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Abstract: Satellite-based aerosol optical depth (AOD) data are widely used to estimate land surface
PM2.5 concentrations in areas not covered by ground PM2.5 monitoring stations. However, AOD data
obtained from satellites are typically at coarse spatial resolutions, limiting their applications on small
or medium scales. In this paper, we propose a new two-step approach to estimate 1-km-resolution
PM2.5 concentrations in Shanghai using high spatial resolution AOD retrievals from MODIS. In the
first step, AOD data are refined to a 1× 1 km2 resolution via a Bayesian AOD retrieval method. In
the second step, a hierarchical Gaussian process model is used to estimate PM2.5 concentrations. We
evaluate our approach by model fitting and out-of-sample cross-validation. Our results show that the
proposed approach enjoys accurate predictive performance in estimating PM2.5 concentrations.

Keywords: Bayesian retrieval algorithm; PM2.5; hierarchical Gaussian process model; MAIAC
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1. Introduction

Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) can affect
human health (see [1] for detailed discussions). Exposure to PM2.5 over a few hours to
weeks can trigger cardiovascular disease-related mortality; longer-term exposure (e.g.,
a few years) increases the risk for cardiovascular mortality and ischaemic heart disease
and even reduces life expectancy [2–5]. In recent years, the public has regarded PM2.5 as
one of the primary air pollutants, especially after the Chinese government proposed the
National Ambient Air Quality Standard for PM2.5 and began to establish ground-based
PM2.5 monitor networks in 2012 [6]. Although the ground-based PM2.5 monitor networks
can accurately measure the land surface PM2.5 concentrations, the number of monitoring
sites is limited.

To assess PM2.5 concentrations in large areas, satellite-based products such as the
aerosol optical depth (AOD) are commonly used due to their broad coverage. Various
statistical models have been developed to predict PM2.5 concentrations using AOD data in
the literature, including the geographically weighted regression model and the linear mixed-
effects model [7,8]. In addition, based on a moderate resolution imaging spectroradiometer
(MODIS), Gaussian process modeling in a Bayesian hierarchical setting has been used
to estimate PM2.5 concentrations [9]. However, AOD data obtained from satellites are
typically at coarse spatial resolutions, limiting their applications on small or medium
scales. To address this issue, many methods have been introduced to refine AOD data. For
example, Lipponen et al. [10] proposed a Bayesian aerosol retrieval algorithm for MODIS
AOD retrieval over land. Wang et al. [11] suggested a hierarchical Bayesian approach for
multi-angle imaging spectroradiometer (MISR) data such that the resolution of AOD can be
improved from 17.6 to 4.4 km. Based on the multi-angle implementation of the atmospheric
correction (MAIAC) retrieval algorithm in [12], Wei et al. [13] developed a new space-time
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random forest model to predict PM2.5 concentrations using MODIS MAIAC AOD and other
pertinent variables related to meteorological conditions, land use, and human activities.

Although the space-time random forest model has good performance, one main
limitation of the random forest model is that a large number of trees can make the algorithm
too slow and ineffective for real-time predictions. There is a tradeoff between the training
time (and space) and increased number of trees. In addition, random forest may not obtain
good results for small data. When estimating PM2.5 1-km-resolution, it can be expected
that the results from the random forest model are not good if only a few observations
are available at some location. To address these challenges, in this paper, we propose a
new two-step approach to predict PM2.5 concentrations using high spatial resolution AOD
retrievals from MODIS. In the first step, AOD data are refined to a 1× 1 km2 resolution
via a Bayesian AOD retrieval method. In the second step, a hierarchical Gaussian process
model is used to estimate PM2.5 concentrations. Our approach combines the strengths
of recent advances in [9,10]. In addition, the studies on PM2.5 concentration estimates in
Shanghai are limited in the literature, although Shanghai is one of the largest cities in China
and a popular tourist destination. Our work tries to fill this gap.

The rest of the paper is organized as follows. Section 2 describes the study region and
the datasets used in this work. Section 3 introduces the Bayesian algorithm to retrieve AOD
and the Hierarchical Gaussian process model to estimate PM2.5 concentrations. Section 4
provides the experimental results for our approach. We discuss some limitations and
extensions of our work in Section 5.

2. Datasets

In this study, we are interested in estimating PM2.5 concentrations in Shanghai. Shang-
hai is one of the largest cities in China, with intensive human activities and high amounts
of complex aerosols in the air. However, the studies on PM2.5 concentration estimates in
Shanghai are limited in the literature. We would like to remark that the proposed procedure
in this paper can be used to estimate PM2.5 concentrations in any other city.

The PM2.5 concentration monitoring network in Shanghai consists of 20 monitoring
stations across all districts of Shanghai, and these are shown as dots in Figure 1. The solid
lines are the city border and district borders, while the green filling is the mainland of
Shanghai. We consider the hourly ground-level PM2.5 concentrations in Shanghai from
1 January 2021 to 31 December 2021, which are provided by the China Environmental
Monitoring Center (http://www.cnemc.cn/, accessed 1 February 2022).

Figure 1. Spatial distributions of PM2.5 concentrations monitoring stations in Shanghai. Solid lines:
city border and district borders. Black dots: PM2.5 concentrations monitoring stations.

http://www.cnemc.cn/
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The MODIS instruments on the Earth Observation System’s (EOS) Terra and Aqua
satellites provide measurements of the atmosphere, land, and ocean in the visible, near-
infrared, and infrared from 0.4 to 14.4 µm of the 36 spectral bands. The instrument collects
the data once or twice a day at a given location and views the entire globe every one to
two days. The MODIS product MOD04_L2 provides initial AOD data in Shanghai with a
spatial resolution of about 1 km× 1 km at nadir and other variables needed in the Bayesian
retrieval algorithm of our procedure, while MCD19A2 offers MAIAC AOD products. Both
can be downloaded from Level-1 and the Atmosphere Archive and Distribution System
Distributed Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/, accessed 1
February 2022).

3. Methods

Now we are ready to introduce our procedure for PM2.5 concentrations estimation. As
mentioned earlier, our procedure includes two steps. In the first step, we use the Bayesian
aerosol retrieval algorithm [10] to refine the AOD data, while in the second step, the
proposed hierarchical Gaussian process model estimates land surface PM2.5 concentrations
using the refined AOD data from the first step.

3.1. Bayesian Aerosol Retrieval Algorithm

The Bayesian aerosol retrieval algorithm was firstly proposed by Lipponen et al. [10]
for the retrieval of AOD over land in Finland using MODIS aerosol products, including
the retrieved aerosol properties and measurement data with a spatial resolution of about
10× 10 km2 at nadir. In the first step of our procedure, we use the Bayesian aerosol retrieval
algorithm proposed to refine the AOD data in Shanghai with a spatial resolution of about
1× 1 km2 at nadir. The Bayesian aerosol retrieval algorithm is composed of three main
parts. The first part is building a radiative transfer model called the forward model. The
second part is the AOD retrieval based on the forward model, which is called the inversion
part. The last part is combining the retrieved AOD with MAIAC AOD products.

3.1.1. Establishing Forward Models

We first construct a radiative transfer model using MODIS products to simulate top of
Atmosphere (TOA) reflectance. Then we use the simulated TOA reflectance and the TOA
reflectance measured by MODIS to do the retrieval. The AOD values are the outputs of the
retrieval. The radiative transfer model we used here is the same as the Dark Target (DT)
algorithm [14], except that we perform the retrieval using a Bayesian algorithm. There are
two versions for the DT algorithm. One is for retrieval over land, and the other one is for
retrieval over the ocean. We will use the DT algorithm over land. The DT algorithm uses
bright aerosols against a dark target because it can reflect so much solar radiation to the
space that the MODIS sensor can capture it. The main idea of this DT algorithm is to find
the aerosol properties that minimize the difference between the TOA reflectance measured
by the MODIS sensor and the TOA reflectance calculated by radiative transfer simulations
using the aerosol properties. We reformulate it as a Bayesian form, and more details will be
given later.

In this study, the TOA reflectance is calculated as follows:

f (τ, η, ρs; γ) = η × f f ine(τ, ρs; γ) + (1− η)× fcoarse(τ, ρs; γ), (1)

where f (τ, η, ρs; γ) denotes the total simulated reflectance, f f ine represents the simulated
reflectance corresponding to fine aerosol models, fcoarse is the simulated reflectance cor-
responding to coarse aerosol models, τ denotes AOD, η is the fine mode fraction (FMF),
ρs denotes the surface reflectance, and γ denotes the vector of all additional parameters
corresponding to auxiliary variables, such as wavelength, aerosol models, solar zenith
angle, view zenith angle, and relative azimuth angle in Table 1. There are five main aerosol
models related to this work, including three different fine aerosol models, one coarse
aerosol model, and one continental aerosol model. In the DT retrieval, the fine aerosol

https://ladsweb.modaps.eosdis.nasa.gov/
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model is taken from a predefined database that contains aerosol model information based
on the location and the season. The TOA reflectances and other radiative transfer-related
variables corresponding to each aerosol model are precomputed and stored in lookup tables
(LUT) to make the algorithm computationally more efficient. We use the same LUT as the
Collection 6 MODIS aerosol products in [15]. The variables in the LUT and corresponding
input parameters are listed in Table 1.

Table 1. Input variables and parameters in LUT.

Variables Input Parameters

AOD From 0 to 6, step 1
Wavelength 0.466, 0.554, 0.645, 2.113
Aerosol type 0, 1, 2, 3, 4

Solar zenith angle From 0 to 84, step 12
View zenith angle From 0 to 84, step 12

Relative azimuth angle From 0 to 180, step 12
Topographic altitude From −0.2 to 9, step 0.1

We use the same aerosol models and data processing procedures (such as cloud
screening) as those in the DT algorithm [14]. Therefore, we retrieve the same pixels as the
DT algorithm. For each pixel, the forward model at different wavelength λ is as follows:

fλ(τ, ρs
λ; γ) = ρa

λ(τ; θ0, θ, φ) +
Tλ(τ; θ0)Tλ(τ; θ)ρs

λ(τ; θ0, θ, φ)

1− sλ(τ)ρ
s
λ(τ; θ0, θ, φ)

, (2)

where ρa
λ denotes the atmospheric path reflectance depending on AOD τ, wavelength

λ, solar zenith angle θ0, view zenith angle θ, and relative azimuth angle φ, Tλ(τ; θ0)
and Tλ(τ; θ) are the downward and upward atmospheric transmissions at wavelength λ,
respectively, s = sλ is the atmospheric backscattering ratio at wavelength λ, and ρs

λ denotes
the surface reflectance at wavelength λ. The simulated reflectances f f ine and fcoarse in (1)
are calculated separately using forward model (2) based on the LUT.

3.1.2. Retrieve AOD Using Bayesian Methods

The inversion part of the Bayesian aerosol retrieval algorithm can be formulated as an
optimization problem. The retrieval problem is to find the parameters that maximize the
following posterior distribution

π(τ, η, ρs; γ|ρTOA), (3)

where ρTOA denotes TOA reflectances measured by the MODIS instrument. We apply the
Bayes theorem to the posterior distribution, and the posterior becomes

π(τ, η, ρs; γ|ρTOA) ∝ π(ρTOA|τ, η, ρs; γ)π(τ, η, ρs). (4)

The function that describes the relationship between TOA reflectance measured by the
MODIS instrument and TOA reflectance simulated by radiative transfer models is

ρTOA = f (τ, η, ρs; γ) + e, (5)

where f (τ, η, ρs; γ) is the TOA reflectance simulated by radiative transfer models in (1),
e denotes the total error, including the observation noise and the approximation error in
TOA reflectances due to aerosol and radiative transfer models. In our study, we assume
that the random error e follows a Gaussian distribution, that is, e ∼ N (Ee, Γe). In this
retrieval algorithm, errors mainly come from two sources, which are observation noise
n and approximation error u. The observation noise is caused by the instrument, while
the approximation error is caused by the variables such as geometry and aerosol models
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used in the radiative transfer model. In this study, the observation noise is modeled as
Gaussian zero-mean random variable, and its variances are based on MODIS aerosol prod-
uct STD_Re f lectance_Land. The approximation error is modeled as an additive Gaussian
random variable. We use the approximation error established in [10], which runs N simula-
tions using AOD, FMF values from the AERONET, and surface reflectance values from the
MODIS MCD43C3 product to construct a database of (ρMODIS − ρsimulation) for all regions
(AERONET stations all over the world) and month and estimates the expected value and
covariance matrix using sample median and sample covariance of the approximation error
model, respectively. Then, we can obtain

π(ρTOA|τ, η, ρs; γ) = πe(ρ
TOA − f (τ, η, ρs; γ)). (6)

In this study, we retrieve total AOD τ at 0.55 µm, fine mode fraction η, and land surface
reflectance ρs at four different wavelengths: 0.47, 0.55, 0.67, and 2.1 µm. We model AOD,
FMF, and surface reflectances as mutually uncorrelated variables at all bands. We depict all
unknown parameters in a granule using multivariate Gaussian prior models. The prior
probability density models encode prior knowledge such as spatial correlation information,
seasonal variability, or positivity constraints into the retrieval. The prior models are fully
described by their expected value vectors and covariance matrices:

• τ ∼ N (Eτ , Γτ), where Eτ is the expected value vector of AOD, and Γτ is the covariance
matrix of AOD. Following [16], the nearest value from the MAC-V2 climatology is
taken as the prior expectation for each pixel to be retrieved. The MAC-V2 climatology
is a 12× 180× 360 tensor (denotes month, latitude, and longitude), and we use the
nearest value to the pixel we retrieve as the prior expectation. We define the (i, j)
element of the prior covariance matrix Γτ of AOD as

Γτ(i, j) = σ2
τ, nuggetδi,j + σ2

τ, sillexp
{
−3
∥∥∥∥ xi − xj

rτ, range

∥∥∥∥p}
, (7)

where δi,j = 1 if i = j and 0 otherwise, στ, nugget is the so-called nugget, representing
the local variance, στ, sill is the spatial correlation, ‖xi − xj‖ measures the distance
between the pixel i and j, rτ, range describes the spatial correlation length, and p is
the spatial smoothness of the AOD fields. The values of these covariance matrix
parameters used in (7) are listed in Table 2.

• η ∼ N (Eη , Γη), where Eη is the expected value vector of FMF, and Γη is the covari-
ance matrix of FMF. Similar to the AOD, the prior expectation value for FMF is also
computed from the MAC-V2 climatology. The prior covariance matrix Γη of FMF is
the same as the covariance matrix Γτ of AOD, except for the values of those covariance
matrix parameters. See Table 2 for the values of covariance matrix parameters used in
the prior model for the FMF.

• ρs ∼ N (Eρs , Γρs), where Eρs and Γρs are the expected value vector and covariance
matrix of land surface reflectance, respectively. We also use Gaussian prior models for
the surface reflectances. We use the blue-sky albedos computed with the weighting
coefficient of 0.5 (50% of the white-sky albedo and 50% of the black-sky albedo) in the
MODIS MCD43C3 albedo product as the expected values for the surface reflectances.
For the Bayesian aerosol retrieval algorithm, the monthly surface reflectance is com-
puted as the temporal average of surface reflectances ±45 days around the middle day
of the month. The expected values for the surface reflectances in the retrieval are com-
puted as an average of the three closest pixels in the monthly surface reflectance. Both
the temporal variance in the original surface albedo product and the variance due to
averaging are taken into account in the construction of the surface reflectance variance.
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Table 2. The covariance matrix parameters used in AOD and FMF prior models.

Parameter AOD FMF

rτ, range 50 km 50 km
σ2

τ, nugget 0.0025 0.01
σ2

τ sill 0.10 0.25
p 1.5 1.5

Then, with the prior models above, we can rewrite (4) as

π(τ, η, ρs; γ|ρTOA)

∝ πe(ρ
TOA − f (τ, η, ρs; γ))π(τ)π(η)π(ρs)

∝ exp
{
−1

2
(ρTOA − f (τ, η, ρs; γ)−Ee)

TΓ−1
e (ρTOA − f (τ, η, ρs; γ)−Ee)

− 1
2
(τ −Eτ)

TΓ−1
τ (τ −Eτ)−

1
2
(η −Eη)

TΓ−1
η (η −Eη)

−1
2
(ρs −Eρs)TΓ−1

ρs (ρs −Eρs)

}
.

We simultaneously retrieve all dark land pixels in a granule. The inversion part of the
Bayesian aerosol retrieval algorithm looks for the maximum a posteriori (MAP) estimate
for the unknown parameters. This is equivalent to the following optimization problem

(τ, η, ρs)MAP = arg min
τ, η, ρs

{∥∥∥Le

[
ρTOA − f (τ, η, ρs; γ)−Ee

]∥∥∥2
+ ‖Lτ(τ −Eτ)‖2

+‖Lη(η −Eη)‖2 + ‖Lρs(ρs −Eρs)‖2
}

, (8)

where Lτ , Lη , and Lρs are the Cholesky factors of Γ−1
τ , Γ−1

η , and Γ−1
ρs , respectively. We use

AOD, FMF, and the surface reflectances at all bands in MODIS products MMOD04_L2 as
the initial values for τ, η, and ρs, and use the L-BFGS-B optimization algorithm in [17] to
find (τ, η, ρs)MAP.

3.1.3. Combine AOD Retrievals with MAIAC AOD Products

We create a 0.01◦ × 0.01◦ grid with a total of 118× 137 grid cells that cover the whole
region of Shanghai. If there is an AOD retrieval in a grid cell, we fill it with the AOD
retrieval. After that, we fill the empty grid cells with MAIAC AOD products. The final grid
cells are the products to be used in our hierarchical Gaussian process model for estimating
PM2.5 concentrations in Shanghai.

3.2. Hierarchical Gaussian Process Model

Next, with the refined data obtained in the first step by the Bayesian aerosol retrieval
algorithm above, we use the hierarchical Gaussian process model introduced in [9] to
estimate PM2.5 concentrations in Shanghai. To be more specific, the hierarchical Gaussian
process model is given by

pi = β0 + β1τi + ωi + εi,

ωi ∼ N (0,K(h; σ2, φ)), εi ∼ N (0, σ2
ε ),

(9)

where pi and τi denote the PM2.5 and AOD at location i, respectively, β0 and β1 are,
respectively, the intercept and the coefficient for AOD, ωi is a spatial random effect for the
location i, εi is the random error,K is the covariance function, σ2 is a variance parameter, h is
the Euclidean distance between any two spatial locations, and φ represents the spatial decay.
Here, we assume that each random effect ωi follows a multivariate Gaussian process with
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a mean zero and covariance function of K(h; σ2, φ), and the random error δi also follows
a Gaussian distribution with mean zero and variance σ2

ε . Following [9], the covariance
function K(h; σ2, φ) is given by

K(h; σ2, φ) =

{
σ2[1− 1.5hφ + 0.5(hφ)3] i f 0 < h < φ−1,

0 otherwise.
(10)

We also set prior distributions for parameters β0, β1, σ2, φ, and σ2
ε . To be more precise,

following [9,18], we use the following prior distributions:

•
(

β0
β1

)
∼ N

(
0,
[

1000 0
0 1000

])
• σ2 follows the inverse gamma distribution with shape parameter 2 and scale parameter 2.
• φ follows the uniform distribution U [3, 100].
• σ2

ε follows the inverse gamma distribution with shape parameter 2 and scale parame-
ter 0.1.

These parameters are updated by the Metropolis–Hastings algorithm with 5000 itera-
tions for each parameter. Similar to [19–21], we use the first 2000 iterations as burn in and
the last 3000 iterations to recover the PM2.5 concentrations at location i. Let β0j, β1j, σ2

j , φj,

and σ2
j ε be the values of these parameters β0, β1, σ2, φ, and σ2

ε from the prior distributions
above for the jth iteration, j = 2001, · · · , 5000. Then we can obtain the random effect ωij

from N (0,K(h; σ2
j , φj)) and then generate pij from N (β0j + β1jτi + ωij, σ2

j ε). The sample
mean of these 3000 pij is defined as the PM2.5 concentrations at location i, which is the
sample mean of all 3000 pij at location i.

We evaluate the performance of our approach by out-of-sample validation using the
cross-validation (CV). In this study, we use 5-fold CV on the day when there are more than
five working PM2.5 concentration monitoring stations. The training data were randomly
split into five equal subsets based on the PM2.5 concentration monitoring stations in 5-
fold CV. Four subsets were used for the model fitting, and the remaining one was used
for model validation. This process was repeated five times until all the subsets were
tested. Three commonly used statistical performance metrics, including the coefficient of
determination (R2), the mean absolute error (MAE), and the root-mean-square error (RMSE),
are used to evaluate the model performance quantitatively. MAE represents the difference
between model-estimated PM2.5 concentrations and actual PM2.5 concentrations measured
at monitoring stations, while RMSE is the square root of the mean of the squares of the
differences between model-estimated PM2.5 concentrations and actual PM2.5 concentrations
measured at monitoring stations. Finally, we apply the hierarchical Gaussian process model
to estimate 1-km-resolution PM2.5 concentrations. We use Python and R in this study.

4. Results and Discussion
4.1. Evaluation of the Model Performance

In this study, we improve the accuracy and coverage of the traditional MODIS AOD
products using the Bayesian aerosol retrieval algorithm. Compared with existing results
in [10,12], we replace the 10× 10 km2 grid cells with 1× 1 km2 grid cells and improve the
accuracy by about 10–20%. Figure 2 shows the traditional MODIS AOD grid cells and AOD
grid cells established by our approach in Shanghai. Note that we use different color scales
for the two colorbars in this figure for better visibility. It can be seen from Figure 2 that the
traditional MODIS grid cells are too coarse, and thus, many identical AOD values are used
to estimate PM2.5 concentrations at different geolocations. This can decrease the estimation
accuracy of PM2.5 concentrations. However, the grid cells in our approach are fine enough
to capture the variation of AOD values at different geolocations.
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Figure 2. Top panel: The traditional MODIS AOD grid cells. Bottom panel: AOD grid cells by our
approach. Solid lines: city border and district borders. Black dots: PM2.5 concentrations monitoring
stations in Shanghai. Colored rectangles: the traditional MODIS AOD grid cells. For better visibility,
different color scales are used in the two colorbars.
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Figure 3 plots estimated PM2.5 values in Shanghai obtained by our approach vs. actual
PM2.5 values for the whole year in Figure 3. It shows that our approach can estimate
PM2.5 concentrations in Shanghai very well. Three commonly used statistical performance
metrics, MAE, R2, and RMSE, are also reported in the same figure. The value of R2 is about
0.9536. The mean absolute error (MAE) is 3.6042079 µg/m3 and the root-mean-square error
(RMSE) is 2.47042 µg/m3. A large value of R2 and small values of the RMSE and MAE
indicate the predictive ability of our approach.

Figure 3. Scatter plot of estimated PM2.5 values by our approach and actual PM2.5 values for the
whole year in Shanghai. The dashed line is the 1:1 reference line.

To consider the seasonal variations in the PM2.5 concentrations, we also plot estimated
PM2.5 values in Shanghai obtained by our approach vs. actual PM2.5 values for different
seasons in Figure 4. It is clear from Figure 4 that our approach performs very well, especially
for spring, autumn, and winter seasons. The performance of our approach for the summer
season is not as good as that for other seasons. One of the possible reasons is that the cloud
condition during the summer season in Shanghai hinders the accuracy of our Bayesian
AOD retrieval and thus affects the estimation accuracy of PM2.5 concentrations in the
summer season.

Table 3 records the average, minimum and maximum of estimated PM2.5 concentra-
tions. It is clear that the PM2.5 concentrations in Shanghai during the winter and spring
seasons are high, while PM2.5 concentrations during the summer and autumn seasons are
relatively low. This finding is not surprising. One of the most important reasons is that
there is more coal burning for heat in winter and early spring.

Table 3. The average, minimum, and maximum of estimated PM2.5 concentrations in Shanghai.

Average Minimum Maximum

Spring 34.16 µg/m3 16.53 µg/m3 68.90 µg/m3

Summer 18.69 µg/m3 8.07 µg/m3 38.20 µg/m3

Autumn 25.10 µg/m3 10.86 µg/m3 55.57 µg/m3

Winter 39.19 µg/m3 17.28 µg/m3 82.15 µg/m3

Whole year 29.62 µg/m3 10.86 µg/m3 74.41 µg/m3
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(a) (b)

(c) (d)

Figure 4. Scatter plot of estimated PM2.5 values by our approach and actual PM2.5 values for four
seasons in Shanghai. The dashed line is the 1:1 reference line. (a) Spring; (b) Summer; (c) Autumn;
(d) Winter.

4.2. Spatial and Seasonal Variations of PM2.5 Concentrations in Shanghai

To further explore the spatial and seasonal variations of the estimated PM2.5 concen-
trations in Shanghai by our approach, we show the annual and seasonal distributions of
PM2.5 concentrations in Shanghai estimated by our approach in Figures 5 and 6. It can
be seen that the PM2.5 concentrations in the central region of Shanghai are higher than
those in surrounding suburban areas, especially during the summer season. This is not
surprising because Shanghai is one of the largest cities in China and a global financial hub,
and there are more human activities in the central region of Shanghai than the surrounding
suburban areas. This causes more air pollutants such as vehicle exhaust, which accounts
for the high PM2.5 concentrations. This finding is also consistent with the fact that there are
more visitors from other places to Shanghai during the summer season beause Shanghai is
a popular tourist destination renowned for its historical landmarks and a great mix of the
traditional and modern.

We also find that the estimated PM2.5 concentrations on the southwest side of Chong-
ming island (which is the island in the upper right corner in Figure 5) are higher than in
other regions of Shanghai. As we can see from Figure 1, there is only one PM2.5 concen-
tration monitoring station in Chongming island. The number of observations of PM2.5
concentrations on the southwest side of the island is limited. Therefore, the PM2.5 concen-
trations estimated by our approach in this particular region may be misleading.
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Figure 5. The mean values of estimated PM2.5 concentrations for the year 2021 using our approach.

(a) (b)

(c) (d)

Figure 6. The mean values of estimated PM2.5 concentrations for four seasons using our model.
(a) Spring; (b) Summer; (c) Autumn; (d) Winter.

5. Conclusions

In this paper, we propose a new two-step approach to estimate 1-km-resolution PM2.5
concentrations in Shanghai using high spatial resolution AOD retrievals from MODIS. It
enjoys accurate predictive performance in model fitting and cross-validation. Our model
only needs AOD products to estimate ground PM2.5 concentrations without sophisticated
auxiliary variables.

We use the random cross-validation when evaluating the predictive performance of
our approach. As pointed out by one anonymous reviewer, the random cross-validation
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can be misleading in the presence of spatial correlations. There are many other approaches
for cross-validation available in the literature; for example, see [22–26]. One can use
one of these cross-validation techniques to evaluate the predictive performance of the
proposed approach.

In addition, only two variables, PM2.5 and AOD, are used in our hierarchical Gaussian
process model. It is possible to include more additional variables, such as population, wind,
and rivers, in our hierarchical Gaussian process model. In this case, one may need to set
non-Gaussian priors for these additional variables [27]. This is beyond the scope of our
current paper, and we leave it for future research.
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Abbreviations
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MAIMC Multi-Angle Implementation of Atmospheric Correction
CV Cross Validation
PM2.5 Particulate matter with an aerodynamic diameter less than 2.5 µm
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