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Abstract: To schedule material supply intelligently and meet the production demand, studies con-
cerning the material logistics planning problem are essential. In this paper, we consider the problem
based on the scenario that more than one vehicle may visit each station in batches. The primary
objective is to satisfy the demands in the time windows, followed by logistics planning with the
minimum vehicles and travel time as the optimization objective. We construct a multi-objective
mixed-integer programming model for the scenario of discrete material supply in workshops. First,
we propose a hybrid heuristic algorithm combining NSGA-II and variable neighborhood search.
This proposed algorithm combines the global search capability of NSGA-II and the strong local
search capability, which can balance intensification and diversification well. Second, to maintain
the diversity of population, we design the population diversity strategy and various neighborhood
operators. We verify the effectiveness of the hybrid algorithm by comparing with other algorithms.
To test the validity of the proposed problem, we have carried out research and application in a
construction machinery enterprise.

Keywords: material logistics planning; multi-objective optimization; split delivery by batch;
mixed-integer linear programming; hybrid algorithm

MSC: 90B06

1. Introduction

Production logistics is a variant application of logistics in the manufacturing system,
which has a direct impact on the production cost and delivery time of products. Making
reasonable material supply planning under the known material plan is an important part
of planning and scheduling research. A reasonable and effective logistics system can not
only improve the efficiency of distribution, but also support the continuous production
and stability of the assembly line.

Materials are stored in the warehouse in batches. If the batch is the transportation
unit, the unpacking and packaging processes of materials do not need extra manpower.
Reasonable split deliveries by batch help derive the most use out of a vehicle’s loading
capacity and reduces the number of vehicles and delivery time. Just-in-time delivery is an
effective control method to avoid production interruption caused by material shortage.

Based on the premise of multiple batches of various materials, each station may be
visited by more than one vehicle in batches. This kind of problem belongs to the Split
Delivery Vehicle Routing Problem (SDVRP), which was first studied in 1989 [1]. The
existing studies on SDVRP follow combinatorial splitting, based on the arbitrary splitting
of node demands. However, in production logistics, most materials are distributed in
batches [2,3]. Therefore, the batch can be considered as the minimum distribution unit that
is not allowed to be split.
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Based on the analysis of the mixed-flow assembly line, we explore the vehicle routing
problem with time windows and discrete split deliveries by batch (VRPTWDB) with meet-
ing the load constraint, time windows constraint, material demands, and other conditions.
As far as we know, few studies consider the multi-objective optimization on SDVRP in the
mixed-flow assembly line scenarios.

The primary objective of VRPTWDB is to meet the demands within the time constraint,
followed by logistics planning with the minimum vehicles and total travel time as the opti-
mization objective. Therefore, we construct a multi-objective mixed integer programming
model for the scenario of the discrete material supply in workshops.

To solve the NP-hard problem, we propose the NSGA-II hybrid algorithm with variable
neighborhood descent (VND) (HNSGA-II-VND). The proposed algorithm combines the
global search capability of NSGA-II and the strong local search capability of VND, which
can balance intensification and diversification. The proposed algorithm provides a series of
Pareto optimal solutions with the minimum vehicles and total travel time. The proposed
algorithm uses the Pareto optimization concept to solve all the objectives simultaneously.
To maintain the diversity of population, we design the population diversity strategy in the
hybrid algorithm. To reduce computing time, the adaptive expectation factors and various
neighborhood operators are designed. The effectiveness of the hybrid algorithm is verified
by comparison with other algorithms. To test the validity of the proposed problem, we
have carried out application in a construction machinery enterprise.

The current research aims to solve this multi-objective problem with waiting time
optimization by an efficient MILP model and the hybrid algorithm HNSGA-II-VND. The
major contributions of this paper are as follows:

1. We study the multi-objective VRPTWDB problem in the mixed-flow assembly line
scenario. Based on the highly mixed demand environment, the relationship between
station visit sequence and multiple optimization objectives (minimize the routes,
transportation time and waiting time) is comprehensively considered.

2. The decision optimization mathematical model is constructed to quantitatively repre-
sent the material logistics planning problem of highly mixed production.

3. An effective multi-objective HNSGA-II-VND algorithm is proposed to solve the prob-
lem. The optimization potential of the solution is further explored by crossover
operator, VND local search and the population diversity mechanism. Batch combina-
tion operation and batches random binding operation are designed.

The rest of the paper is organized as follows. Section 2 introduces the relevant ex-
isting studies. Section 3 constructs the MILP model. Section 4 elaborates the hybrid
algorithm in detail. The analysis of results and the experimental evaluation are illustrated
in Sections 5 and 6. Section 7 presents conclusions and future directions.

2. Literature Review
2.1. The Distribution Logistics

The logistics system of the assembly workshop needs to “deliver the right materials
in the right quantity to the right station at the right time under the right conditions” [4].
Vehicle scheduling is the key of the logistics system, which is generally simplified to
scheduling strategy selection problem and vehicle routing problem (VRP) [5].

In the material transportation research of manufacturing systems, the optimization
of vehicle scheduling strategies takes up a large research proportion. Considering the
limitations of actual physical factors in the workshop, some scholars study the dynamic
scheduling of vehicles to avoid collisions [6,7]. Many heuristic algorithms have been
designed to solve this problem [8–10].

The distribution logistics is an important application of VRP in manufacturing systems.
Planning routes reasonably is the key to realizing efficient transportation. The optimization
goal of logistics planning is to arrange vehicles to complete the tasks with minimum costs
and travel distances when the material demands plan is known [11]. Heuristic algorithms



Mathematics 2022, 10, 2871 3 of 30

are designed to solve the logistics planning problem, which mainly focuses on the delivery
time, delivery quantity, and transportation route [12–14].

2.2. Discrete Split Delivery Vehicle Routing Problem

In actual transportation, discrete splitting with the smallest non-detachable unit is com-
mon. Few research considers the SDVRP in discrete splitting. Nakao and Nagamochi [15]
propose the concept of discrete-type split delivery and define it as Discrete Split Delivery
Vehicle Routing Problem (DSDVRP). Salani and Vacca [16] formulate the DSDVRP with
time window, assuming all feasible orders are known in advance.

Gulczynski et al. [17] consider SDVRP with minimum delivery amounts are allowed
if a minimum fraction of demand is serviced by a vehicle. Many researchers continue to
study the problem from the perspective of minimum delivery amounts [18–20].

Archetti et al. [21] allow the splitting of the demand of a customer only for differ-
ent commodities. They present a branch-price-and-cut algorithm to solve the SDVRP.
Chen et al. [3] propose a novel and efficient approach to solve the SDVRP using split strat-
egy. Xia et al. [22] discuss the problem of discrete split only through backpacks from
a green and low-carbon perspective. They use the hierarchical approach to construct a
double-objective mathematical model. Xia and Fu study the DSDVRP from the perspective
of backpack splitting and order splitting [23–25]. They improve tabu search with dynamic
tabu lists and multi-neighborhood operators.

SDVRP with time windows means that each customer can only be accessed during a
certain period of time. If the actual visit time of the vehicle to the customer is not within
the required time period, it will be punished. Therefore, they can be divided into hard time
window and soft time window accordingly.

The soft time window model is more flexible, which is beneficial to enhance the
flexibility of the distribution system [23]. More feasible solutions can be obtained, and the
range of solutions can be enlarged by soft time window [26–28].

In fact, the application of hard time windows of SDVRP is necessary in emergency
scenarios [11,29,30]. The application of hard time window ensures the on-time delivery of
vehicles without delaying the use of products [31,32]. Salani and Vacca [16] proposed the
hard time window constraint of DSDVRP.

In view of the background of mixed flow assembly workshop production, only hard
time window is appropriate. If the vehicle is earlier than the earliest acceptance time of the
station, the vehicle must wait until that time for service. However, deliveries outside the
time window can lead to assembly line shutdowns.

In the study of SDVRP with soft time window, vehicles are allowed to arrive at cus-
tomers earlier and later, so the factor of waiting time is taken into account. However, the
wait time and delay time are usually considered together. In the study of single objective
problems, the minimization of vehicle cost and total traveling distance are generally con-
sidered together with waiting time and delay time, which are generally set with certain
penalty values, respectively [23,30]. However, in multi-objective problems, the sum of
waiting time and delay time is optimized as a single objective [27,28,33].

In the research of VRP with hard time window, most studies only consider the min-
imum cost and total traveling distances. However, waiting time is also a part of the
total duration of vehicles. Reducing waiting time is also a way to reduce the total dura-
tion [31,32]. Based on the background of mixed-flow assembly workshop, materials need
to closely abide by the time constraint, so we consider the optimization of waiting time in
the proposed problem.

2.3. Multi-Objective SDVRP

Research into multi-objective SDVRP is becoming popular. Belfiore and Yoshizaki [34]
designed a scatter search algorithm for heterogeneous fleet VRP with time windows
and split deliveries to find good solutions, including swapping the same route, demand
reallocation, route elimination and combination, and route addition. They consider the
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problem because it occurs in a major Brazilian retail group. Then, they [29] applied this
method to solve the fleet size and mixed VRP with time windows and split deliveries. Their
research extends to general instances for verification. However, the scatter search algorithm
does not elaborate on the processing strategy of the two objectives. Chan et al. [26] study
dynamic scheduling of oil tankers with the splitting of cargo at pickup and delivery
locations. They developed a mathematical model aimed at minimizing total costs and
maximizing service level. A modified multi-objective ant colony algorithm is proposed
to solve the problem. Based on the concept that the Pareto optimal solution set optimizes
two objectives simultaneously, Chiang and Hsu [11] used a multi-objective evolutionary
algorithm combining enhanced crossover and mutation operators to solve VRPTW.

Based on the requirements of low-carbon logistics, Xia et al. [22] propose the logistics
VRP with split deliveries by backpack. They used the hierarchical approach to construct a
double-objective mathematical model to minimize the number of vehicles used and the
travel time. Gupta et al. [35] study SDVRP with fuzzy time-distances characteristics to
minimize fuel emissions. Fast comparisons are made based on fuzzy rules. A discrete fuzzy
hybrid genetic algorithm is developed to solve multi-objective SDVRP. For solving the
problem involved in classified waste disposal under an IoT environment, Cao B et al. [36]
propose an improved SDVRP multi-objective model and a modified ant colony optimization
(MACO) algorithm. Hasani Goodarzi, A [27] address a VRP with cross-docking that
considers vehicle scheduling, splitting pick-up and delivery with time-windows at supplier
and retailer locations, while optimizing two conflicting objectives. Shahabi-Shahmiri,
R et al. [28] propose a multi-objective mixed-integer programming model for the scheduling
and routing of heterogeneous vehicles carrying perishable goods across multiple cross-
docking systems.

Research into multi-objective SDVRP is becoming popular. However, there are a few
multi-objective optimizations for DSDVRP. Through multi-objective research, decision
makers can make more favorable choices.

For DSDVRP problems without any batch combination process, each batch that can be
split at each station is regarded as a single node. More specifically, the distance between
nodes at the same station is regarded as 0 [22–24,37]. Then, the problem can be transformed
into general VRPs and solved by existing algorithms [38].

However, Qiu. M et al. [25] are aware of such problems. To avoid the same customer
being visited more than once, increasing the route distance compared to a normal visit, a
batch combination operation is designed. A single batch as an operator results in complex
and time-consuming calculations. The authors designed a neighborhood move object
instead of customer or batch as a moving object by randomly combining batches. The split
shift operator proposed by Nagy et al. [39] is very suitable for neighborhood exploration of
this move object.

A comparative analysis of the existing literature is shown in Table 1. The literature
review shows that the SDVRP problem has been investigated widely and various heuristic
algorithms have been designed to solve SDVRP. The VRPTWDB problem is a relevant
problem in the industry, which has been gradually studied by academics in recent years. The
type of problems addressed, although similar, include different constraints or objectives.

We study the VRPTWDB problem from a multi-objective perspective, based on the
practical assembly workshop scene. Our work includes a new constraint on the hard
time windows. This perspective has its own unique importance that no one has consid-
ered before. The study of this problem has important guiding significance for workshop
logistics planning.
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Table 1. Comparative analysis with existing literature.

Properties Multi-
Objective

Linear
Objective
Function

Min
Vehicles

Min the
Traveling
Distances

Min
Waiting
Times

Discrete
Split De-
liveries

Split De-
liveries

Hard
Time

Windows
Soft Time
Windows

Nakao and
Nagamochi [15]

√ √

Salani and Vacca [16]
√ √ √ √

Gulczynski et al. [17]
√ √ √

Archetti et al. [21]
√ √ √

Chen et al. [3]
√ √ √

Xia et al. [22]
√ √ √ √ √

Xia et al. [23]
√ √ √ √ √ √

Belfiore and
Yoshizaki [29]

√ √ √ √ √

Chan et al. [26]
√ √ √ √ √

Chiang and Hsu [11]
√ √ √ √

Gupta et al. [35]
√ √ √

Cao B et al. [36]
√ √ √ √ √

Hasani Goodarzi,
A [27]

√ √ √ √ √ √

Shahabi-Shahmiri,
R et al. [28]

√ √ √ √ √ √

Qiu, M et al. [25]
√ √ √

Nagy et al. [39]
√ √ √

Xia et al. [37]
√ √ √ √ √

Lim, H et al. [38]
√ √ √

Belhaiza, S et al. [30]
√ √ √ √ √

Pan, J et al. [40]
√ √ √

Cordeau, J.F et al. [31]
√ √ √

Tricoire, F et al. [32]
√ √ √ √

Rocha, D et al. [41]
√ √ √

Ombuki, B et al. [42]
√ √ √ √

Xu, H et al. [33]
√ √ √ √ √

This paper
√ √ √ √ √ √ √

3. Mathematical Formulation
3.1. Problem Description

The mixed-flow assembly line is a very important part of the manufacturing industry.
It can produce various products of the same category within a certain production cycle. On
the mixed-flow assembly line, each workstation performs different tasks to assemble given
various materials to produce multiple specific products.

According to the logic of delivery time and quantity, the planning layer summarizes
the demands to generate the distribution planning. Therefore, when analyzing logistics op-
timization from the perspective of the logistics operation layer, the key is on the distribution
logistics planning. The purpose is to ensure that each station receives the required materials
within the time windows. More consideration should be given to various complicated
time constraints in the production and distribution process to improve the reliability of
distribution. Under the premise of not causing material shortage, the material of the same
station can be relatively flexible, allowing it to be split and distributed. Reasonable split
delivery by batch is beneficial to fully utilize the vehicle’s loading capacity and reduce the
number of vehicles and delivery time.

The problem is stated as follows: the distribution center has K vehicles to dispatch,
which cannot depart from the center at the same time. Each station has a demand time
window and demands. Split deliveries by batch are allowed without interruptions to the
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production. The same station can be visited by multiple vehicles. The goal is to plan a
reasonable transportation route and arrange the appropriate vehicle departure sequence to
complete the delivery task to minimize the total cost and total delivery time.

Moreover, we make the following assumptions:

1. The workshop roads network is an undirected network without capacity limitation.
2. The vehicles will not stop due to failure or traffic jams during transportation.
3. Assembly planning and material distribution lists are known. The materials are

qualified and meet the requirements of homogeneity. Products will not be changed
during the production process.

4. A certain number of materials have already been stored in the line-side before starting
production. The material is consumed evenly during production.

5. Materials are converted to uniform equivalent according to weight and volume.
6. The speed and rated load of the vehicles are the same.

3.2. The MILP Model

Let G = (V, E) be a graph. Let V = {0} ∪ N be the set of distribution center and
workstations. Let E = (V×V) be the set of arcs: there are travel times tij associated with
each arc. Let k ∈ K be the set of the vehicles. It also refers specifically to a distribution
route. The demands of station i are divided into r batches of materials, so the material in
batch r of station i is described as ir. Combined with the classical MILP model [23], the
MILP model of the proposed problem is constructed.

The following list provides a description of the parameters and variables involved in
the proposed model, as shown in Abbreviation.

Under JIT production mode, the first goal of the distribution is to supply the material
on time and accurately to meet the requirements of the workshop. The second goal is to
promote the orderly distribution and optimize vehicle loading capacity.

As minimizing the routes is on the tactical level, objective (1) should be taken as the
first goal of planning and given a larger weight. When analyzing logistics optimization
from the perspective of the logistics operation layer, the purpose is to ensure that each
station receives the required materials within time windows and other objectives.

The objective Function (1) is to minimize the routes by using as few vehicles as possible
to reduce fixed costs. The objective Function (2) is to minimize the sum of the transportation
time, which is related to the feasibility of vehicle distribution. The objective Function (3) is
to minimize the waiting times to improve service satisfaction.

Min z1 =
N

∑
j=1

xk
oj (1)

Min z2 =
K

∑
k=1

N

∑
i=1

N

∑
j=1

xk
ijtij (2)

Min z3 =
N

∑
i=1

K

∑
k=1

wik (3)

Subject to:
N

∑
j=1

xk
0j ≤ 1, ∀k ∈ K (4)

V

∑
j=0

xk
ij =

Ri

∑
r=1

yk
ir, ∀k ∈ K, ∀i ∈ V (5)

V

∑
i=0

xk
ip =

V

∑
j=0

xk
pj, ∀p ∈ N, ∀k ∈ K (6)
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V

∑
i=0

K

∑
k=1

xk
ij ≥ 1, ∀j ∈ N (7)

K

∑
k=1

yk
ir = 1, ∀r ∈ R, ∀k ∈ K (8)

K

∑
k=1

R

∑
r=1

dr
i yk

ir = di, ∀i ∈ N (9)

N

∑
i=1

R

∑
r=1

dr
i yk

ir ≤ Q, ∀k ∈ K (10)

Tik + wik + si + tij − Tjk ≤ Ω
(

1− xk
ij

)
, ∀i ∈ N, ∀j ∈ V, ∀k ∈ K (11)

Tik + wik + si + tij − Tjk ≥ Ω
(

xk
ij − 1

)
, ∀i ∈ N, ∀j ∈ V, ∀k ∈ K (12)

Tik + wik ≥ ei

V

∑
j=0

xk
iJ , ∀i ∈ N, ∀k ∈ K (13)

Tik ≤ li
V

∑
j=0

xk
iJ , ∀i ∈ N, ∀k ∈ K (14)

wik =

{
ei − Tik, Tik < eik

0, Tik ≥ eik
, ∀i ∈ N, ∀k ∈ K (15)

xk
ij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ E (16)

yk
ir ∈ {0, 1}, ∀i ∈ N, ∀k ∈ K, ∀r ∈ R (17)

Tik ≥ 0, ∀i ∈ N, ∀k ∈ K (18)

wik ≥ 0, ∀i ∈ N, ∀k ∈ K (19)

Constraint (4) states that each vehicle used for distribution starts and ends at the
warehouse. Constraint (5)–(7) represent the flow conservation law and that each station
is serviced by at least one vehicle. Constraint (8) represents that each batch can only
be distributed by one vehicle, meaning that each batch cannot be split. Constraint (9)
indicates that the material requirements of each station need to be met. Constraint (10)
enforces the maximum loading capacity constraint of the vehicle. Constraints (11) and (12)
indicate that the arrival time at station j is equal to the arrival time at station i plus
the waiting time and service time plus the travel time, only if this arc is assigned to
vehicle k. Constraints (13) and (14) illustrate that the arrival time at station i plus the
waiting time must meet the time window of station i. The waiting time of station i is given
in Constraint (15). Constraints (16)–(19) state the domain for the decision variables.

4. Hybrid Heuristic Algorithm HNSGA-II-VND

The demand discrete separable problem is a special form of SDVRP. Therefore, VRPTWDB
is an NP-Hard problem [16]. Designing good meta-heuristic algorithms is the most effective
solution to solve the NP-Hard problem.

The multi-objective algorithm can find a set of Pareto optimal solutions for the tradeoff
between non-parallel multiple objectives, which can meet the requirements of minimum
travel time and the minimum number of vehicles. Individual expressions and local searches
determine the performance of the proposed algorithms. The NSGA-II algorithm has been
implemented and proved to be a very effective heuristic algorithm for solving general
multi-objective problems [43]. Variable Neighborhood Search (VNS) is a general local
search method. Neighborhood change is applied to avoid local optimality during the
descent and exploration stages.
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To better solve the NP-Hard problem, the hybrid swarm intelligence algorithm with
local search steps was proposed [44]. Considering that the NSGA-II and VND algorithm
have good performance in solving the large-scale VRP problems, we propose the hybrid
algorithm HNSGA-II-VND. The HNSGA-II-VND algorithm combines the global search
capability of NSGA-II and the strong local search capability of VND, which can balance
intensification and diversification.

4.1. The Flowchart of the HNSGA-II-VND

To facilitate the understanding of the proposed algorithm from the overall level, the
flowchart of the HNSGA-II-VND is given in Figure 1. The following sections detail various
aspects of the proposed algorithm.
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The termination criteria are set: The proposed algorithm stops when the number of
iterations reaches the preset maximum value, or the best solution is not improved within a
certain number of iterations. If the proposed algorithm reaches the termination criteria, the
Pareto optimal solution is printed out.

4.2. Solution Representation and Initialization
4.2.1. The Expression of Solutions

In the description of the solution, the material in batch r of station i is described as ir.
The solutions can be represented by an arrangement of the distribution center 0 with

the stations, in which the two stations nearest 0 and the middle part form a route. Figure 2
shows a graphical representation of the expression of solutions. The first route means
that the vehicle starts from distribution center 0, arrives at station 1 (for 2 batches), 2 (for
3 batches) and 7 (for 1 batches) for unloading, and finally returns to 0.
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4.2.2. Initial Solution

The hybrid algorithm is sensitive to the initial solution. A good initial solution can
make the proposed algorithm converge to the optimal solutions quickly. The initial solution
used by the proposed algorithm does not split the demands of all stations and generates
the routes that serve all stations.

For the initial generation phase, we used the greedy insertion algorithm to generate
the initial solution quickly [40]. The application of time difference ensures the fast insertion
and feasibility of the station. During the initial generation phase, the stations assigned to
the routes are those that result in the least increase in total route duration. Because this
idea might produce a set of routes that do not serve all stations, unserved stations will be
inserted into the routes. To generate a better feasible solution, the HNSGA-II-VND uses the
insertion detection method for initialization.

The earliest completion time of vehicle k at station j is (vehicle passing through arc
(i, j)): EFj = max

{
ej + sj, EFi + tij + sj

}
.

The latest start time of vehicle k at station j is: LSj = min
{

lj, LSk − tjk − sj

}
.

Theorem 1. Let j and u be two consecutive points in the route, and insert h between j and u under
the necessary and sufficient conditions:{

EFh − sh < lh
TDju = LSu − EFj ≥ tjh + sh + thu
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The steps to plan to insert h into the Sk route (Sk is the current viable sub-route)

Step 1: Is it overloaded after inserting h into the Sk route? If it is overloaded, then k + 1, and Step 1 is repeated; otherwise, proceed to Step 2.

Step 2: Calculate the EFi and LSi of each station in Sk .

Step 3: Calculate the TDju and EFh of all possible insertion positions of h and calculate the increment of the objective function f1 after the insertion
satisfies Theorem 1.

Step 4: Insert h into the position with the smallest increment in the objective function f1.

Step 5: Select the next waiting insertion point to recirculate Step 1.

4.2.3. Batch Combination Operation

Discrete batches of materials are regarded as the operation objects, so batches of the
same station are visited many times in the transformation, which increases the travel
time cost.

Batches for the same station on the same route should be combined to avoid unneces-
sary route costs. The operation moves batches of the same station into one visit. After each
neighborhood operation, only the first 0 of each neighboring 0 is retained.

No other points will be inserted between two batches for the same station, because
this process would not make any improvement and would be a waste of computing time.

4.2.4. Batches Random Binding Operation

The number of batches far exceeds the number of stations. If the batch unit is re-
garded as the operation object, it will lead to a computation-intensive and time-consuming
optimization process.

We design a single neighborhood moving object consisting of multiple batches at
the same station [25]. The object creation operation is used for reference in the algorithm.
Random binding operation of batches at the same station in the same route is considered
for the generation of the actual operation objects in neighborhood operations, as shown in
Figure 3. The specific operation mode is as follows:

1. Select the feasible batches randomly from the current solution.
2. Check whether there exist other batches that have the same station origin in the route.
3. Select several consecutive batches randomly for binding as the actual operation objects

for the next neighborhood operations.
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4.3. Minimizing the Route Duration

After obtaining the solutions, the starting time of the vehicles departing from the
warehouse can be delayed without violating the time window required by the stations,
thus reducing the minimum waiting time and route duration of the solutions.

Cordeau et al. [31] apply the forward time slack to the multi-warehouse VRPTW case
study. The quality of the solutions is greatly improved. Tricoire et al. [32] propose an accu-
rate algorithm that traverses all solutions and tracks the best solution to minimize the route
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duration in multi-time windows team directional motion problems. Belhaiza et al. [30]
propose a minimum backward time slack algorithm when studying the VRPs with multiple
time windows. The proposed algorithm records the minimum waiting time and mini-
mum delay time in the routing generation process and adjusts the arrival and departure
times inversely.

We improve the method of minimizing the route duration to the proposed problem.
Therefore, the forward time slack is calculated with station i as the unit (the batch unit is
not differentiated in the route). The warehouse time window constraint is ignored.

Let θi be the forward time slack of station i. bi indicates the service start time at station
i. si indicates the service time of station i. dc indicates the distribution center.

While the total waiting time in the route ∑0<p<M wpk < θi, ∀k ∈ K, the departure time
from the distribution center is delayed to θi. This will lead to the departure time of the
last station being delayed to θi −∑0<p<M wpk, ∀k ∈ K. Therefore, to obtain the minimum
waiting time and the route duration of a certain route without increasing the time window
constraint, the delayed departure time of vehicle K from the distribution center can be
computed by Equation (21):

θi = min
i≤j<dc

{
∑

i<p≤j
wpk + max

{
lj − bj, 0

}}
, ∀k ∈ K (20)

θ0 = min

{
θ0, ∑

0<p<M
wpk

}
, ∀k ∈ K (21)

4.4. Selection Operator

The function of the selection operator is to update the population by selecting the
current exceptional individuals. The introduction of Pareto in individual evaluation means
that the non-dominant solutions are considered as the individual with relatively high fitness
value. A set of solutions that rank equally defines the Pareto frontier. In addition, the elite
mechanism and crowding distance are used to ensure the validity of selection [41,45]. The
crowding distance defines the distance between the solution and its optimal neighbor in
the pareto frontier.

Selection operator

Step 1: Input the current population O and previous generation Q.

Step 2: Let R = O∪ Q be the new population. Ranking all individuals of R according to the crowding distance and Pareto optimization.

Step 3: Select the best individuals to form the next generation population.

The elite solution is established to ensure that the best individuals are passed on to the
next generation. Copying the current best solution from the previous generation to the next
means that the best solution produced by all the best chromosomes will never deteriorate
from one generation to the next. Although the previous optimal individual is passed on
unchanged to the next generation, it is forced to compete with the new individual with a
higher fitness value.

4.5. The Population Diversity

In the algorithm, the offspring must retain the non-dominant solution of the parent,
which also means that the number of non-dominant solutions will not decrease. In addition,
the binary championship selection operator tends to select the non-dominant solution to
join the mating pool, which makes it easier for the non-dominant solution to be frequently
added to the mating pool. It is possible that the two parents selected during the crossover
operation are the same, which will lead to local optimization.
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To maintain the diversity of the population, the population diversity strategy is added
before sorting elite solutions. The principle of the strategy is to mutate the repeated solution
in the whole large population after the merging of the offspring and the parent. The purpose
of mutating repeated solutions into new solutions is to avoid excessive repeated solutions
in the next generation, maintain the diversity of the population and expand the scope of
the search.

4.6. Crossover Operator

The crossover operator is an important step in the hybrid algorithm. In this paper,
the Best Cost Route Crossover (BCRC) operator is used in combination with NSGA-II
multi-objective algorithm to meet the feasibility constraints while minimizing the number
of vehicles and total travel time. Figure 4 illustrates a small case of the BCRC operator [42].
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Note that when inserting the deleted nodes, the inserted node is first selected randomly.
For example, when C1 is created, the insertion order of 7 and 4 is arbitrary. Based on
satisfying the constraints, the best insertion position is the position with the smallest
increment in total travel time. If no viable insertion points are found, a new route needs to
be created, as shown by C1 in Figure 4.

Batches need to be checked for missing supplies after the neighborhood operation.
If a batch is un-routed, the missing batch is reinserted into a new route. During the
neighborhood operation, if a removed batch cannot be reinserted into any existing route,
then a new route is created for this batch.

4.7. Multi-Mode Mutation Operator

The mutation operators avoid premature convergence of the HNSGA-II-VND algo-
rithm. The mutation operators explore more neighborhood space by generating different
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individuals to increase the genetic diversity of the population. The multi-mode mutation
pattern is adopted to increase the solution space by supplementing local search information.
This section defines that the probability of selecting each operator is the same, meaning
that one of the mutation operators is chosen at random [45].

Since the mutation operators may damage the chromosome structure and change
the service sequence in the route, the probability of mutation in each chromosome is very
low. The mutation operators randomly conduct stations exchange without considering the
constraints on vehicle capacity and route time.

Mutation operator
Input: Parent population Q
Output: Offspring population O

Create O from Q by mutation routine:
While (i ≤ N)

Calculate individual mutation-probability Pm
If: (random() < Pm):

Select the mth operator
O←Apply the mutation operator to the offspring

else
end if
i = i+1

End while
Output

The mth mutation operator is randomly selected from the defined neighborhood
structures set, even though exploring the current neighborhood method increases the cost
of the solution.

To define the neighborhood structures set, an appropriate balance must be struck
between breaking the current solution and maintaining parts of it. This section defines
neighborhoods of different sizes including Relocate Operator, Node Exchange Operator,
2-Opt, Inter-Route Swap Operator, Inter-Route Cross Operator.

4.8. Adaptive Probability

With the evolution of the population, an adaptive probability adjustment strategy
is adopted to protect the optimum solution and accelerate the population evolution rate.
The adaptive probability mechanism can adjust the mutation and crossover probability
according to the iterative process. At the beginning of the search, large crossover probability
and mutation probability are adopted to expand the search space. As the search progresses,
the quality of the solutions improve, leading to an increase in fitness. The crossover
probability and mutation probability should be reduced to avoid destroying the sequence
of non-dominant solutions.

PC is the adaptive crossover probability. P1 is the initial crossover probability. g is
the current iteration number. gmax is the maximum iteration number. Pm is the adaptive
mutation probability. P2 is the initial mutation probability.

PC =

{
P1, g < 0.5gmax

P1
gmax−0.5g

gmax
, 0.5gmax ≤ g ≤ gmax

(22)

Pm =

{
P2, g < 0.5gmax

P2
gmax−0.5g

gmax
, 0.5gmax ≤ g ≤ gmax

(23)

4.9. The VND Algorithm

As an effective algorithm based on local search, VND has been widely used in the
research of VRPs and other variants [46]. VND can use different neighborhood opera-
tors to explore systematically and compare their local optimal solutions, to effectively
update the global optimal solution step by step. VND further explores the larger neigh-
borhood space of the current solutions. The main idea of VND is that a locally optimal
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solution in one neighborhood is not necessarily the locally optimal solution in another
neighborhood [33,44].

Based on the proposed problem, we made some improvements for local search struc-
tures that consider batch combination operation to increase the probability of disposing
of the local optimum. Each non-dominant solution can be modified with local search
structures. Neighborhood operators with low complexity are frequently used due to their
high ranking.

The improved VND algorithm

Step 1. Initial solution. Input the initial solution x0, x = x0.

Step 2. Define a group of neighborhood structures Mm(m = 1, 2, . . . mmax), set m = 1.

Step 3. If m ≤ mmax , repeat Step 4; otherwise, perform Step 5.

Step 4. Apply the local search structures to update the solutions.

Step 4.1. Apply random binding operation to create corresponding operation objects.

Step 4.2. Find the local optimal solution x* of x in the Mm neighborhood space.

Step 4.3. Update solution x* according to batch combination operation and route elimination operation at the same station.

Step 4.4. Determine the dominant relationship between x* and x. If x* dominates x, then x = x*, m = 1. Otherwise, m = m + 1.

Step 4.5. Repeat Step 3–4.

Step 5. Output the optimal solution x.

Neighborhood search contains the idea of population evolution to improve the opti-
mization ability of the HNSGA-II-VND algorithm. Reasonable neighborhood structures
can improve the quality of the solutions and improve the efficiency of the algorithm. The
neighborhood structures adopted in this stage must conform to the constraints and be able
to expand the search space.

Multiple classic neighborhood structures are adopted and divided into intra-route
and inter-route operations. In each neighborhood operation, different routes R1 and
R2 are selected as operation routes. Each operation object is randomly selected for the
transformation operation, except distribution center 0. The first accept strategy is applied
to reduce computing time. The strategy stops the search of the current operation and starts
the next local search process after the improved solution is found for the first time.

The multi-neighborhood operations have different effects on the batch combination
operation proposed above. Intra-line neighborhood operations have no effect on this
operation but may reduce the total travel time. The relocate operator may eliminate the
redundant routes. In the process of optimization, the routes number is constantly reduced
to achieve the minimum number of vehicles.

Different intra-line operations are applied to each route, as shown in Figures 5 and 6.
The operations are applied in order of increasing complexity [23].

• Relocate Operator;
• Node Exchange Operator;
• When the intra-line operations are not improved, the interline operations are continued

to be applied to a group of routes;
• Inter-route Relocate Operator;
• Inter-route Swap Operator;
• Inter-route Cross Operator;
• 2-opt*.
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5. Computational Results and Discussion

This section summarizes the results of the experiments conducted to evaluate the
performance of the proposed hybrid algorithm. All numerical experiments are performed
in Python on a computer with the following specifications: Intel Core (TM) I5-7500 CPU
(3.40 GHz) 8 GB RAM.

First, we describe the test environment used for testing and the parameters of the
HNSGA-II-VND algorithm that are optimized by the Taguchi method. Second, we test
multiple strategies included in the proposed algorithm to confirm the contribution. Third,
to compare the different algorithms, we discuss the experimental results of various scale
testing problems.

5.1. Testing Problems

Since the proposed problem is novel and existing research has no standard test in-
stances for such a problem, we generated the test instances based on the classical VRPTW
benchmark examples to assess the effect of the improved algorithm.

A total of 20 examples including R1 and RC1 were selected for testing. Each ex-
ample was given the maximum vehicle loading capacity, and location, service time and
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time window for each node. The demands of each station were created according to the
characteristics of the proposed problem and randomly split into 1–4 batches, indicating
the batches number of different materials [23]. To study the influence of different scale
instances on the hybrid algorithm, 25 nodes and 50 nodes were selected to form other part
single examples.

5.2. Performance Metrics

To evaluate the behavior of different algorithms for solving the proposed multi-
objective problem, two performance metrics were utilized [47].

• Generational Distance (GD). This metric is used to represent the distance between the
current Pareto frontier (PF) and the real Pareto frontier (PF*).

• Inverted Generational Distance (IGD). This refers to the average distances of the near-
est solutions in the Pareto solution set, considering both distribution and convergence
at the same time [12,47].

These objective functions are different, so these metrics are normalized to facilitate
comparison. It should be noted that the real Pareto frontier PF* is probably not available.
Therefore, the obtained solutions are sorted in a non-dominated order to obtain approximate
PF* in each instance.

5.3. Parameters Optimization

The parameters are very important to the effectiveness and efficiency of the algo-
rithms. This section designs a Taguchi experiment design method to choose the best
combination of experimental parameters to gain empirical insight into the influence of the
parameters [45,48–50].

The key parameters of the hybrid algorithm: population size S, crossover probability
PC, mutation probability Pm. The orthogonal array L16(4ˆ3) is designed with four levels for
each parameter combination, as shown in Table 2.

Table 2. The orthogonal array L16(4ˆ3).

Experiments S PC Pm IGD

1 100 0.6 0.1 0.1351

2 100 0.7 0.2 0.1412

3 100 0.8 0.3 0.1386

4 100 0.9 0.4 0.1165

5 120 0.6 0.2 0.1206

6 120 0.7 0.1 0.1504

7 120 0.8 0.4 0.0963

8 120 0.9 0.3 0.1173

9 140 0.6 0.3 0.1203

10 140 0.7 0.4 0.1239

11 140 0.8 0.1 0.1307

12 140 0.9 0.2 0.1185

13 160 0.6 0.4 0.1060

14 160 0.7 0.3 0.1273

15 160 0.8 0.2 0.0749

16 160 0.9 0.1 0.1461

Multiscale cases are selected from the test instances. Each parameter combination
is tested 20 times. The average IGD values are collected as the response variables, as
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shown in Table 2. Figure 7 shows the main effects of the three parameters of the IGD index.
According to the comparison of the parameters on algorithm performance, the variation
trend of each parameter is statistically analyzed in Figure 7. Based on the results, it is
recommended that the optimal parameter combination of the current algorithm settings be:
S = 160, PC = 0.8, Pm = 0.4. The Taguchi method has been employed on testing other part
instances, and this parameter setting also works well. These values are used to conduct
comprehensive experiments.
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5.4. The Effectiveness of Strategies

This section evaluates the contribution of the proposed improved strategies to the
hybrid algorithm. These improved strategies comprise the diversity of population and
VND local search. The population diversity strategy is to avoid excessive repeated solutions
in the next generation, maintain the diversity of the population and expand the scope of
search. This strategy explores the global domain. The principle of the strategy is to mutate
the repeated solution in the whole large population.

As an effective algorithm based on local search, VND further explores the larger
neighborhood space of the current solutions. The main idea of VND is that a locally
optimal solution in one neighborhood is not necessarily the locally optimal solution in
another neighborhood.

There are three variants: NSGA-II-1, NSGA-II-2, NSGA-II-3. NSGA-II-1 represents
the HNSGA-II-VND without both strategies. NSGA-II-2 represents the HNSGA-II-VND
without the diversity of population. NSGA-II-3 indicates the HNSGA-II-VND without
VND local search.

To make a fair comparison, the operation of all the compared algorithms is the same as
that of the proposed hybrid algorithm. Each algorithm runs 20 experiments on the selected
test instances. The average values of GD and IGD obtained by all the comparing algorithms
are shown in Tables 3 and 4.
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Table 3. The mean value of the metrics between HNSGA-II-VND and its variants in R1.

Instances
HNSGA-II-VND NSGA-II-1 NSGA-II-2 HNSGA-II-3

GD IGD GD IGD GD IGD GD IGD

R101-25 0.0113 0.0135 0.0499 0.0814 0.0430 0.0717 0.0190 0.0162

R102-25 0.0456 0.0214 0.0958 0.1137 0.0752 0.0889 0.0653 0.0279

R103-25 0.0441 0.0336 0.2250 0.2015 0.1380 0.1837 0.0426 0.1069

R104-25 0.0329 0.0093 0.5659 0.2405 0.3589 0.2023 0.1538 0.0679

R105-25 0.0166 0.0184 0.1775 0.0990 0.1161 0.0816 0.1119 0.0326

R106-25 0.0189 0.0113 0.2438 0.1876 0.0886 0.1555 0.0392 0.0435

R107-25 0.0771 0.0512 0.2965 0.2173 0.0740 0.1320 0.2009 0.0687

R108-25 0.0127 0.0025 0.4729 0.2444 0.2884 0.2002 0.0423 0.0350

R109-25 0.1022 0.1649 0.5275 0.2707 0.3705 0.2012 0.2099 0.1884

R110-25 0.0169 0.0056 0.6580 0.2193 0.4120 0.1373 0.1755 0.0152

R111-25 0.6463 0.0553 1.2938 0.3930 1.0264 0.2963 0.7450 0.0924

R112-25 0.0021 0.0007 0.5866 0.1719 0.2450 0.0817 0.2122 0.0707

R101-50 0.0344 0.0187 0.0881 0.0890 0.0607 0.0789 0.0522 0.0257

R102-50 0.0324 0.0214 0.1127 0.0912 0.0884 0.0682 0.0753 0.0305

R103-50 0.0822 0.0297 0.1538 0.0932 0.0874 0.0815 0.1020 0.0463

R104-50 0.1374 0.0399 0.4401 0.1855 0.2893 0.1383 0.2899 0.0895

R105-50 0.0852 0.0392 0.4789 0.1674 0.3425 0.0848 0.1797 0.0468

R106-50 0.0537 0.0830 0.2724 0.1736 0.1288 0.1471 0.0961 0.1217

R107-50 0.0967 0.0855 0.4939 0.1996 0.3285 0.1678 0.1761 0.1080

R108-50 0.0038 0.0216 0.6555 0.2019 0.2879 0.1113 0.3219 0.0641

R109-50 0.0248 0.0933 0.5487 0.1994 0.3656 0.1502 0.2125 0.1125

R110-50 0.1680 0.0087 0.6565 0.2188 0.5965 0.1691 0.4785 0.0643

R111-50 0.1121 0.0069 0.6932 0.2311 0.6059 0.1627 0.3747 0.0581

R112-50 0.0327 0.0109 0.8218 0.2739 0.3117 0.0742 0.1654 0.0551

R101-100 0.1032 0.0400 0.1862 0.0839 0.1421 0.0721 0.1515 0.0548

R102-100 0.0629 0.0374 0.1537 0.0728 0.0970 0.0696 0.1383 0.0500

R103-100 0.1575 0.0484 0.2382 0.1175 0.1582 0.1045 0.1941 0.0764

R104-100 0.1670 0.0743 0.4975 0.1856 0.2883 0.1242 0.2346 0.0937

R105-100 0.2265 0.0507 0.6881 0.1818 0.5152 0.1358 0.6255 0.1402

R106-100 0.1921 0.0962 0.6595 0.2502 0.3423 0.1604 0.3839 0.1398

R107-100 0.0693 0.0934 0.7846 0.2782 0.3639 0.1602 0.3472 0.1266

R108-100 0.1435 0.0192 1.0718 0.3001 0.7234 0.2199 0.5115 0.1031

R109-100 0.1752 0.0692 0.7903 0.2802 0.3935 0.1407 0.4905 0.1406

R110-100 0.0537 0.0931 0.7328 0.2524 0.3659 0.1453 0.3237 0.1315

R111-100 0.0338 0.0753 0.7218 0.2596 0.4082 0.1720 0.4620 0.1286

R112-100 0.2117 0.0645 1.0687 0.3407 0.7864 0.2621 0.5972 0.1834

mean 0.0968 0.0447 0.5056 0.1991 0.3143 0.1398 0.2500 0.0821

hit rate 36/36 36/36 0/36 0/36 0/36 0/36 0/36 0/36
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Table 4. The mean value of the metrics between HNSGA-II-VND and its variants in RC1.

Instances
HNSGA-II-VND NSGA-II-1 NSGA-II-2 HNSGA-II-3

GD IGD GD IGD GD IGD GD IGD

RC101-25 0.0637 0.0547 0.2484 0.1575 0.0827 0.1416 0.0792 0.0684

RC102-25 0.0010 0.0003 0.8895 0.2965 0.3354 0.1118 0.0892 0.0085

RC103-25 0.0034 0.0144 0.5100 0.2792 0.1319 0.1425 0.0167 0.0212

RC104-25 0.0111 0.0107 0.8411 0.2841 0.3595 0.0861 0.5521 0.0876

RC105-25 0.0174 0.0127 0.3038 0.1445 0.2204 0.1048 0.0199 0.0255

RC106-25 0.0013 0.0004 0.3159 0.1053 0.1938 0.0646 0.2828 0.0943

RC107-25 0.2000 0.0667 0.3464 0.1155 0.2000 0.0667 0.2000 0.0667

RC108-25 0.2829 0.0943 0.6840 0.2280 0.5160 0.1720 0.3374 0.1125

RC101-50 0.0464 0.0541 0.5669 0.2508 0.2626 0.1532 0.3777 0.1136

RC102-50 0.1309 0.0227 1.1434 0.3802 0.9077 0.3034 0.8949 0.2938

RC103-50 0.0534 0.0227 0.4217 0.1804 0.0959 0.0942 0.1053 0.0335

RC104-50 0.0488 0.0294 0.3626 0.1736 0.2355 0.1693 0.1270 0.0485

RC105-50 0.0964 0.0483 0.3358 0.1068 0.2240 0.1042 0.1182 0.0529

RC106-50 0.0120 0.0040 0.7316 0.2439 0.5774 0.1925 0.2126 0.0709

RC107-50 0.1475 0.0492 0.7279 0.2426 0.5411 0.1804 0.4680 0.1560

RC108-50 0.0364 0.0121 0.6627 0.2209 0.4011 0.1337 0.3710 0.1237

RC101-100 0.1360 0.0745 0.4757 0.2305 0.1946 0.1236 0.2557 0.1079

RC102-100 0.0804 0.1308 0.5523 0.2671 0.3229 0.1866 0.3610 0.1589

RC103-100 0.1963 0.0561 0.9184 0.3159 0.5057 0.1740 0.6109 0.2055

RC104-100 0.0519 0.1454 0.7948 0.3664 0.4012 0.2287 0.2952 0.1681

RC105-100 0.2635 0.1297 0.6703 0.2860 0.4282 0.2042 0.5407 0.2297

RC106-100 0.1495 0.0498 0.7725 0.2368 0.6021 0.1888 0.5061 0.1217

RC107-100 0.0194 0.1383 0.7117 0.3242 0.5267 0.2645 0.3816 0.2368

RC108-100 0.0762 0.0908 0.7588 0.2966 0.5431 0.2665 0.5287 0.2602

mean 0.0886 0.0547 0.6144 0.2389 0.3671 0.1608 0.3222 0.1194

hit rate 24/24 24/24 0/24 0/24 1/24 1/24 1/24 1/24

Tables 3 and 4 show that HNSGA-II-VND is superior to other algorithms in overall
performance. From the perspective index values in all instances, the average value of
HNSGA-II-VND index is lower than that of the HNSGA-II-VND variants. It can be seen
from the results that the variants have no absolute advantage in comparison, except NSGA-
II-1. Apparently, NSGA-II-3 has better results than NSGA-II-2 because the population
diversity increases the possibility of exploring the solution space.

Figure 8 shows the comparison interval diagram between HNSGA-II-VND and its
variants to analyze the statistically significant difference in the results. At the 95% CIs,
HNSGA-II-VND has the lowest interval and the smallest distribution range. This shows
that the HNSGA-II-VND algorithm has a more stable effect than its other variants. The
analysis shows that the proposed strategies can contribute to the hybrid HNSGA-II-VND
algorithm to solve the proposed problem.
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5.5. Comparison with the Model

To evaluate the accuracy of the model, this section analyzes the results of solving the
mathematical model by the CPLEX program. Based on the weighted coefficient method,
the solutions in different directions can be obtained by changing the weighted coefficients
of the time objectives. As the minimization of the routes is on the tactical level, objective (1)
should be taken as the first goal of planning and given a larger weight. The transport time
and waiting times as the second level of objectives. To calculate the results in an effective
time, several groups of small-scale instances are randomly combined for testing.

The results of solving the multi-objective problem under the combination of weighted
coefficients are counted in Table 5. The number and distribution of Pareto solutions of
different instances are different. The smaller the number of solutions, the smaller the
conflict. Obviously, more than one Pareto solution is obtained in each instance, so it can
be seen that there are conflicts between the objectives. For the same instances, the optimal
Pareto solutions obtained by the hybrid algorithm for several times are shown in Table 6. A
few combinations of weight coefficients cannot obtain all Pareto frontier solutions.

The Pareto solutions obtained by the algorithm are more extensive. The proposed
algorithm is mainly oriented to large-scale instances and can find effective solutions in the
valid computation time. The construction of mathematical models is also very important.
This is because the optimal solution obtained by mathematical models can be used as a
reference standard for developing meta-heuristic algorithms.
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Table 5. Results of MILP model.

No.
Weight Coefficient R1-25 R2-25 R3-25

W1 W2 z1 z2 z3 z1 z2 z3 z1 z2 z3

1 1 7 8 788.68 9.48

8 768.8 13.1
7 754 15

2 1 6
8 768.96 12.34

3 1 5

4 1 4
8 735.68 20.44

5 1 3

6 1 2 8 718.54 28.23 7 729 24

7 1 1 8 655.47 74.53 8 683.62 72.38 7 649.31 95.45

8 2 1 8 643.34 91.32 8 647.25 128.5 7 629.3 119.43

9 3 1 8 624.76 141.73 8 633.96 137.12

7 620.2 142.310 4 1

8 618.08 164.65

8 628.6 154.62
11 5 1

12 6 1
8 622.77 187.37 7 608.3 197.3

13 7 1

CPU/s 987 1056 1206

gap/% 0 0 0

Table 6. Results of the HNSGA-II-VND.

No.
R1-25 R2-25 R3-25

z1 z2 z3 z1 z2 z3 z1 z2 z3

1 8 788.68 9.48 8 768.8 13.1 7 753 20.37

2 8 643.34 91.32 8 761.81 22.47 7 729 24

3 8 638.25 102.83 8 759.9 24.79 7 714.82 37.81

4 8 683.87 57.79 8 756.55 29.85 7 710.57 42.66

5 8 701.25 56.14 8 746.44 34.07 7 678.34 88.03

6 8 755.4 17.58 8 706.71 62.43 7 677.85 91.41

7 8 674.85 69.02 8 733.83 41.92 7 649.31 95.45

8 8 707.91 45.99 8 710.26 54.92 8 776.48 8.04

9 8 655.47 74.53 8 683.62 72.38 8 746.02 10.77

10 8 768.96 12.34 8 679.19 86.26 8 732.16 18.68

11 8 681.46 62.69 8 675.82 94.89 8 729.81 19.32

12 9 835.07 3.1 8 647.25 128.5 8 722.41 23.16

13 9 826.48 6.38 8 654.52 112.93 8 707.31 35.51

14 9 750.64 17.92 8 649.53 115.92 8 701.36 48.69

15 9 809.17 1.36

CPU/s 121 143 157

5.6. Comparison Results of Multiple Algorithms

This section further studies the effectiveness of the hybrid algorithm after the above
settings in different scale cases. The hybrid algorithm and the multi-objective algorithms
proposed in other literature are evaluated and analyzed.

The comparison algorithms comprise: GA [42], NSGA-II [33] and KBEA [11].
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We use these comparison algorithms to solve multi-objective VRPTW. A few mod-
ifications are made to these algorithms to solve the proposed problem. All algorithms
use the same coding method. To be fair, GA and NSGA-II adopt the same crossover and
mutation search operations as HNSGA-II-VND. Similar to the parameter optimization of
the proposed hybrid algorithm (Section 5.3), the effects of parameters on performance in
these algorithms are studied. The results show that the parameters settings of NSGA-II are
the same as HNSGA-II-VND. The stop criteria are set to be the same.

Tables 7 and 8 summarize the results of the metrics obtained by executing all algo-
rithms 20 times in all test instances. “Mean” represents the mean value. The last line gives
the hit rate of the proposed algorithm compared with other algorithms.

Table 7. The index values of all comparison algorithms in R cases.

Instances
HNSGA-II-VND GA NSGA-II KBEA

GD IGD GD IGD GD IGD GD IGD

R101-25 0.0140 0.0160 0.0220 0.0271 0.0398 0.0669 0.0140 0.0160

R102-25 0.0157 0.0216 0.0853 0.0270 0.1664 0.1414 0.0334 0.0533

R103-25 0.0496 0.0369 0.0721 0.0925 0.2204 0.2166 0.0966 0.0645

R104-25 0.0255 0.0071 0.3359 0.0713 1.0159 0.3339 0.2281 0.0453

R105-25 0.0168 0.0293 0.1432 0.0652 0.2153 0.1315 0.0918 0.0517

R106-25 0.0170 0.0115 0.0222 0.0482 0.1752 0.1626 0.0189 0.0481

R107-25 0.0749 0.0506 0.2047 0.0662 0.3013 0.1938 0.1679 0.0934

R108-25 0.0122 0.0023 0.0752 0.0325 0.2864 0.2102 0.0982 0.0552

R109-25 0.0604 0.1139 0.2772 0.1432 0.3982 0.2463 0.2599 0.2211

R110-25 0.0341 0.0114 0.3187 0.1053 0.5471 0.1824 0.3384 0.1005

R111-25 0.0309 0.0515 0.2440 0.1454 0.2415 0.1480 0.0309 0.0515

R112-25 0.0000 0.0000 0.4345 0.1448 0.7527 0.2509 0.0109 0.0036

R101-50 0.0690 0.0331 0.0707 0.0354 0.1205 0.0713 0.0892 0.0335

R102-50 0.0296 0.0232 0.0666 0.0297 0.0951 0.0633 0.0577 0.0277

R103-50 0.0718 0.0349 0.1219 0.0524 0.1006 0.0937 0.0781 0.0389

R104-50 0.1457 0.0429 0.2104 0.0840 0.5570 0.2202 0.4041 0.1214

R105-50 0.0722 0.0539 0.2898 0.0868 0.3382 0.1234 0.2338 0.0814

R106-50 0.0530 0.0480 0.1492 0.0758 0.3671 0.1735 0.1252 0.0866

R107-50 0.0628 0.0968 0.4216 0.1736 0.3954 0.2299 0.2153 0.1431

R108-50 0.0100 0.1140 0.4498 0.2139 0.3921 0.2076 0.1498 0.1347

R109-50 0.1140 0.1094 0.4204 0.1421 0.5213 0.1966 0.2740 0.1424

R110-50 0.1897 0.0156 0.5984 0.1470 0.8582 0.2464 0.5841 0.1507

R111-50 0.0256 0.1416 0.3428 0.2401 0.5995 0.2863 0.4181 0.2269

R112-50 0.0923 0.0308 0.7899 0.2305 0.9758 0.3116 0.7564 0.2029

R101-100 0.0747 0.0372 0.0753 0.0453 0.1065 0.0633 0.0755 0.0400

R102-100 0.0767 0.0388 0.2151 0.0615 0.0776 0.0719 0.1341 0.0481

R103-100 0.0915 0.0358 0.2425 0.0837 0.2290 0.1067 0.1304 0.0421

R104-100 0.1360 0.1007 0.2684 0.1300 0.3717 0.1960 0.2604 0.1405

R105-100 0.2215 0.1125 0.4521 0.1499 0.4777 0.1841 0.4055 0.1333
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Table 7. Cont.

Instances
HNSGA-II-VND GA NSGA-II KBEA

GD IGD GD IGD GD IGD GD IGD

R106-100 0.1725 0.1124 0.5564 0.2181 0.4689 0.2270 0.4433 0.1566

R107-100 0.3355 0.0971 0.4663 0.1602 0.7154 0.2430 0.6200 0.2037

R108-100 0.1118 0.0053 0.7773 0.1416 0.6415 0.1975 0.5568 0.0978

R109-100 0.2809 0.1128 0.5296 0.1990 0.9110 0.2916 0.4902 0.1884

R110-100 0.0960 0.1015 0.6138 0.2209 0.5877 0.2122 0.4530 0.1828

R111-100 0.1202 0.0924 0.3865 0.1512 0.5356 0.1870 0.4649 0.1544

R112-100 0.3673 0.1072 0.9602 0.3018 0.9711 0.3237 0.9512 0.2994

Mean 0.0937 0.0569 0.3253 0.1206 0.4382 0.1892 0.2714 0.1080

hit rate 36/36 36/36 0/36 0/36 0/36 0/36 2/36 2/36

Table 8. The index values of all comparison algorithms in RC cases.

Instances
HNSGA-II-VND GA NSGA-II KBEA

GD IGD GD IGD GD IGD GD IGD

RC101-25 0.0251 0.0465 0.0867 0.0581 0.0665 0.1447 0.0345 0.0570

RC102-25 0.0002 0.0001 0.3042 0.0694 0.2169 0.0723 0.0974 0.0078

RC103-25 0 0.0141 0.0211 0.0161 0.3135 0.1891 0.0034 0.0224

RC104-25 0.0070 0.0084 0.3882 0.0711 0.6056 0.1761 0.0070 0.0084

RC105-25 0.0259 0.0154 0.0426 0.0201 0.1660 0.1367 0.0306 0.0299

RC106-25 0 0 0.2828 0.0943 0.0400 0.0133 0 0

RC107-25 0.0072 0.0024 0.5464 0.1821 0.0973 0.0324 0.0400 0.0133

RC108-25 0 0 0.2828 0.0943 0.6828 0.2276 0 0

RC101-50 0.1242 0.0620 0.4029 0.1384 0.6463 0.2460 0.4925 0.1702

RC102-50 0.1540 0.0292 0.5117 0.1685 0.6487 0.1935 0.4666 0.1497

RC103-50 0.0082 0.0248 0.1245 0.0776 0.5435 0.2465 0.1142 0.0494

RC104-50 0.0509 0.0310 0.1279 0.0496 0.2957 0.2542 0.0975 0.0679

RC105-50 0.0328 0.0221 0.0643 0.0332 0.2464 0.0743 0.0917 0.0431

RC106-50 0.0280 0.0093 0.2102 0.0701 0.6474 0.2158 0.3797 0.1266

RC107-50 0.2058 0.0686 0.7990 0.2663 0.4024 0.1341 0.3669 0.1223

RC108-50 0.0545 0.0182 0.4046 0.1349 0.7067 0.2356 0.1590 0.0530

RC101-100 0.1435 0.0738 0.2280 0.1115 0.4804 0.2034 0.3176 0.1118

RC102-100 0.1308 0.1027 0.6860 0.2266 0.4482 0.1558 0.3308 0.1228

RC103-100 0.1859 0.0514 0.5359 0.1537 0.7024 0.2161 0.6031 0.1773

RC104-100 0.1230 0.0639 0.6358 0.1967 0.3454 0.1437 0.4017 0.1491

RC105-100 0.1464 0.1056 0.5454 0.2500 0.5432 0.2243 0.2921 0.2279

RC106-100 0.1648 0.0549 0.5193 0.1471 0.4905 0.1635 0.4022 0.1069

RC107-100 0.0235 0.1401 0.4938 0.2533 0.5767 0.2998 0.3743 0.2278

RC108-100 0.0762 0.0907 0.7178 0.2724 0.5485 0.2806 0.3593 0.1689

mean 0.0716 0.0431 0.3734 0.1315 0.4359 0.1783 0.2652 0.1014

hit rate 24/24 24/24 0/24 0/24 0/24 0/24 3/24 3/24
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In Tables 7 and 8, we compare the proposed algorithm with other algorithms. We
find that HNSGA-II-VND achieves the optimal results in the average index values of all
instances, which means that HNSGA-II-VND has the best overall performance. HNSGA-II-
VND obtained the minimum mean of the index values of all instances, indicating that the
robustness of HNSGA-II-VND is superior to other algorithms. The metrics results confirm
that the hybrid algorithm achieves a more efficient frontier of non-dominated solutions. It
is normal that the same solutions can be found in a very small number of small cases.

Due to the strong randomness, Figure 9 shows the comparison interval diagram
of indicators between all comparison algorithms to analyze the statistically significant
difference in the results. The confidence level of all questions is set at 95%. The index mean
of HNSGA-II-VND is the lowest and the range is relatively small, which indicates that
HNSGA-II-VND is superior to other multi-objective algorithms. This is because HNSGA-
II-VND is a hybrid algorithm, in which VND is inserted into NSGA-II to improve its local
search capability.
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To display the performance of these algorithms more intuitively, Figure 10 shows the
Pareto frontier corresponding to the best IGD index obtained by different algorithms in
the randomly selected instance. It is obvious that compared with other multi-objective
algorithms, the HNSGA-II-VND algorithm can obtain better convergence and distribution
of non-dominated solutions. These statistical results indicate that the HNSGA-II-VND
algorithm can stably obtain better solutions for the current problems.

In summary, the experimental results show that the proposed HNSGA-II-VND algo-
rithm is more effective and robust than other algorithms in solving the proposed multi-
objective problems. The proposed algorithm performs better both in global and local
search abilities, which can be used to solve this problem effectively to obtain reasonable
planning routes.
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6. Industrial Case Study

To test the usefulness of the proposed problem, we implement case studies with
the real data originating from an automobile manufacturing enterprise. To verify the
practical application effect of the hybrid algorithm, this section takes the actual data of the
enterprise, for example, calculation. There are 32 station demand stations on the assembly
line of the final assembly shop. The information required for material distribution tasks is
obtained according to the reasonable production plan. According to BOM (Bill of material)
and material properties, the vehicle delivery tasks are planned. The logistics distribution
diagram of the automobile assembly workshop is shown in Figure 11.
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The demands and time window of the corresponding workstations are calculated in
advance. According to the actual situation of the workshop, the specified time window
length is 15 min, and the unloading time is 2 min. The material distribution center arranges
multiple delivery vehicles with a deadweight of 100 units to be responsible for distribution.

To make a better comparison, the results of routes optimization are compared between
the empirical distribution mode, the traditional distribution mode with non-separable
demand of stations, and the proposed discrete split distribution mode. The experiential
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distribution mode of vehicles is formulated by distribution dispatchers based on experience
and material demand of each station.

In the experimental calculation, this section adopts the same parameter configuration
designed by the Taguchi experiment. The experimental results obtained after 20 random
experiments are shown in Table 9. The comparison results between the best Pareto frontier
solutions provided by the hybrid algorithm for the current production task are statistically
analyzed in Figure 12.

The results show that the running solutions of the hybrid algorithm satisfy the con-
straints of vehicle capacity and time window. The hybrid algorithms offer a choice of nine
high-quality non-dominant solutions. These solutions are good results of routes optimiza-
tion, which can be used as the basis of material distribution routes selection. They have
certain practical application values. The solutions given by the proposed algorithm are
better than the solution implemented in the workshop based on the given objectives, which
saves three vehicles and greatly saves the fixed cost.

Table 9. The best result of case study.

No.
Empirical Distribution Traditional Distribution Split Distribution

Z1 Z2 Z3 Z1 Z2 Z3 Z1 Z2 Z3

1 13 1312 191 11 1069.88 41.82 10 1075.23 23.39

2 11 1074.35 9 10 1093.03 17.39

3 11 1092.99 0 10 1059.57 67.84

4 11 1080.36 6.06 10 1108.08 0

5 10 1151.44 0.37 10 1082.32 18.66

6 10 1147.77 3.84 10 1072.92 38.39

7 10 1056.75 88.82 10 1061.88 52.84

8 10 1083.54 47.33 10 1094.19 8

9 10 1093.1 41.27 10 1067.88 44.84

mean 13 1312 191 10.44 1094.46 26.50 10 1079.46 30.15

Improvement (100%) +19.66 +16.58 +86.13 +23.08 +17.72 +84.21
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It can be clearly seen that the results of the proposed discrete split distribution mode
are better than those of the traditional distribution mode. This is because when completing
the same material distribution tasks, the traditional distribution mode is difficult to ensure
the utilization rate of vehicles. In most cases, the loading rates of distribution vehicles are
low. Delivery vehicles in this mode also travel longer distances.

The proposed method can be applied to the actual system to solve the problem
effectively. Compared with the factory implementation scheme, the schemes obtained from
the hybrid HNSGA-II-VND algorithm can provide the reasonable vehicle routes and meet
the production demand.

7. Conclusions

The effective operation of logistics systems has a direct impact on the production cost
and delivery cycle of products. Based on the analysis of the mixed-flow assembly line,
vehicle routing planning and scheduling with time windows and discrete split deliveries by
batch of the demands are studied in this paper. The MILP model and the effective hybrid
algorithm are proposed to solve the problem. This problem has wide application value
in the manufacturing system. Combined with the material requirement characteristics of
the assembly workshop, the corresponding multi-objective MILP model is constructed
to describe the problem completely. The hybrid HNSGA-II-VND algorithm combines
the global search capability of NSGA-II and the strong local search capability of VND,
which can balance intensification and diversification well. To maintain the diversity of
the population, we designed a strategy to remove repetition in the hybrid algorithm. To
reduce the computing time, the adaptive expectation factors and multiple neighborhood
structures were designed, especially including the same station merging operation. Finally,
the effectiveness of the hybrid algorithm was verified by testing and comparison with
other algorithms. The multiple strategies included in the proposed algorithm were tested
to confirm the contribution. Then, the effectiveness of the proposed hybrid algorithm for
solving multiple scale examples was verified. The proposed research can be effectively
applied to the distribution system of the workshop to solve the problem effectively. The
schemes solved by the hybrid algorithm can plan the reasonable vehicle routes to meet the
production demand.

In future research, it will be necessary to further study the problems not involved. In
the process of materials supply in the workshop, the solution of fuzzy uncertainty needs
to be further studied, such as the temporary change in materials, and the uncertain time
window. In addition, in other scenarios, there may be more than one warehouse to supply
materials. Multi-warehouses constraint should be considered to divide multi-distribution
areas and allocate vehicles. Furthermore, to better verify the effectiveness of the proposed
algorithm, it should be compared with state-of-the-art methods.
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Abbreviations
Symbol description
Parameter
Ri The batch set of station i
R The all batches set
dr

i The material in batch r of station i
di The demand of station i
[ei, li] The time window associated with station i
si Service time at station i
tij The time required to travel from station i to station j
Ω Arbitrary large constant
Decision Variable
xk

ij = 1/0 indicates that arc(i, j) is or is not traversed by vehicle k
yk

ir = 1/0 indicates that vehicle k transports the material in batch r of station i or not
Tik Arrival time of vehicle k at station i
wik Waiting time of vehicle k at station i
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