1) has the eigenvalues λ11 = r1 − d and λ12 = r2 > 0. Thus, W1 is an
unstable node or saddle point depending on r1 > d, or r1 < d, respectively.

The JM at W2 can be written as:

J(W2) =

−(r1 − d) −N
(

r1(1−m)
n +

a
c + N

)
0 r2

.

Thus, J(W2) has the following eigenvalues λ21 = −(r1 − d) < 0 due to the existing
condition (3), and λ22 = r2 > 0. Thus, W2 is a saddle point.

The JM at W3 can be written as:

J(W3) =

r1

(
m +

n(1−m)

n + P̃

)
− d−

a
(
1− δP̃

)
P̃

c + eP̃
0

r2eP̃2(1− δP̃
)

K2 −r2

. (9)

Therefore, the following roots λ31 = r1

(
m +

n(1−m)

n + P̃

)
− d −

a
(
1− δP̃

)
P̃

c + eP̃
and

λ31 = −r2 < 0 are the eigenvalues of J(W3). Therefore, the PYFEP is LAS provided
the following requirement is met.

r1

(
m +

n(1−m)

n + P̃

)
< d +

a
(
1− δP̃

)
P̃

c + eP̃
. (10)

Finally, System (2) JM at W4 can be written as:

J(W4) =

(
w11 w12
w21 w22

)
(11)

where:

w11 = N∗
(
−b +

a(1− δP∗)2P∗

Ω∗12 − q1E

)
,

w12 = −N∗
(

r1n(1−m)

(n + P∗)2 + [c+N∗(1−δP∗)+eP∗ ](a−2δP∗)−aP∗(1−δP∗)(e−N∗δ)
Ω∗1 2

)
,

w21 =
r2eP∗2(1− δP∗)

Ω∗22 , w22 = −P∗
(

q2E +
r2e(K + N∗)

Ω∗22

)
,

where Ω∗1 = c + N∗(1− δP∗) + eP∗ and Ω∗2 = K + N∗(1− δP∗). Direct computation
reveals that J(W4) has two negative real-part eigenvalues, implying that W4 is LAS if the
following necessary condition is satisfied.

a(1− δP∗)2P∗

Ω∗2 < b + q1E. (12)

2δP∗Ω∗1 + eaP∗(1− δP∗)
Ω∗12 <

r1n(1−m)

(n + P∗)2 +
aΩ∗1 + δaN∗P∗(1− δP∗)

Ω∗12 . (13)

A fundamental challenge in mathematical biology is the long-term persistence of
each component of a system of interacting components, which is often a population in
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an ecological environment. Long-term survival is determined by a variety of factors.
As a result, studying each species’ long-term survival in a prey–predator relationship
is a fascinating topic. In this section, the Gard technique is utilized, which is based on
constructing Lyapunov-like persistence functions [28]. The criteria for the system’s survival
are specified in the following theorem.

Theorem 3. If the following condition holds, then System (2) is uniformly persistent.

r1

(
m +

n(1−m)

n + P̃

)
> d +

a
(
1− δP̃

)
P̃

c + eP̃
. (14)

Proof. Consider the function U(N, P) = Nα1 Pα2 , where α1 and α2 are positive constants.

Obviously, U(N, P) > 0 for all (N, P) ∈ R2
+, and U(N, P) = 0 for all (N, P) ∈ ∂R2

+,
where ∂R2

+ represents the boundary of R2
+. Hence, U(N, P) is the so-called persistence

function or named the average Lyapunov function in the sense of the Gard approach.
Therefore, according to Gard, the proof follows if and only if ϕ(N, P) = U′(N,P)

U(N,P) is positive

for all points (N, P) that belong to the ω− limit sets of System (2) in ∂R2
+. The following is

the result of direct computation:

ϕ(N, P) =
U′(N, P)
U(N, P)

=
α1

N
dN
dT

+
α2

P
dP
dT

.

Accordingly, W1, W2, and W3 belong to the ω− limit sets of System (2) in ∂R2
+. More-

over, the direct calculation gives that:

ϕ(W1) = α1(r1 − d) + α2r2.
ϕ(W2) = α2r2.

ϕ(W3) = α1

(
r1

(
m + n(1−m)

n+P̃

)
− d− a(1−δP̃)P̃

c+eP̃

)
.

Clearly, for a suitable choice of α1 and α2, so that α1 is sufficiently larger than α2,
it is obtained that ϕ(W1) > 0, while ϕ(W2) > 0 always. However, ϕ(W3) > 0 under
Condition (14). Hence, the proof is complete. �

4. Global Stability Analysis

The following theorems are concerned with the system’s global dynamics (2). The
attractive basin of trajectories of a dynamical System (2), according to global stability, is
either the state-space or the interior of the state-space that determines the system’s state
variables. In other words, global stability implies that, regardless of the initial conditions,
all paths eventually drift to the system’s attractor. Global stability is required by most
biological systems, such as gene regulatory systems.

Theorem 4. The PYFEP is globally asymptotically stable (GAS) if and only if the following
requirement holds.

r1 < d. (15)(
r2eP̃(1− δP)

KΩ2

)2

< 4(b + q2E)
(

r2e
Ω2

+ q2E
)

. (16)
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Proof. Define the function V1(N, P) = N +

[
P− P̃− P̃ln

(
P
P̃

)]
, which is a positive defi-

nite real-valued function on the region D1 =
{
(N, P) ∈ R2

+ : N ≥ 0, P > 0
}

. Then, after
performing some direct calculations, it is deduced that

dV1

dT
=

dN
dT

+

(
P− P̃

P

)
dP
dT
≤ (r1 − d)N − (b + q1E)N2 − a(1− δP)NP

Ω1

−
(

r2e
Ω2

+ q2E
)(

P− P̃
)2

+

(
r2eP̃(1− δP)

KΩ2

)
N
(

P− P̃
)
.

Further simplification leads to:

dV1

dT
≤ (r1 − d)N −

[√
b + q1EN −

√
r2e
Ω2

+ q2E
(

P− P̃
)]2

.

Obviously,
dV1

dT
is negative definite under Conditions (15) and (16). Hence, the PYFEP

is GAS. �

Theorem 5. Assume that System (2) has a unique SEP that is LAS, then it is GAS.

Proof. If there exists a continuously differentiable function D(N, P) (called the Dulac

function) such that the expression ∆ =
∂

∂N

(
D

dN
dT

)
+

∂

∂P

(
D

dP
dT

)
has the same sign ( 6=0)

almost everywhere in a simply connected region of the plane, the plane autonomous
System (2) has no non-constant periodic solutions lying entirely within the region, accord-
ing to the Bendixson–Dulac theorem [29].

Hence, define D(N, P) =
1

NP
, which is a C1 in a simply connected region of the

domain of System (2), then direct computation with respect to System (2) shows that

∆ = − b− q1E
P

+
a(1 + δP)2

Ω2
1

− r2eN(K + N)

Ω2
2

− q2E
N

.

Clearly, ∆ < 0 due to Condition (12) of the local stability of the SEP.
Thus, System (2) has no periodic dynamics in the interior of R2

+, which is assumed to
have a unique SEP. Consequently, the Poincare–Bendixson theorem that states the solution
guarantees that the SEP is GAS. �

5. Bifurcation Analysis

Bifurcation theory investigates changes in the qualitative structure of a collection
of curves, such as the integral curves of a set of vector fields or the solutions of a set of
differential equations. A bifurcation occurs when a small smooth change in a system’s
parameter values causes a significant qualitative change in its behavior. It is most commonly
used in the mathematical study of dynamical systems. Bifurcation can take two different
forms: local bifurcations, which can be seen when parameters cross critical thresholds by
looking for changes in the local stability properties of equilibria, periodic orbits or other
invariant sets; global bifurcations, which happen when the system’s larger invariant sets
interfere with each other or with the system’s equilibria. They cannot be found solely by
examining the stability of the equilibria. In this section, the detection of the possibility of
having local bifurcation is carried out.

Rewrite System (2) as:

dZ
dT

= F(Z), with Z =

(
N
P

)
, and F =

(
N f (N, P)
Pg(N, P)

)
.
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Hence, the second directional derivative of F, where V = (v1, v2)
T is any vector with

µ ∈ R+, can be written using direct computation as:

D2F(Z, µ).(V, V) =

(
c11
c21

)
, (17)

where:
c11 = − ca(c+N)

Ω3
1

v1v2 +
2a(c+N)(cδ+e)N

Ω3
1

v2
2 +

a[2c2δ−ce+cδN−2eN]P
Ω3

1
v1v2

+ 3aδe(c+N)P2

Ω3
1

v1v2 +
aδe(e−δN)P3

Ω3
1

v1v2 +
2(1−m)nr1 N

(n+P)3 v2
2

+ (1−m)nr1

(n+P)2 v1v2 +
aN(1−δP)[c−3cδP+x(−1+δP)2−eP(1+δP)]

Ω3
1

v1v2

− 2(n+P)2[aNP(1−δP)3−aP(−1+δP)2Ω1+(b+Eq1)Ω3
1]

(n+P)2Ω3
1

v1
2

−Ω1[(1−m)nr1Ω2
1+a(n+P)2(c+x−2δ(c+N)P+δ(−e+δN)P2)]

(n+y)2Ω3
1

v1v2

c21 = −2Eq2v2
2 − 2er2(K+N)2

Ω3
2

v2
2 + 4er2(K+N)P

Ω3
2

v1v2 − 2er2P2

Ω3
2

v1
2

+ 4er2δP3

Ω3
2

v1
2 − 6er2δv1v2(K+N)P2

Ω3
2

+ 2er2δ2 NP3

Ω3
2

v1v2 − 2er2δ2P4

Ω3
2

v1
2

Theorem 6. System (2) undergoes a transcritical bifurcation (TB) at the PYFEP when the parameter

d passes through the value d∗ = r1

(
m +

n(1−m)

n + P̃

)
−

a
(
1− δP̃

)
P̃

c + eP̃
, provided that the following

condition holds:
c̃11 6= 0, (18)

where the symbol c̃11 is determined in the proof.

Proof. From the JM that is given by Equation (9), it is observed that for d = d∗, it becomes

J1 = J(W3, d∗) =

 0 0
r2eP̃2(1− δP̃

)
K2 −r2

 =
(
dij
)
.

Therefore, J1 has eigenvalues given by λ31
∗ = 0 and λ32

∗ = −r2. Thus, W3 becomes a

non-hyperbolic point. Let V1 =

(
v11
v21

)
and U1 =

(
u11
u21

)
be the eigenvectors corresponding

to the λ31
∗ = 0 of J1 and their transpose, respectively. Then, the direct calculation gives that:

V1 =

 1
eP̃2(1− δP̃

)
K2

 =

(
1
ε1

)
, and U1 =

(
1
0

)
.

Moreover, simple computation gives that:

Fd(Z, d) =
(
−N

0

)
⇒ Fd(W3, d∗) =

(
0
0

)
. Hence, it is obtained that U1

TFd(W3, d∗) = 0.

U1
T[DFd(W3, d∗)V1] = −1 6= 0.

Moreover, according to Equation (17), the following result is obtained

D2F(W3, d∗)(V1, V1) =

(
c̃11
c̃21

)
,
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where:

c̃11 = − (1−m)nr1(
n + P̃

)2 ε1 −
ac2(

c + eP̃
)3 ε1 +

a
(
2c2δ− ce

)
P̃(

c + eP̃
)3 ε1 +

3acδeP̃2(
c + eP̃

)3 ε1

+
aδe2P̃3(
c + eP̃

)3 ε1 − 2

[
−aP̃

(
1− δP̃

)2
+ (b + Eq1)

(
c + eP̃

)2
]

(
c + eP̃

)2

−

[
(1−m)nr1

(
c + eP̃

)2
+ a
(
n + P̃

)2(c− 2cδP̃− δeP̃2)](
n + P̃

)2 (c + eP̃
)2 ε1

c̃21 = −2Eq2ε1
2 − 2er2

K
ε1

2 +
4er2P̃

K2 ε1 −
2er2P̃2

K3 − 6er2δP̃2

K2 ε1

+
4er2δP̃3

K3 − 2er2δ2P̃4

K3

.

Hence, it is obtained that U1
T[D2F(W3, d∗)(V1, V1)

]
= c̃11, which is not equal to zero

under Condition (18). As a result of the Sotomayor theorem of local bifurcation [29],
System (2) undergoes a TB at W3, and this completes the proof. �

Theorem 7. If Condition (12) is met along with the following condition:

r1n(1−m)

(n + P∗)2 +
aΩ∗1 + δaN∗P∗(1− δP∗)

Ω∗12 <
2δP∗Ω∗1 + eaP∗(1− δP∗)

Ω∗12 . (19)

then, as the parameter r1 = r1
∗, System (2) presents a saddle-node bifurcation (SNB) near the SEP

provided that the following condition holds.

ε3c∗11 + c∗21 6= 0, (20)

where:

r1
∗ =

(n + P∗)2

n(1−m)

(
2δP∗Ω∗1 + eaP∗(1− δP∗)

Ω∗12 − aΩ∗1 + δaN∗P∗(1− δP∗)
Ω∗12 − w11w22

N∗w21

)
.

All the new symbols are defined in the proof.

Proof. Recall the JM of System (2) at the SEP that is given by Equation (11) with r1 = r∗1 ,
then it can be written as:

J2 = J(W4, r∗1 ) =

(
w11 w∗12
w21 w22

)
,

where w11, w∗12, w21, and w22 are the elements of J(W4), with w∗12 = w12
(
r∗1
)
. Direct

calculation shows that the determinant of J2 is zero.

Then J2 has a zero eigenvalue (λ∗41 = 0) with the second eigenvalue λ∗42 = w11 +w22 < 0
under Condition (12). Thus, the SEP is a non-hyperbolic point when r1 = r∗1 .

Let V2 =

(
v12
v22

)
and U2 =

(
u12
u22

)
be the eigenvectors associated with λ∗41 = 0 of J2

and their transpose, respectively. Then, the direct calculation gives that:

V2 =

(
−w∗12
w11
1

)
=

(
ε2
1

)
, and U2 =

(
−w21
w11
1

)
=

(
ε3
1

)
.
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Note that, according to the Jacobian elements, we obtain that ε2 > 0 and ε3 > 0 due to
Conditions (12) and (19). Moreover, simple computation gives that:

Fr1(Z, r1) =

mN +
n(1−m)N

n + P
0

 =⇒ Fr1(W4, r∗1) =

mN∗ +
n(1−m)N∗

n + P∗
0


Hence, It is concluded that U2

TFr1

(
Z4, r∗1

)
=
[
m + n(1−m)

n+P∗

]
N∗ε3 6= 0. Moreover,

according to Equation (17), the following is gained:

D2F(W4, r∗1)(V2, V2) =

(
c∗11
c∗21

)
=

(
c11
(
W4, r∗1 , V2

)
c21
(
W4, r∗1 , V2

)).

Therefore, the expression U2
T[D2F(W4, r1

∗)(V2, V2)
]
= ε3c∗11 + c∗21, is not identical to

zero due to Condition (20). Thus, System (2) presents an SNB near the SEP, which completes
the proof. �

Theorem 8. Assume that Condition (13) is satisfied along with the following conditions:

b + q1E <
a(1− δP∗)2P∗

Ω∗2 , (21)

w11w22 − w12w21 > 0, (22)

where w11, w12, w21, andw22are the JM elements that are given in Equation (11). Then, System (2)
presents a Hopf bifurcation around the SEP when the parameter a passes through the value a∗with

a∗ =
Ω∗1

2

(1− δP∗)2N∗P∗

[
q2EP∗ +

r2e(K + N∗)P∗

Ω∗22 + (b + q1E)N∗
]

.

Proof. Direct computation shows that the characteristic equation of the JM of System (2) at
SEP can be determined as:

λ2 − (w11 + w22)λ + (w11w22 − w12w21) = 0. (23)

Note that at a = a∗, it is easy to verify that w∗∗11 + w22 = 0, due to Condition (21).
Consequently, in this case, the roots of Equation (23) are written as:

λ∗∗1,2 = ±i
√

w∗∗11 w22 − w∗∗12 w21,

where w∗∗11 = w11(a∗) and w∗∗12 = w12(a∗). Clearly, the above eigenvalues are complex
conjugate pure imaginary under Condition (22). However, in the neighborhood of a = a∗,
Equation (23) has two complex conjugate eigenvalues given by:

λ1,2 =
w11 + w22

2
±

√
(w11 + w22)

2 − 4(w11w22 − w12w21)

2
.

Now, since

d
da
[
Re(λ1,2)

]
a=a∗ =

d
da

[
w11 + w22

2

]
a=a∗

=
(1− δP∗)2N∗P∗

Ω∗12 6= 0,

therefore, according to the Hopf bifurcation theorem, System (2) has a Hopf bifurcation at
a = a∗, and this completes the proof. �
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6. Numerical Simulation

In this section, to illustrate several dynamical scenarios in accordance with the theoret-
ical findings in the preceding sections, numerical simulations are performed. The following
hypothetical set of parameter values, which are biologically plausible, are utilized to
numerically solve System (2).

r1 = 2, m = 0.5, n = 1, d = 0.05, b = 0.1, a = 0.75, c = 2,
e = 0.2, δ = 0.05, q1 = 0.1, q2 = 0.2, E = 0.75, r2 = 1, K = 2.

(24)

The trajectories of System (2) are shown in the figure after being acquired using
Dataset (24) starting from various initial values (1).

According to Figure 1, System (2) has a unique SEP in its state-space Y, which is GAS.
Now, a numerical investigation of the effects of changing the parameters on the dynamics
of System (2) is conducted. It is noted that System (2) has multiple SEPs in its state-space
Y with various stability types for the range r1 ≥ 2.24; for instance, look at Figure 2 below
at r1 = 3. System (2) does not have a SEP; however, for the range r1 ≤ 1.5, the solution
approaches the PYFEP asymptotically, as shown in Figure 3. Otherwise, System (2) has a
singular SEP that is GAS in its state-space.
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Figure 1. The phase portrait of System (2) using Dataset (24) and starting from different points.
(a) The trajectories approach asymptotically the SEP given by W4 = (3.41, 5.15). (b) The time series
of the trajectories given by the phase portrait.

According to Figure 2, System (2) has a bi-stable case in which System (2) approaches
asymptotically two different SEPs depending on the initial points using the same dataset.

The influence of varying the parameter r2 on the dynamics of System (2) is presented
in Figure 4, for the values r2 = 0.5, 1, 1.5, 2, 2.5, 3, keeping the rest of the parameters as
in Dataset (24).
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Figure 2. The phase portrait of System (2) using Dataset (24) with r1 = 3 and starting from different
points. (a) The trajectories approach asymptotically two different SEPs depending on their initial
points. (b) The time series of the trajectories given by the phase portrait.
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Figure 3. The phase portrait of System (2) using Dataset (24) with r1 = 1.4 and starting from different
points. (a) The trajectories approach asymptotically the PYFEP, W3 = (0.4) . (b) The time series of the
trajectories given by the phase portrait.

As shown in Figure 4, the population of N decreases while that of P increases with
the increase of r2. The influence of the fear parameters on the dynamics of System (2) is
studied in Figures 5 and 6. It is observed that, for the range m ≤ 0.31, System (2) has no
SEP and the system approaches the PYFEP; see Figure 5; however, varying the parameter n,
such that n = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 with the other parameters as in (24), is investigated
in Figure 6.
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Figure 4. The phase portrait of System (2) using Dataset (24) with r2 = 0.5, 1, 1.5, 2, 2.5, 3 (a) The
trajectories approach asymptotically the different SEPs depending on the value of r2. (b) Time series
of N’s trajectories as given by the phase portrait. (c) Time series of P’s trajectories as given by the
phase portrait.
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Figure 5. The phase portrait of System (2) using Dataset (24) with m = 0.2 and starting from different
points. (a) The trajectories approach asymptotically the PYFEP, W3 = (0, 4). (b) The time series of the
trajectories given by the phase portrait.
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Figure 6. The phase portrait of System (2) using Dataset (24) with n = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5.
(a) The trajectories approach asymptotically the different SEPs depending on the value of n. (b) Time
series of N‘s trajectories as given by the phase portrait. (c) Time series of P’s trajectories as given by
the phase portrait.

As shown in Figure 6, the populations of N and P increase with the increase of n.
Now, varying the parameter d, such that d = 0.01, 0.11, 0.21, 0.31, 0.41, with the other
parameters as in (24) is investigated in Figure 7. As d increases, the SEP converges to
the PYFEP and, then, coincides with it. However, for the range b ≤ 0.08. System (2) has
multiple SEPs; otherwise, the SEP is still unique in the interior of state-space Y; see Figure 8,
for instance.

From Figure 7, it is deduced that increasing d causes the decrease in both species N
and P, with N decreasing more and faster. Moreover, it is observed that the increase in
the value of a so that a ≥ 1.03 has a similar influence as that with d on the dynamics of
System (2). On the other hand, System (2) has a unique SEP that is GAS in its state-space
for 0 < a < 1.03.

Now that the parameter c has been varied in the ranges of c ≤ 1.02, 1.03 ≤ c ≤ 1.19,
and 1.20 ≤ c, it is clear from Figure 9 that System (2) approaches a PYFEP globally, two
separate EPs locally, and a unique SEP globally, respectively.
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Figure 7. The phase portrait of System (2) using Dataset (24) with d = 0.01, 0.11, 0.21, 0.31, 0.41.
(a) The trajectories approach asymptotically the different SEPs depending on the value of d. (b) Time
series of N’s trajectories as given by the phase portrait. (c) Time series of P’s trajectories as given by
the phase portrait.
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points. (b) The time series of the trajectories given by the phase portrait.
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Figure 9. The phase portrait of System (2) using Dataset (24) with c and starting from different
points. (a) The trajectories approach asymptotically the PYFEP globally. (b) The trajectories approach
asymptotically the PYFEP and SEP locally (bi-stable). (c) The trajectories approach asymptotically the
SEP globally.

Now that the parameter e has been varied in the ranges of e ≤ 0.08, c = 0.09, and
0.1 ≤ c, it is clear from Figure 10 that System (2) approaches a PYFEP globally, two separate
EPs locally, and a unique SEP globally, respectively.

Obviously, as shown in Figure 10, increasing e leads to an increase in the population
of N and a decrease in P. The influences of changing the harvesting parameters q1, q2, and
E are investigated and presented in Figure 11.

It is clear from Figure 11 that q1 and q2 have the opposite influence on the populations
of System (2), while both populations decrease as E increases.

For different values of K with the rest of the parameters as in Dataset (24), the dynamics
of System (2) is drawn in Figure 12. Finally, the influence of the predator-dependent refuge
parameter δ is shown in Figure 13.
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Now that the parameter 𝑒 has been varied in the ranges of 𝑒 ≤ 0.08, 𝑐 = 0.09, and 0.1 ≤ 𝑐, it is clear from Figure 10 that System (2) approaches a PYFEP globally, two sepa-
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Figure 10. The phase portrait of System (2) using Dataset (24) with varying e and starting from different
points. (a) The trajectories approach asymptotically the PYFEP globally for e = 0.08. (b) The trajectories
approach asymptotically the PYFEP and SEP locally (bi-stable) for e = 0.09. (c) The trajectories approach
asymptotically the SEP globally for e = 0.1. (d) The trajectories approach asymptotically another SEP
globally for e = 0.05.
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Figure 11. The phase portrait of System (2) using Dataset (24). (a) The trajectories approach asymp-
totically the different SEPs for q1 = 0.01, 0.21, 0.41, 0.61, 0.81. (b) The trajectories approach
asymptotically the different SEPs for q2 = 0.01, 0.21, 0.41, 0.61, 0.81. (c) The trajectories approach
asymptotically the different SEPs for E = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5.
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Figure 12. The phase portrait of System (2) using Dataset (24) with K = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5.
(a) The trajectories approach asymptotically the different SEPs depending on the value of K.
(b) The time series of the trajectories given by the phase portrait, which indicates decreasing in
N and increasing in P as K increases.
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Figure 13. The phase portrait of System (2) using Dataset (24) with varying δ and starting from
different points. The plotted arrows show the direction of the trajectories. (a) The trajectories
approach asymptotically a SEP globally for δ = 0.01. (b) The trajectories approach asymptotically
another SEP globally for δ = 0.03. (c) The trajectories approach asymptotically two different SEP
locally (bi-stable) for δ = 0.06. (d) The trajectories approach asymptotically two different SEP locally
(bi-stable) for δ = 0.07.

7. Discussion

This study modified the Leslie–Gower fear and harvesting prey–predator model to
include a predator-dependent refuge function. The goal was to comprehend how this
kind of refuge affected the dynamics of the prey–predator system. The system underwent
theoretical and numerical analysis. The system was shown to have a maximum of three
boundary equilibrium points with no, a single, or many SEPs belonging to the state-space
defined by Y. According to the theoretical results, two of the border EPs are unstable,
while the third one can either be an unstable saddle or a stable node (locally or globally)
depending on whether the SEP is present. The uniquely existing SEP, on the other hand,
is GAS or there is a periodic dynamic surrounding it (Hopf bifurcation). However, the
numerical simulation that was achieved for the chosen hypothetical set of data revealed a
rich dynamical behavior that may be summed up in the next section.

The existence of periodic dynamics due to the Hopf bifurcation was proven theoreti-
cally; however, the set of selected hypothetical data (24) does not support their existence,
and it is still possible to have different sets of data. The system has a GAS point attractor
that may transfer to being LAS for multiple points with a disjoint basin of attractions in the
case of having more than one SEP in the interior of System (2)’s state-space.
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8. Conclusions

It is concluded that the birth rate of the prey population has two bifurcation points at
which the stability of System (2) is transferred from the PYFEP to a unique SEP and, then,
to two different SEPs. However, the birth rate of the predator population has no bifurcation
point; instead, it causes a quantitative influence on the size of the species’ populations.
Regarding the fear function parameters, decreasing the minimum cost of fear leads to
extinction of the prey species and the system approaches asymptotically the PYFEP globally.
However, increasing the level of fear keeps the persistence of the system and increases
the population’s size. It was obtained also that an increase in the natural prey’s death
rate causes extinction of the prey, and the system is GAS at the PYFEP. For small values
of the prey’s intraspecific competition, the system undergoes a bi-stable behavior due to
the existence of two SEPs, which are LAS. However, increasing the prey’s intraspecific
competition above a specific value gives a unique SEP in the state-space, which is GAS. The
attack rate has a similar influence on the dynamics of System (2) as that of the prey’s natural
death rate. For the lower value of a half-saturation constant, there is no SEP and System (2)
approaches asymptotically the PYFEP. Once the half-saturation constant crosses that lower
value, System (2) has bi-stable behavior between the PYFEP and SEP with a disjoint basin of
attraction for them. Further, with increases in this parameter, the basin of attraction of the
SEP becomes the whole of the state-space, which makes the SEP GAS. A similar behavior is
shown as that of the half-saturation constant when varying the food quantity conversion
rate to a predator. The influence of varying harvesting parameters on the dynamics of
System (2) is quantitative, so that the catchability coefficients of the prey and predator
have the opposite impact on each other on the population size. However, increasing the
effort level leads to decreasing in both populations. On the other hand, increasing the
carrying capacity of the predator leads to an increase in the predator population and a
decay in the prey population. Moreover, varying the refuge parameter has a great impact
on the dynamics of System (2), so that as the parameter increases, the system transfers from
having a GAS point at a unique SEP to the bi-stable behavior between two SEPs in the
state-space, then returns back again to the GAS at a unique SEP.

Finally, for future work, it is advised that the prey–predator model be expanded to become
a food-web by including a top predator or else embedding one or more biological factors, such
as stage structure, infectious diseases, delay, diffusion, and time-dependent parameters.
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