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Abstract: In the field of reliability analysis, the constant-stress accelerated degradation test is
one of the most commonly used methods to evaluate a product’s reliability as degradation data
are provided. In this paper, a constant-stress accelerated degradation test model of the Wiener
process with random effects is proposed. First, the generalized confidence intervals of the model
parameters are developed by constructing generalized pivotal quantities. Second, utilizing the
substitution method, the generalized confidence intervals for the reliability function of lifetime,
mean time to failure and the generalized prediction intervals for the degradation characteristic at
the normal operating condition are also developed. Simulation studies are conducted to investigate
the performances of the proposed generalized confidence intervals and prediction intervals. The
simulation results reveal that the proposed generalized confidence intervals and prediction intervals
work well in terms of the coverage percentage. In particular, a comparative analysis is made with
the traditional bootstrap confidence intervals. At last, the proposed procedures are used for a real
data analysis.

Keywords: accelerated degradation test; wiener process; random effects; generalized confidence
interval; generalized prediction interval
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1. Introduction

With the rapid development of science, technology and manufacturing, more and more
high-reliability products appear. For high-reliability products, it is difficult for mechanical
engineers to acquire plenty of failure data in the short period of a test duration and to
effectively evaluate the products’ reliability metrics, such as the reliability function and
the mean time to failure (MTTF). The accelerated life test (ALT) procedures are widely
used to obtain enough failure data for a reliability analysis in the area. However, for some
high-reliability products, it is hard to fail in a short period of time, even subject to a high
stress level. In this case, the traditional ALT techniques are not enough for the reliability
assessment of products, and the degradation data analysis provides a new way to solve
this problem [1].

For some extreme highly reliable products, such as aerospace and nuclear power
plants, the degradation tests implemented under normal using conditions still take a long
time to obtain enough degradation data for use. Similar to implementing an ALT for
more failure data, we can use the accelerated degradation test (ADT) to quickly acquire
more degradation data and make some statistic inference for the products’ lifetime. ADTs
are able to greatly reduce the test time and save the test cost, so the research of an ADT
model became popular in the last few decades [2–4]. Two main kinds of models are used
for an ADT data analysis. The first kind of model is called the stochastic process model,
which is used to capture the time-dependent structure of the degradation over time. The
constant-stress accelerated degradation test (CSADT) is one of the most widely used ADTs
in the field of reliability. In a CSADT, the products are divided into several groups, and
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each group of products are subjected to a very severe stress condition to test and collect the
degradation data. The second kind is the general path model [5,6] in which a degradation
regression model is assumed and estimated.

Product performance degradation is an irreversible process; when the degradation
exceeds a given threshold the product will fail. Compared with a classical failure time data
analysis, a degradation data analysis aims to describe the underlying failure process and
requires fewer test units to obtain the same estimation accuracy [7]. In real applications, the
performance degradation is often modeled by a stochastic process {X(t); t ≥ 0} to account
for inherent randomness. Based on the assumption that the degradation is additive, three
kinds of degradation processes have been deep exploited, i.e., the Gamma process [8–10],
the Wiener process [11–13] and the inverse Gaussian process [14–17].

In many cases, the products’ degradation processes are influenced by some observable
environmental factors, such as the temperate, humidity and usage rates. The effects on the
degradation process can be treated as covariates. Refs. [18–20] provide different ways of
incorporating covariates in the Wiener process models. On the other hand, when unobserv-
able factors, e.g., the size of an internal defect and the unobservable field-use conditions,
influence product degradation, their effects are often represented by incorporating a ran-
dom effect into the degradation model. Random-effects variants of the Wiener process can
be found in [13,21]. Pan and Balakrishnan [22] discussed the multiple-step step-stress accel-
erated degradation modeling based on the Wiener and Gamma processes. Wang et al. [23]
mainly study the accurate reliability inference based on the Wiener degradation model
with a random drift parameter. They developed an exact test method to test whether there
exists population heterogeneity. Guan et al. [24] used the Bayesian method to study the
Wiener ADT model. Wang et al. [25] discussed the reliability analysis for accelerated
degradation data based on the Wiener process with random effects. Pan et al. [26] studied
a reliability estimation approach via the Wiener degradation model with measurement
errors. Jiang et al. [27] proposed a Wiener CSADT model and obtained the exact confidence
intervals of the model parameters. In addition, they also developed an optimal plan from
the perspective of degradation prediction for the proposed model. Notice that existing
interval estimation methods mainly depend on the large sample results and a Bayesian
approach in many cases, such as the approximation normality of the maximum-likelihood
estimation (MLE), the bootstrap confidence interval and the Wald confidence interval. The
performances of these large sample confidence intervals may be poor in small and moder-
ate sample size cases. In degradation tests, the sample size is generally small due to the
limitations of the test time, cost, etc. Hence, it is meaning to develop small sample interval
estimation procedures for the Wiener CSADT model with random degradation rates.

In this study, we propose a Wiener CSADT model with random degradation rates
based on the invariance of degradation mechanism. The relationship between the degrada-
tion rate and accelerated stress is linear, and the diffusion parameter is free of accelerated
stress. The main objective of this study is to investigate the interval estimation of the model
parameters and some reliability metrics under a small sample size. Obviously, it is very
difficult to obtain the exact interval estimations of them. Thus, we focus on developing
the generalized confidence intervals (GCIs) and generalized prediction intervals (GPIs) of
the model parameters and some reliability metrics. The innovation of this paper is that an
effective interval estimation method for model parameters and some reliability metrics is de-
veloped under a small sample case. It should be emphasized that it is not easy to construct
the generalized pivot quantity (GPQ) of model parameters a and b, which is the foundation
and core of our whole research work. In addition, a simulation study is conducted to assess
the effectiveness of the GCIs/GPIs and compare them to the bootstrap-CIs/PIs in terms of
coverage percentage.

The remainder of the article is organized as follows. In Section 2, we describe the
Wiener CSADT model with random effects. In Section 3, the point estimations of the
model parameters are obtained. The GCIs and GPIs of the model parameters and some
reliability metrics are developed through the generalized pivotal quantity (GPQ) method.
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In Section 4, a simulation study is conducted to evaluate the performance of the proposed
intervals. An example is provided to illustrate the proposed procedures. Finally, we give
some final conclusions in Section 5.

2. Wiener CSADT Model with Random Effects
2.1. Model Descriptions and Assumptions

In practice, each unit can undergo various operating conditions, which causes the
degradation process of different units to demonstrate different degradation rates. In addi-
tion, especially for an immature product, the degradation may exhibit some heterogeneities
due to such reasons as difference in the raw materials, production environment factor
and variations in the manufacturing process. It is a natural consideration to incorporate
unit-to-unit heterogeneity in the degradation model. Under this circumstance, random-
effects models may be helpful to capture the heterogeneities [28]. Thus, we consider the
degradation rate δ as a random parameter to describe unit-to-unit variability and σ2 to
be a fixed parameter. For the convenience of subsequent modeling and mathematical
processing, we assume that the prior distribution of δ follows a normal distribution and
is statistically independent of σ2. The ideas of random effects and Gaussian assumptions
are widely adopted in the degradation modeling literature; some recent references can be
seen [29–31]. For notational ease, we describe this random-effects Wiener process as

X(t) = δt + σB(t), (1)

where δ ∼ N (µ, ω2) and σ2 is a fixed parameter. Condition on δ, the degradation path
X(t) ∼ N (δt, σ2t). Unconditionally, the degradation path X(t) follows the normal distri-
bution N (µt, σ2t + ω2t2). The lifetime T of a unit is defined as the first hitting time which
the cumulative degradation X(t) exceeds a failure threshold L(> 0). Given the failure
threshold L, using the total probability formula, the cumulative distribution function (CDF)
FT(t) of the lifetime T can be obtained by first computing P(T < t|δ) and then marginal
integrating δ out, which is given by

FT(t) = Φ
(

µt− L√
σ2t + ω2t2

)
+ exp

(
2µL
σ2 +

2ω2L2

σ4

)
Φ
(
−2ω2Lt + σ2(µt + L)

σ2
√

σ2t + ω2t2

)
, t > 0. (2)

It is worth noting that for ADT the most important issue is to ensure that the degradation
mechanism remains consistent and invariant under different stress levels [32]. Degradation
mechanism refers to a product’s physical or chemical changes caused by accelerated stress,
and the relationship between stress and the degradation process is usually modeled by a
physically reasonable statistical function which is used for extrapolation. No function can
give a correct and reasonable extrapolation when the degradation mechanism changes at
different stress levels [33]. Based on the principle of the degradation mechanism invariance,
statistical inference of the Wiener CSADT model with random effects is usually based on
the following assumptions:

A1. The CSADT is conducted by one single stress, which has K levels: ξ1 < ξ2 < · · · < ξK.
ξ0 and ξK are the normal using stress level and the highest stress level used in the
ADT, respectively.

A2. Under stress level ξi, the degradation process of the jth test unit can be described as a
Wiener process

Xi,j(t) = δi,jt + σB(t), δi,j ∼ N (µi, ω2).

A3. At stress levels ξi(i = 1, 2, · · · , K) and ξ0, the degradation process has the same
degradation mechanism. This means that the diffusion parameters σ2 and ω2 are not
affected by the stress level ξi, but the drift parameter µ is affected by it.

A4. The product’s degradation process is affected by the stress through the parameter–
stress relationship

µi = a + bξi,



Mathematics 2022, 10, 2863 4 of 18

where a and b(> 0) are unknown parameters. The degradation rate under normal
using condition can be given by µ0 = a + bξ0.

A5. At each stress level, the test units have the same test duration, but the measurement
intervals and the measurement times are different for each unit. Generally, at different
stress levels, the testing durations of units are different.

2.2. CSADT and the Data

Suppose that ni units are tested under the stress level ξi, and these ni units have the
same test duration Ti, but the measurement intervals may be different for each unit. The
measurement times are denoted by ti,j = {ti,j,k; j = 1, 2, . . . , ni, k = 0, 1, . . . , ri,j}, where
ti,j,0 = 0, ti,j,ri,j = Ti, and ri,j is the number of measurements for the jth testing unit. Gen-
erally, for different stress levels, the testing durations may be different, that is, Ti 6= Tj
when i 6= j. Let Xi,j = {Xi,j(ti,j,k); k = 0, 1, . . . , ri,j} be the observed degradation data
for the jth testing unit under stress level ξi, for j = 1, 2, . . . , ni. ∆Xi,j,k denotes degrada-
tion increment of the jth testing unit at the ith stress level, ∆ti,j,k denotes the inspection
time interval between the (k− 1)th and kth of the jth test unit at the ith stress level, i.e.,
∆Xi,j,k=̂Xi,j(ti,j,k)− Xi,j(ti,j,k−1), ∆ti,j,k=̂ti,j,k − ti,j,k−1, for i = 1, 2, . . . , K; j = 1, 2, . . . , ni; k =
1, 2, . . . , ri,j.

The data collected from stress level ξi are Di = {(ti,j, Xi,j); j = 1, 2, . . . , ni}, and the data
from the CSADT are D =

⋃K
i=1 Di. Let N = ∑K

i=1 ni be the total number of testing units and
Mi = ∑ni

j=1 ri,j be the total number of measurements under stress level ξi. Further, denote

M = ∑K
i=1 Mi as the total number of measurements in the CSADT and T = ∑K

i=1 niTi as
the total time on test.

3. Point and Interval Estimations
3.1. Point Estimations for Model Parameters

For the proposed random-effects Wiener CSADT model, we assumed that the diffusion
parameters ω2 and σ2 are fixed, and the drift parameter µ is affected by the stress as
µ = a + bξ. Given the degradation data Di, let δi,j be the degradation rate of the jth unit
under stress level ξi, j = 1, 2, . . . , ni, then δi,j ∼ N (µi, ω2), µi = a + bξi. Based on the
degradation data from the jth unit, denote Xi,j=̂Σri

k=1∆Xi,j,k, Ti=̂Σri
k=1∆ti,j,k, the estimates

of δi,j and σ2 are given by

δ̂i,j =
∑

ri,j
k=1 ∆Xi,j,k

∑
ri,j
k=1 ∆ti,j,k

=̂
Xi,j

Ti
, S2

i,j =
1

ri,j − 1

ri,j

∑
k=1

(∆Xi,j,k − δ̂i,j∆ti,j,k)
2

∆ti,j,k
. (3)

It is easy to show that the two estimates are independent. Condition on δi,j, δ̂i,j ∼
N (δi,j, σ2/Ti). Unconditionally, δ̂i,j ∼ N (µi,A2

i ), where A2
i =̂σ2/Ti + ω2 is unknown.

Based on Di, estimates of µi and σ2 are given by

µ̂i =
1
ni

ni

∑
j=1

δ̂i,j ∼ N
(

µi,
A2

i
ni

)
, (4)

and

S2
i =

1
Mi − ni

ni

∑
j=1

ri,j

∑
k=1

(∆Xi,j,k − δ̂i,j∆ti,j,k)
2

∆ti,j,k
,

respectively.
Because (ri,j − 1)S2

i,j/σ2 ∼ χ2(ri,j − 1), and S2
i,j are mutually independent for j =

1, 2, . . . , ni, utilizing the additivity of χ2 distribution, so (Mi − ni)S2
i /σ2 ∼ χ2(Mi − ni).

Based on the unconditional distribution of δ̂i,j, an estimate of A2
i is given by W2

i =
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1
ni−1 ∑ni

j=1(δ̂i,j − µ̂i)
2, and this estimate is independent of µ̂i. Moreover, we can prove that

the quantity (ni − 1)W2
i /A2

i follows a χ2 distribution with free degrees ni − 1. Therefore,
an estimate for ω2 is given by

ω̂2
i =

1
ni − 1

ni

∑
j=1

(δ̂i,j − µ̂i)
2 −

S2
i
Ti

.

Recall that S2
i are mutually independent for different stress level ξi. Similarly, W2

i are
also mutually independent for i = 1, 2, . . . , K. Based on the degradation data D, utilizing
the additivity of χ2 distribution, we have the following facts

1
σ2

K

∑
i=1

ni

∑
j=1

ri,j

∑
k=1

(∆Xi,j,k − δ̂i,j∆ti,j,k)
2

∆ti,j,k
∼ χ2(M− N). (5)

According to Equation (5), the point estimate of σ2 is obtained by

S2 =
1

M− N

K

∑
i=1

ni

∑
j=1

ri,j

∑
k=1

(∆Xi,j,k − δ̂i,j∆ti,j,k)
2

∆ti,j,k
. (6)

Notice that ω2 = A2
i − σ2/Ti, based on the degradation data D, the estimate of

parameter ω2 is given as

W2 =
1
K

K

∑
i=1

W2
i −

1
K

K

∑
i=1

S2
i
Ti

. (7)

to avoid negative values, we may define the estimate of ω2 is max (0, W2) instead.
In order to obtain the estimates of parameters a and b, we consider the following

regression model

µ̂i = a + bξi + εi, εi ∼ N (0,
A2

i
ni

), i = 1, 2, . . . , K. (8)

Theorem 1. Given the degradation data D, for the linear regression model (8), then:

(1) The estimates of parameters a and b are given as

â =
GH − IM
FG− I2 , b̂ =

FM− IH
FG− I2 . (9)

where

F =
K

∑
i=1

ni

A2
i

, G =
K

∑
i=1

ni

A2
i

ξi
2, I =

K

∑
i=1

ni

A2
i

ξi, H =
K

∑
i=1

ni

A2
i

µ̂i, M =
K

∑
i=1

ni

A2
i

µ̂iξi.

(2) The estimates â and b̂ are unbiased, that is, E(â) = a, E(b̂) = b.
(3) The variance and covariance of the estimates â and b̂ are given by

Var(â) =
G

FG− I2 , Var(b̂) =
F

FG− I2 , Cov(â, b̂) =
−I

FG− I2 .

Proof. Let V = diag(A
2
1

n1
, · · · , A

2
K

nK
), Y = (µ̂1, · · · , µ̂K)

T and

Z =

(
1 1 · · · 1 · · · 1
ξ1 ξ2 · · · ξi · · · ξK

)T
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then the estimates (â, b̂) are given by(
â
b̂

)
= (ZTV−1Z)−1ZTV−1Y =

1
FG− I2

(
GH − IM
FM− IH

)
so we have the expectations of â and b̂

E
(

â
b̂

)
= (ZTV−1Z)−1ZTV−1E(Y)

=
1

FG− I2

(
GE(H)− IE(M)
FE(M)− IE(H)

)
=

(
a
b

)
and furthermore, the covariance matrix of the estimators (â, b̂) can be calculated and
expressed as

Var
(

â
b̂

)
= Var

[
(ZTV−1Z)−1ZTV−1Y

]
=
[
(ZTV−1Z)−1ZTV−1

]
Var(Y)

[
(ZTV−1Z)−1ZTV−1

]T

= (ZTV−1Z)−1 =
1

FG− I2

(
G −I
−I F

)
so the variance and covariance of the estimators â and b̂ are obtained by

Var(â) =
G

FG− I2 , Var(b̂) =
F

FG− I2 , Cov(â, b̂) =
−I

FG− I2

Therefore, the degradation rate µ0 at normal using stress level ξ0 can be estimated by
µ̂0 = â + b̂ξ0. In addition, the estimate µ̂0 is also unbiased and has the variance Var(µ̂0) =
(FG− I2)−1(G + Fξ0

2 − 2Iξ0). However, (σ2, ω2) are unknown, so A2
i , i = 1, 2, . . . , K are

also unknown. However, we can use its estimate W2
i = 1

ni−1 ∑ni
j=1(δ̂i,j − µ̂i)

2 substitute

for A2
i .

3.2. GCIs for Model Parameters a, b, σ2 and ω2

For random-effects Wiener CSADT model, we are interested in the interval estimations
of model parameters and some reliability metrics, such as the reliability function of lifetime,
the MTTF and the degradation characteristic at normal using condition. Unfortunately,
it is difficult to obtain the exact confidence intervals for model parameters and reliability
metrics. Hence, we will develop the GCIs for them by constructing GPQs. However, it is
not an easy task to obtain the GPQs of model parameters, especially for parameters a and b.

In this subsection, we first give the GPQs of σ2, ω2 and A2
i , then derive the GPQs of

parameters a and b. Based on dataset {W2
i , S2

i , µ̂i, i = 1, 2, . . . , K}, an estimate ofA2
i is given

by W2
i = 1

ni−1 ∑ni
j=1(δ̂i,j − µ̂i)

2, and this estimate is independent of µ̂i. Moreover, we can
easily prove the following fact.

Q0,i=̂
(ni − 1)W2

i
A2

i
∼ χ2(ni − 1). (10)
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generate a copy Q∗0,i from the χ2(ni − 1) distribution, then the GPQ of A2
i can be given as

G0,i =
(ni − 1)W2

i
Q∗0,i

(11)

Notice that

S2 =
1

M− N

K

∑
i=1

ni

∑
j=1

ri,j

∑
k=1

(∆Xi,j,k − δ̂i,j∆ti,j,k)
2

∆ti,j,k

and

Q1=̂
(M− N)S2

σ2 ∼ χ2(M− N). (12)

generate a copy Q∗1 from the χ2(M−N) distribution, then the GPQ of σ2 can be obtained by

G1 =
(M− N)S2

Q∗1
(13)

On the other hand,

Q2=̂
K

∑
i=1

ni

∑
j=1

(δ̂i,j − µ̂i)
2

σ2/Ti + ω2 ∼ χ2(N − K). (14)

Given σ2, we find that the quantity Q2 is monotone decreasing with respect to ω2.
Therefore, given a copy Q∗2 from the χ2(N − K) distribution, for (14), there exists a unique
solution for ω2 when

Q∗2 ≤
K

∑
i=1

ni

∑
j=1

(δ̂i,j − µ̂i)
2

σ2/Ti
. (15)

Let G2(σ
2, Q∗2) be the unique solution of ω2 when (15) is satisfied, and G2(σ

2, Q∗2) = 0
otherwise. Thus, the GPQ of ω2 is given as

G2 =


G2(G1, Q∗2), Q∗2 ≤

K

∑
i=1

ni

∑
j=1

(δ̂i,j − µ̂i)
2

G1/Ti
;

0, Q∗2 >
K

∑
i=1

ni

∑
j=1

(δ̂i,j − µ̂i)
2

G1/Ti
.

(16)

Based on model (8), we consider the following weighted sum of squares:

Q(a, b) =
K

∑
i=1

ni
G0,i

(µ̂i − a− bξi)
2 (17)

By minimizing Equation (17), we have

ā =
G̃H̃ − Ĩ M̃
F̃G̃− Ĩ2

, b̄ =
F̃M̃− Ĩ H̃
F̃G̃− Ĩ2

where

F̃ =
K

∑
i=1

ni
G0,i

, G̃ =
K

∑
i=1

ni
G0,i

ξi
2, Ĩ =

K

∑
i=1

ni
G0,i

ξi, H̃ =
K

∑
i=1

ni
G0,i

µ̂i, M̃ =
K

∑
i=1

ni
G0,i

µ̂iξi.
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Let V1 = ā− a, V2 = b̄− b, then V1 and V2 can be rewritten as

V1 =
G̃(∑K

i=1
Zi
√

ni
G0,i

( σ2

Ti
+ ω2)

1
2 )− Ĩ(∑K

i=1
Ziξi
√

ni
G0,i

( σ2

Ti
+ ω2)

1
2 )

F̃G̃− Ĩ2
(18)

V2 =
F̃(∑K

i=1
Ziξi
√

ni
G0,i

( σ2

Ti
+ ω2)

1
2 )− Ĩ(∑K

i=1
Zi
√

ni
G0,i

( σ2

Ti
+ ω2)

1
2 )

F̃G̃− Ĩ2
(19)

where Zi=̂[µ̂i − (a + bξi)]/
√

1
ni
( σ2

Ti
+ ω2) ∼ N (0, 1). From (18) and (19), we know that

V1 and V2 depend on the unknown parameters σ2 and ω2. According to the substitute
method in Weerahandi [34,35], we replace σ2 and ω2 with their GPQs G1 and G2 in V1, V2,
respectively. Then, the GPQs of parameters a and b are obtained as follows:

G3 = ā− Ṽ1, G4 = b̄− Ṽ2. (20)

where

Ṽ1 =
G̃[∑K

i=1
Zi
√

ni
G0,i

(G1
Ti

+ G2)
1
2 ]− Ĩ[∑K

i=1
Zi
√

ni
G0,i

(G1
Ti

+ G2)
1
2 ξi]

F̃G̃− Ĩ2
;

Ṽ2 =
F̃[∑K

i=1
Zi
√

ni
G0,i

(G1
Ti

+ G2)
1
2 ξi]− Ĩ[∑K

i=1
Zi
√

ni
G0,i

(G1
Ti

+ G2)
1
2 ]

F̃G̃− Ĩ2
.

Let Gi,γ be the γ percentile of Gi, then [Gi,γ/2,Gi,1−γ/2], i = 1, 2, 3, 4 are the 1− γ-level
GCIs for parameters σ2, ω2, a and b, respectively. The percentiles of Gi, i = 1, 2, 3, 4 can be
obtained by the following Monte Carlo simulation Algorithm 1.

Algorithm 1 Percentiles for model parameters a, b, σ2 and ω2.

1: For given data set {(∆xi,j,k, ∆ti,j,k, ξi), i = 1, . . . , K; j = 1, . . . , ni; k = 1, . . . , ri,j}, compute
the quantities δ̂i,j, µ̂i, W2

i , S2 and W2.
2: Generate Q1 ∼ χ2(M− N), then obtain G1 from Equation (13).
3: Generate Q2 ∼ χ2(N − K), based on G1, then compute G2.
4: Generate a series of Zi ∼ N (0, 1), based on G1, G2, using Equation (20) compute G3 and
G4.

5: Repeat steps (2)–(4) B times, get B values of Gi, i = 1, 2, 3, 4, respectively.
6: Arrange all Gi values in ascending order: Gi,(1) < Gi,(2) < · · · < Gi,(B), then the γ

percentile of Gi is estimated by Gi,(τB).

Remark 1. It is important to emphasize that the GCI obtained by G1 is an exact confidence interval
of parameter σ2. In fact, there is another way to obtain the exact confidence interval of σ2. Based on

Equation (12), an exact confidence interval of σ2 can be given by [ (M−N)S2

χ2
γ
2
(M−N)

, (M−N)S2

χ2
1− γ

2
(M−N)

]. Here,

χ2
γ(n) is the upper γ percentile of χ2 distribution with free degrees n.

3.3. GCIs for µ0, R(t0) and MTTF

In practical applications, some important quantities such as the degradation rate µ0,
the reliability function R(t) and the MTTF are the ones we are more interested in and more
focused on than the model parameters (a, b, σ2, ω2). However, because the expressions for
these quantities are complicated, their interval estimations tend to be very difficult. Similar
to the case of parameters (a, b, σ2, ω2), we can develop the generalized interval estimation
procedures for these quantities.

Notice that the degradation rate µ0, the reliability function R(t0) and the MTTF
are given by µ0 = a + bξ0, R(t0) = 1 − FT

(
t0|σ2, ω2, µ0

)
and

∫ +∞
0 R(t)dt, respectively.

Then, according to the substitution method given by [34], parameters (σ2, ω2, a, b) in the
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expressions of µ0, R(t0) and MTTF are substituted by (G1,G2,G3,G4). Thus, the GPQs of
µ0, R(t0) and MTTF are given by

G5 = G3 + G4ξ0, (21)

G6 = Φ

(
L− G5t√
G1t + G2t2

)
− exp

(
2G5L
G1

+
2G2L2

G2
1

)
Φ

(
−2G2Lt + G1(G5t + L)

G1
√
G1t + G2t2

)
, (22)

G7 =
∫ +∞

0

[
Φ

(
L− G5t√
G1t + G2t2

)
− exp

(
2G5L
G1

+
2G2L2

G2
1

)
Φ

(
−2G2Lt + G1(G5t + L)

G1
√
G1t + G2t2

)]
dt, (23)

respectively.
Let Gi,γ denote the γ percentiles of Gi. Then, [Gi,γ/2,Gi,1−γ/2], i = 5, 6, 7 are the 1− γ-

level GCIs for µ0, R(t0) and MTTF, respectively. The percentiles of Gi, i = 5, 6, 7 can be
obtained by the following Monte Carlo simulation Algorithm 2.

Algorithm 2 Percentiles for quantities µ0, R(t0)) and MTTF.

1: For given data set {(∆xi,j,k, ∆ti,j,k, ξi), i = 1, . . . , K; j = 1, . . . , ni; k = 1, . . . , ri,j}, compute
the quantities δ̂i,j, µ̂i, W2

i , S2 and W2.
2: Generate Q1 ∼ χ2(M− N), then obtain G1 from Equation (13).
3: Generate Q2 ∼ χ2(N − K), based on G1, then compute G2.
4: Generate a series of Zi ∼ N (0, 1), based on G1, G2, using Equation (20) compute G3 and
G4.

5: Based on G1, G2, G3 and G4, through Equations (21)–(23) compute G5, G6 and G7.
6: Repeat steps (2)–(5) B times, get B values of Gi, i = 5, 6, 7, respectively.
7: Arrange all Gi values in ascending order: Gi,(1) < Gi,(2) < · · · < Gi,(B), then the γ

percentile of Gi is estimated by Gi,(τB).

3.4. GPI for Degradation Characteristic X0(t)

In practical applications, the prediction interval for the degradation characteristic
under normal operating condition may be more practical and interesting for the product
designer and user. Thus, it is important and meaningful to discuss the prediction interval
of degradation characteristic X0(t). However, for the Wiener CSADT model with random
effects, given a future time point t, it is difficult to obtain the exact prediction interval of
X0(t), so we develop the GPI for it.

At the normal using stress level ξ0, the degradation characteristic X0(t) can be pre-
sented as

X0(t) = δt + σB(t), δ ∼ N (µ0, ω2), µ0 = a + bξ0

based on GPQs G1, G2 and G5, using the substitution method given by [33], the generalized
prediction pivotal quantity (GPPQ) is obtained by

G8 = G5t +
√
G1t + G2t2Z, Z ∼ N (0, 1) (24)

Let G8,γ be the γ percentile of G8, then [G8,γ/2,G8,1−γ/2] is the 1 − γ-level GPI for
degradation characteristic X0(t). The percentile of G8 can be obtained by the following
Monte Carlo simulation Algorithm 3.
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Algorithm 3 Percentile for degradation characteristic X0(t).

1: For given data set {(∆xi,j,k, ∆ti,j,k, ξi), i = 1, . . . , K; j = 1, . . . , ni; k = 1, . . . , ri,j}, compute
the quantities δ̂i,j, µ̂i, W2

i , S2 and W2.
2: Generate Q1 ∼ χ2(M− N), then obtain G1 from Equation (13).
3: Generate Q2 ∼ χ2(N − K), based on G1 compute G2.
4: Generate a series of Zi ∼ N (0, 1), based on G1, G2, using Equation (20) compute G3

and G4.
5: Based on G3 and G4, through Equation (21) compute G5.
6: Generate Z ∼ N (0, 1), based on G1, G2 and G5, through Equation (24) compute G8 .
7: Repeat steps (2)–(6) B times, get B values of G8.
8: Arrange all G8 values in ascending order: G8,(1) < G8,(2) < · · · < G8,(B), then the γ

percentile of G8 is estimated by G8,(τB).

4. Simulation Study and Data Analysis
4.1. Simulation Study

To assess the performance of the proposed GCIs/GPIs for the Wiener CSADT model
with random effects, a Monte Carlo simulation study is implemented to examine the
coverage percentages (CPs) and average interval lengths (AILs) of the proposed GCIs/GPIs.
In order to comprehensively evaluate the performance of the GPQ procedures, we also
consider the upper confidence limit (UCL) and the lower confidence limit (LCL) of the
model parameters and some other quantities based on the CPs and AILs. Without the loss
of generality, we present four different parameter settings in Table 1 for the simulation
study. The four accelerated stress levels are given as ξ1 = 1.0, ξ2 = 1.5, ξ3 = 2.0 and
ξ4 = 2.5, and the normal using stress level is assumed to be ξ0 = 0.5. For convenience,
the values of ni, ri,j and ∆ti,j,k are chosen to be n1 = · · · = nK=̂n = 6, 9, 12, ri,j=̂r = 6, 8, 10
and ∆ti,j,k = 1. We take B = 10,000 in the simulation study. All the results are based on
5000 replications. The simulation results are given in Tables 2 and 3.

Table 1. Parameter settings used in the simulation study.

Parameter a b σ2 ω2 L

I −0.90 2.00 1.00 0.50 6.30
II −0.40 1.40 1.21 0.64 7.92
III −1.10 2.60 1.50 1.00 8.75
IV 0.20 0.80 1.96 1.21 11.55

It is observed from Tables 2 and 3 that the CPs of the proposed GCIs/GPIs are quite
close to the nominal levels, even for small sample sizes. Based on the normal approxi-
mation to the binomial distribution, CPs between 89% and 91% and also 94% and 96%
are considered appropriate for the 90% and 95% confidence intervals. Tables 2 and 3 also
indicate that, for the fixed parameter settings, as the value of n and r increase, the AILs
decrease. These findings show that the proposed GCIs work well.



Mathematics 2022, 10, 2863 11 of 18

Table 2. The CPs and AILs (in parentheses) of parameters a, b, σ2 and ω2 for nominal levels 0.9, 0.95,
based on 5000 replications.

Case (n, r) 0.9 0.95 0.9 0.95

a b

II (6, 6) 0.9020 (2.2480) 0.9524 (2.7191) 0.9025 (1.2222) 0.9530 (1.4783)
(9, 8) 0.9034 (1.7128) 0.9512 (2.0598) 0.8982 (0.9315) 0.9508 (1.1203)
(12, 10) 0.9002 (1.4283) 0.9496 (1.7133) 0.9000 (0.7767) 0.9486 (0.9317)

III (6, 6) 0.9026 (2.7391) 0.9528 (3.3134) 0.9036 (1.4894) 0.9532 (1.8013)
(9, 8) 0.8962 (2.1017) 0.9468 (2.5265) 0.8968 (1.1415) 0.9465 (1.3727)
(12, 10) 0.9020 (1.7548) 0.9464 (2.1049) 0.9028 (0.9535) 0.9474 (1.1438)

IV (6, 6) 0.9022( 3.0371) 0.9532 (3.6738) 0.9034 (1.6514) 0.9528 (1.9972)
(9, 8) 0.9022 (2.3226) 0.9510 (2.7931) 0.8978 (1.2630) 0.9502 (1.5190)
(12, 10) 0.8996 (1.9413) 0.9494 (2.3286) 0.9000 (1.0557) 0.9488 (1.2663)

σ2 ω2

II (6, 6) 0.8960 (0.5277) 0.9478 (0.6329) 0.8955 (1.0175) 0.9462 (1.2647)
(9, 8) 0.9014 (0.3588) 0.9516 (0.4288) 0.8988 (0.7180) 0.9472 (0.8780)
(12, 10) 0.8996 (0.2730) 0.9462 (0.3259) 0.8966 (0.5719) 0.9494 (0.6943)

III (6, 6) 0.8965 (0.6542) 0.9478 (0.7846) 0.8964 (1.5096) 0.9460 (1.8765)
(9, 8) 0.8952 (0.4433) 0.9466 (0.5298) 0.8970 (1.0757) 0.9474 (1.3155)
(12, 10) 0.9034 (0.3382) 0.9508 (0.4037) 0.9032 (0.8624) 0.9534 (1.0469)

IV (6, 6) 0.8970 (0.8548) 0.9478 (1.0253) 0.8968 (1.8565) 0.9466 (2.3076)
(9, 8) 0.9014 (0.5811) 0.9516 (0.6946) 0.8994 (1.3196) 0.9468 (1.6135)
(12, 10) 0.8996 (0.4423) 0.9462 (0.5279) 0.8976 (1.0563) 0.9498 (1.2823)

Table 3. The CPs and AILs (in parentheses) of quantities µ0, R(5), MTTF and X0(8) for nominal levels
0.9, 0.95, based on 5000 replications.

Case (n, r) 0.9 0.95 0.9 0.95

µ0 R(5)

II (6, 6) 0.9026 (1.6778) 0.9510 (2.0295) 0.9008 (0.3429) 0.9510 (0.4117)
(9, 8) 0.9030 (1.2783) 0.9498 (1.5372) 0.9024 (0.2622) 0.9530 (0.3156)
(12, 10) 0.9022 (0.7888) 0.9512 (0.9144) 0.9036 (0.2037) 0.9548 (0.2464)

III (6, 6) 0.9030 (1.2064) 0.9522 (1.4303) 0.8955 (0.3205 ) 0.9462 (0.3525)
(9, 8) 0.8966 (0.9632) 0.9472 (1.1328) 0.8968 (0.2416) 0.9464 (0.2939)
(12, 10) 0.9000 (0.8405) 0.9464 (0.9819) 0.9048 (0.1999) 0.9466 (0.2428)

IV (6, 6) 0.9025 (1.6519) 0.9516 (1.9286) 0.9028 (*0.2632*) 0.9538 (0.3054)
(9, 8) 0.9026 (1.3713) 0.9500 (1.5889) 0.9036 (0.2556) 0.9526 (0.3086)
(12, 10) 0.9022 (1.2030) 0.9510 (1.3941) 0.9038 (0.2121) 0.9528 (0.2557)

MTTF X0(t)

II (6, 6) 0.9022 (5.8332 × 104) 0.9532 (6.6712 × 104) 0.9002 (27.6940) 0.9500 (33.5407)
(9, 8) 0.9018 (4.8620 × 104) 0.9500 (5.6348 × 104) 0.8992 (26.0592) 0.9466 (31.3321)
(12, 10) 0.9002 (2.9923 × 104) 0.9502 (3.3542 × 104) 0.9032 (24.7582) 0.9534 (29.6830)

III (6, 6) 0.9032 (3.3393 × 104) 0.9536 (3.7233 × 104) 0.8964 (31.7443) 0.9508 (38.4358)
(9, 8) 0.8968 (2.9464 × 104) 0.9464 (3.3212 × 104) 0.8966 (30.6825) 0.9518 (36.8906)
(12, 10) 0.9014 (2.7190 × 104) 0.9478 (3.0730 × 104) 0.8952 (30.1169) 0.9460 (36.1111)

IV (6, 6) 0.9032 (3.6767 × 104) 0.9528 (4.0445 × 104) 0.8990 (35.8711) 0.9514 (43.4082)
(9, 8) 0.9012 (3.3915 × 104) 0.9520 (3.7657 × 104) 0.8976 (34.5438) 0.9478 (41.5150)
(12, 10) 0.8982 (3.1433 × 104) 0.9500 (3.5266 × 104) 0.9032 (33.7932) 0.9530 (40.5162)

As everyone knows, the parametric bootstrap procedure is a commonly used method
to obtain confidence intervals of model parameters. To evaluate the performances of the
GCIs/GPIs, we consider the bootstrap CIs for the Wiener CSADT model with random
effects. For comparison, we also consider confidence limits (CLs), such as the lower
confidence limit (LCL) and upper confidence limit (UCL), for the model parameters and
reliability metrics. We performed a comparative analysis of the CIs, LCLs and UCLs
obtained by the GPQ method and the parametric bootstrap method. For saving space, we
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only give the simulation results under the parameter setting I. The simulation results of the
CIs, LCLs and UCLs in the GPQ and bootstrap-p methods under the parameter setting I are
provided in Tables 4–6. The bootstrap-p procedure is also based on 5000 bootstrap samples.

Tables 4–6 show that the CPs of the CIs, LCLs and UCLs obtained by the GPQ method
are all very close to the nominal levels, even for small sample sizes. However, the CPs of
the CIs, LCLs and UCLs obtained by the bootstrap-p method are not close to the nominal
levels when sample size n is small. In particular, from Tables 5 and 6, we find that the
LCLs and UCLs obtained in the bootstrap-p method perform badly. For example, the CPs
of the model parameters σ2, ω2 and the reliability function R(t0) are far away from the
nominal levels.

As sample size n increases, the CPs of the bootstrap-p CIs/PIs approach the nominal
levels. Tables 4–6 also indicate that, for the fixed parameter settings, as sample size
n increases, the AILs become shorter, the LCLs become larger and the UCLs become
smaller for both the GPQ method and the bootstrap-p method, as expected. These findings
indicate that the CIs, LCLs and UCLs obtained in the GPQ method perform better than the
corresponding bootstrap-p one for all cases, according to the CP. Therefore, we recommend
the proposed CIs, LCLs and UCLs in the GPQ method for the proposed Wiener CSADT
model, especially in a small sample case.

Table 4. The CPs and AILs (in parentheses) of different CIs under parameter setting I for nominal
levels 0.9, 0.95, based on 5000 replications.

(n, r) Parameter GCI Bootstrap-p CI

0.9 0.95 0.9 0.95

(6, 6) a 0.9024 (2.0007) 0.9522 (2.4200) 0.8872 (1.9162) 0.9368 (2.2915)
b 0.9022 (1.0878) 0.9526 (1.3157) 0.8912 (1.0407) 0.9414 (1.2441)

σ2 0.8970 (0.4361) 0.9478 (0.5231) 0.8938 (0.4252) 0.9428 (0.5070)
ω2 0.8978 (0.8062) 0.9472 (1.0019) 0.8736 (0.6920) 0.9256 (0.8266)
µ0 0.9028 (1.4934) 0.9508 (1.8063) 0.8930 (1.4308) 0.9418 (1.7116)

R(5) 0.9006 (0.3413) 0.9498 (0.4098) 0.8920 (0.3224) 0.9406 (0.3861)
MTTF 0.9024 (6.1217 × 104) 0.9522 (6.9653 × 104) 0.8920 (6.3831 × 104) 0.9424 (7.3118 × 104)
X0(8) 0.8994 (24.6218) 0.9504 (29.8223) 0.8878 (23.5011) 0.9394 (28.2697)

(9, 8) a 0.8998 (1.5255) 0.9536 (1.8345) 0.8872 (1.4767) 0.9374 (1.7621)
b 0.8998 (0.8285) 0.9512 (0.9963) 0.8910 (0.8025) 0.9414 (0.9575)

σ2 0.8978 (0.2969) 0.9464 (0.3549) 0.9072 (0.2925) 0.9560 (0.3486)
ω2 0.9028 (0.5667) 0.9536 (0.6930) 0.8864 (0.5107) 0.9290 (0.6097)
µ0 0.9018 (1.1387) 0.9520 (1.3693) 0.8878 (1.1021) 0.9430 (1.3152)

R(5) 0.8974 (0.2599) 0.9486 (0.3129) 0.8902 (0.2481) 0.9412 (0.2969)
MTTF 0.9036 (5.1554 × 104) 0.9530 (5.9501 × 104) 0.8870 (5.2715 × 104) 0.9424 (6.1244 × 104)
X0(8) 0.8990 (23.1594) 0.9490 (27.8547) 0.8850 (22.3982) 0.9384 (26.8549)

(12, 10) a 0.8974 (1.2686) 0.9482 (1.5215) 0.8940 (1.2431) 0.9436 (1.4824)
b 0.8964 (0.6895) 0.9472 (0.8271) 0.8922 (0.6758) 0.9446 (0.8058)

σ2 0.9008 (0.2252) 0.9512 (0.2688) 0.8938 (0.2237) 0.9444 (0.2666)
ω2 0.9028 (0.4509) 0.9490 (0.54739) 0.8892 (0.4204) 0.9336 (0.5016)
µ0 0.8976 (0.9466) 0.9492 (1.1354) 0.8942 (0.9275) 0.9472 (1.1061)

R(5) 0.8994 (0.2133) 0.9462 (0.2568) 0.8906 (0.2087) 0.9432 (0.2496)
MTTF 0.8958 (4.5046 × 104) 0.9500 (5.2422 × 104) 0.8936 (4.5832 × 104) 0.9444 (5.3604 × 104)
X0(8) 0.8996 (22.4528) 0.9484 (26.9199) 0.8888 (21.9932) 0.9446 (26.3262)

The number in bold indicates that the corresponding CP is significantly off the nominal levels.
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Table 5. The CPs and average values (in parentheses) of different LCLs for model parameters and
some quantities under parameter setting I for nominal levels 0.9, 0.95, based on 5000 replications.

(n, r) Parameter LCL in GPQ Method LCL in Bootstrap-p Method

0.9 0.95 0.9 0.95

(6, 6) a 0.8968 (−1.6616) 0.9512 (−1.8934) 0.9020 (−1.6542) 0.9506 (−1.8682)
b 0.9100 (1.5743) 0.9534 (1.4481) 0.8974 (1.6012) 0.9452 (1.4850)

σ2 0.8978 (0.8577) 0.9432 (0.8207) 0.9246 (0.8412) 0.9682 (0.7999)
ω2 0.9018 (0.2964) 0.9502 (0.2507) 0.9546 (0.2483) 0.9862 (0.1945)

R(5) 0.8976 (0.696) 0.9518 (0.6311) 0.8766 (0.7162) 0.9236 (0.6564)
MTTF 0.9044 (1.7927 × 104) 0.9538 (1.3248 × 104) 0.9052 (1.7236 × 104) 0.9508 (1.2075 × 104)

(9, 8) a 0.9020 (−1.4870) 0.9460 (−1.6608) 0.8982 (−1.4757) 0.9470 (−1.6396)
b 0.8986 (1.6783) 0.9520 (1.5840) 0.8922 (1.6854) 0.9458 (1.5964)

σ2 0.8946 (0.8978) 0.9432 (0.8704) 0.9200 (0.8869) 0.9674 (0.8573)
ω2 0.8998 (0.3442) 0.9508 (0.3071) 0.9498 (0.3086) 0.9824 (0.2655)

R(5) 0.9012 (0.7535) 0.9554 (0.7057) 0.8708 (0.7660) 0.9276 (0.7226)
MTTF 0.9056 (2.1389 × 104) 0.9548 (1.7046 × 104) 0.8952 (2.0895 × 104) 0.9438 (1.6264 × 104)

(12, 10) a 0.9090 (−1.3988) 0.9558 (−1.5421) 0.8936 (−1.3809) 0.9460 (−1.5185)
b 0.8936 (1.7357) 0.9424 (1.6578) 0.8962 (1.7361) 0.9486 (1.6612)

σ2 0.8998 (0.9186) 0.9512 (0.8969) 0.9094 (0.9138) 0.9596 (0.8906)
ω2 0.9016 (0.3682) 0.9504 (0.3361) 0.9344 (0.3441) 0.9750 (0.3070)

R(5) 0.8978 (0.7857) 0.9466 (0.7479) 0.8830 (0.7901) 0.9352 (0.7552)
MTTF 0.8926 (2.3986 × 104) 0.9386 (1.9975 × 104) 0.9060 (2.3172 × 104) 0.9540 (1.8956 × 104)

The number in bold indicates that the corresponding CP is significantly off the nominal levels.

Table 6. The CPs and average values (in parentheses) of different UCLs for model parameters and
some quantities under parameter setting I for nominal levels 0.9, 0.95, based on 5000 replications.

(n, r) Parameter UCL in GPQ Method UCL in Bootstrap-p Method

0.9 0.95 0.9 0.95

(6, 6) a 0.9024 (−0.1242) 0.9542 (0.1074) 0.8956 (−0.1656) 0.9446 (0.0481)
b 0.8950 (2.4102) 0.9518 (2.5360) 0.9012 (2.4099) 0.9500 (2.5257)

σ2 0.8980 (1.1954) 0.9498 (1.2568) 0.8816 (1.1723) 0.9306 (1.2252)
ω2 0.8870 (0.9001) 0.9416 (1.0569) 0.8308 (0.7860) 0.8874 (0.8866)

R(5) 0.8978 (0.9596) 0.9488 (0.9723) 0.9256 (0.9663) 0.9684 (0.9789)
MTTF 0.8980 (6.7811 × 104) 0.9516 (7.4465 × 104) 0.8934 (6.8816 × 104) 0.9432 (7.5906 × 104)

(9, 8) a 0.9046 (−0.3087) 0.9538 (−0.1353) 0.8916 (−0.3265) 0.9402 (−0.1629)
b 0.9004 (2.3185) 0.9478 (2.4125) 0.8980 ( 2.3101) 0.9452 (2.3989)

σ2 0.9010 (1.1285) 0.9526 (1.1673) 0.8862 (1.1148) 0.9368 (1.1499)
ω2 0.9016 (0.7751) 0.9520 (0.8737) 0.8440 (0.7058) 0.9040 (0.7762)

R(5) 0.8944 (0.9537) 0.9420 (0.9656) 0.9182 (0.9585) 0.9626 (0.9707)
MTTF 0.8998 (6.2798 × 104) 0.9488 (6.8600 × 104) 0.8914 (6.2941 × 104) 0.9432 (6.8979 ×104)

(12, 10) a 0.8934 (−0.4164) 0.9416 (−0.2734) 0.9006 (−0.4130) 0.9510 (−0.2754)
b 0.9002 (2.2697) 0.9510 (2.3473) 0.8942 (2.2623) 0.9436 (2.3371)

σ2 0.8998 (1.0938) 0.9496 (1.1221) 0.8828 (1.0880) 0.9342 (1.1143)
ω2 0.8992 (0.7133) 0.9524 (0.7871) 0.8552 (0.6712) 0.9142 (0.7274)

R(5) 0.9012 (0.9502) 0.9528 (0.9613) 0.9042 (0.9522) 0.9554 (0.9639)
MTTF 0.9102 (5.9889 × 104) 0.9532 (6.5021 × 104) 0.8932 (5.9508 × 104) 0.9426 (6.4788 × 104)

The number in bold indicates that the corresponding CP is significantly off the nominal levels.

4.2. Real Data Analysis

In this section, an illustrative example is provided to evaluate the performance of the
proposed GPQ methods based on the degradation data. The degradation data are obtained
from Table C.3 of Meeker and Escobar [7] in which three ADTs was used for a reliability
analysis of a carbon-film resistor at three different temperature levels. Figure 1 shows the
degradation paths for the test units. Figures 2–4 show the Q-Q plot for the degradation
increments based on the carbon-film resistors’ degradation data at different temperature
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levels. The points scatter around the line nicely, except for a few points at temperature
level 173 ◦C. This is probably due to the change in the degradation mechanism caused by
a high accelerated temperature for individual products. Thus, it is reasonable to use the
Wiener degradation process to fit the degradation paths of carbon-film resistor units. The
degradation path X(t) is assumed to follow a Wiener process at each temperature level.
The maximum test duration allowed is 8084 h and the number of measurements for each
unit is 4. The normal using temperature level S0 is specified as 50 ◦C and the maximum
test temperature level is S3 = 173 ◦C. The other test temperature levels are S1 = 83 ◦C and
S2 = 133 ◦C, respectively. The carbon-film resistor is assumed to fail when the resistance
increases by 5% from its initial value.

Figure 1. Sample degradation data at different temperatures.

Figure 2. The Q-Q plot for degradation data at temperature 83 ◦C.
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Figure 3. The Q-Q plot for degradation data at temperature 133 ◦C.

Figure 4. The Q-Q plot for degradation data at temperature 173 ◦C.

An Arrhenius model is used as the accelerating relation between the drift parameter
and the accelerated temperature level. Following Escobar and Meeker [31], let ϕ(Si) =
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exp(−11605/(Si + 273.15)). Similar to Ye et al. [15] and Lim and Yum [36], we can
standardize the temperature levels by selecting

ζi =
ϕ(Si)− ϕ(S0)

ϕ(S3)− ϕ(S0)
, i = 0, 1, 2, 3.

so the standardized temperature levels are given as: ζ0 = 0, ζ1 = 0.0013, ζ2 = 0.0771,
ζ3 = 1.0. The relationship between the drift parameter µi and the standardized temperature
level ζi is given by µi = a + b ζi. Notice that ζ0 = 0, so the degradation rate at normal using
condition is the same as parameter a, i.e., µ0 = a.

Using Equations (6), (7) and (9) (let A2
i be replaced by W2

i ), the estimates of the
model parameters (a, b, σ2, ω2) are given by ã = 2.1744 × 10−4, b̃ = 1.6 × 10−3, σ̃2 =

6.5151× 10−4, ω̃2 = 7.2874× 10−8, respectively. The estimates of µi, i = 1, 2, 3, are given by
µ̃1 = 2.0× 10−4, µ̃2 = 3.0× 10−4 and µ̃3 = 1.9× 10−3, respectively. Utilize the proposed
method in Section 4, based on the real degradation data, the GCIs/GPIs, LCLs and UCLs
of the model parameters and some quantities are given in Table 7.

Table 7. The GCIs (GPIs), GLCL and GUCL of model parameters and some quantities.

Parameter Level GCI/GPI GLCL GUCL

a 90% (0.0022, 0.4338) × 10−3 0.0514 ×10−3 0.3833× 10−3

95% (−0.0418, 0.4790) × 10−3 0.0022 ×10−3 0.4338× 10−3

b 90% (1.2000, 2.1000) × 10−3 1.3000 ×10−3 2.0000 × 10−3

95% (1.1000, 2.2000) × 10−3 1.2000 ×10−3 2.1000 × 10−3

σ2 90% (0.5173, 0.8519) × 10−3 0.5445 ×10−3 0.8036 × 10−3

95% (0.4943, 0.9004) × 10−3 0.5173 ×10−3 0.8519 × 10−3

ω2 90% (0.0197, 0.1891) × 10−6 0.0313 ×10−6 0.1590 × 10−6

95% (0.0101, 0.2188) × 10−6 0.0197 ×10−6 0.1891 × 10−6

R(5000) 90% (0.8393, 0.9797) 0.8673 0.9734
95% (0.8117, 0.9839) 0.8393 0.9797

MTTF 90% (1.8784, 6.0114) × 104 2.1982 ×104 5.4981 × 104

95% (1.6418, 6.4548) × 104 1.8784 ×104 6.0114 × 104

X0(10, 000) 90% (−4.6179, 9.0402) −3.0454 7.4440
95% (−5.9605, 10.5122) −4.6179 9.0402

Based on the proposed degradation model, the real data are analyzed completely, using
the proposed GPQ method. The point estimations and generalized interval estimations
of the model parameters are given. In addition, the interval estimations of the reliability
function and MTTF of the carbon-film resistor are obtained, and the generalized prediction
interval of the resistance degradation of the carbon-film resistor under normal operating
conditions is also obtained. It can be seen from the calculation results that these interval
estimations match well with the corresponding point estimations.

5. Conclusions

In this paper, we consider a CSADT model of the Wiener process with random effects.
In most cases, we mainly focus on the interval estimations of the model parameters and
some quantities of interest. As is known to all, it is difficult to obtain the exact confidence
intervals for them. Thus, we develop the GCIs of the model parameters and some quanti-
ties, such as the reliability function, the MTTF and the degradation rate at normal using
condition, by constructing a GPQ. In addition, the GPIs of the degradation characteristic
at the normal using condition are derived. The simulations are conducted to investigate
the performances of the proposed GCIs (GPIs) and GCLs in terms of the CP and AIL.
The results reveal that the proposed GCIs (GPIs), GLCLs and GUCLs perform well in
terms of the CP. The proposed interval estimation methods are successfully applied to the
degradation data of carbon-film resistors.
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In this study, we mainly focus on the Wiener CSADT model with a random drift
parameter and fixed diffusion parameter. Although this model works well for many
degradation data, in the literature, the Wiener process with two random effects (i.e., both the
drift and diffusion parameters are considered as random variables) also appears. It will be a
meaningful research direction for the future to develop interval estimation methods for the
Wiener CSADT model with two random effects under a small sample size. Other stochastic
processes, such as the gamma process and inverse Gaussian process, are also widely used in
a degradation analysis. It will be a meaningful research direction for the future to develop
interval estimation methods for the gamma and inverse Gaussian processes.
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