Antecedents in Determining Users’ Acceptance of Electric Shuttle Bus Services
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Model Development
3.2. Construct Measurement
3.3. Sample Size
3.4. Data Collection
3.5. Data Analysis
4. Results
4.1. Reliability and Validity Analysis
4.2. Structural Model Evaluation
4.3. Multi-Group Analyses
5. Discussion
- Gender: The SI→BI path was only significant among females, consistent with previous literature findings [68]. Females may be more likely to be influenced by the opinions of others, while males are more prone to make decisions by themselves without the influence of opinions from others. Results implied that males were more affected by PE in shaping positive attitudes toward electric shuttle bus services, whereas females were more likely affected by PN. This might be because the utility perception is stronger among males than females [69]. In addition, males were more positive toward electric shuttle bus services than females.
- Age: Older respondents displayed a stronger correlation between EE and PE than younger respondents. This may be because older people require more effort to understand advanced technologies, which substantially impacted their perceived performance. The SI→BI path was only significant among older participants; it is possible that older respondents received limited knowledge, resulting in greater influence from others’ opinions. Younger respondents displayed a stronger correlation between PE and AT than younger respondents. This may be because younger people are busier with work and have fewer spare moments. Thus, they give more weight to the performance expectancy, which substantially impacts their attitude.
- Education level: Lower-level respondents displayed a stronger correlation between PN and AT than higher-level respondents. This finding should be viewed with caution, as lower education level respondents only account for 27.9% of the dataset, which could not reflect their general personal norms. Furthermore, higher education level respondents displayed a stronger correlation between PE and AT than lower education level respondents.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kailasam, C.; Huang, J.; Kar, S.; Leveque, F. Strategic Analysis of Global Hybrid and Electric Heavy-Duty Transit Bus Market; Frost Sullivan: New York, NY, USA, 2014. [Google Scholar]
- Häll, C.H.; Ceder, A.; Ekström, J.; Quttineh, N.-H. Adjustments of public transit operations planning process for the use of electric buses. J. Intell. Transp. Syst. 2019, 23, 216–230. [Google Scholar] [CrossRef]
- Tang, X.; Lin, X.; He, F. Robust scheduling strategies of electric buses under stochastic traffic conditions. Transp. Res. Part C Emerg. Technol. 2019, 105, 163–182. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Xu, J.; Barclay, N. Optimal recharging scheduling for urban electric buses: A case study in Davis. Transp. Res. Part E Logist. Transp. Rev. 2017, 100, 115–132. [Google Scholar] [CrossRef]
- Xylia, M.; Leduc, S.; Patrizio, P.; Kraxner, F.; Silveira, S. Locating charging infrastructure for electric buses in Stockholm. Transp. Res. Part C Emerg. Technol. 2017, 78, 183–200. [Google Scholar] [CrossRef]
- Liu, Z.; Song, Z. Robust planning of dynamic wireless charging infrastructure for battery electric buses. Transp. Res. Part C Emerg. Technol. 2017, 83, 77–103. [Google Scholar] [CrossRef]
- Liu, X.; Qu, X.; Ma, X. Optimizing electric bus charging infrastructure considering power matching and seasonality. Transp. Res. Part D Transp. Environ. 2021, 100, 103057. [Google Scholar] [CrossRef]
- De Filippo, G.; Marano, V.; Sioshansi, R. Simulation of an electric transportation system at The Ohio State University. Appl. Energy 2014, 113, 1686–1691. [Google Scholar] [CrossRef]
- Miles, J.; Potter, S. Developing a viable electric bus service: The Milton Keynes demonstration project. Res. Transp. Econ. 2014, 48, 357–363. [Google Scholar] [CrossRef]
- Ou, X.; Zhang, X.; Chang, S. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations. Energy Policy 2010, 38, 406–418. [Google Scholar] [CrossRef]
- Sunitiyoso, Y.; Belgiawan, P.F.; Rizki, M.; Hasyimi, V. Public acceptance and the environmental impact of electric bus services. Transp. Res. Part D Transp. Environ. 2022, 109, 103358. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, C.; de Jong, M.; Lukszo, Z. Business innovation and government regulation for the promotion of electric vehicle use: Lessons from Shenzhen, China. J. Clean. Prod. 2016, 134, 371–383. [Google Scholar] [CrossRef]
- Mohamed, M.; Ferguson, M.; Kanaroglou, P. What hinders adoption of the electric bus in Canadian transit? Perspectives of transit providers. Transp. Res. Part D Transp. Environ. 2018, 64, 134–149. [Google Scholar] [CrossRef]
- Prasetio, E.A.; Belgiawan, P.F.; Anggarini, L.T.; Novizayanti, D.; Nurfatiasari, S. Acceptance of Electric Vehicle in Indonesia: Case Study in Bandung. In Proceedings of the 2019 6th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia, 18–21 November 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 63–71. [Google Scholar]
- Perumal, S.S.G.; Lusby, R.M.; Larsen, J. Electric bus planning & scheduling: A review of related problems and methodologies. Eur. J. Oper. Res. 2022, 301, 395–413. [Google Scholar]
- Wu, W.; Lin, Y.; Liu, R.; Jin, W. The multi-depot electric vehicle scheduling problem with power grid characteristics. Transp. Res. Part B Methodol. 2022, 155, 322–347. [Google Scholar] [CrossRef]
- Gkiotsalitis, K.; Iliopoulou, C.; Kepaptsoglou, K. An exact approach for the multi-depot electric bus scheduling problem with time windows. Eur. J. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, F.; Lu, C. Integrated optimization of charger deployment and fleet scheduling for battery electric buses. Transp. Res. Part D Transp. Environ. 2022, 109, 103382. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Y.; Jia, S.; Liu, Z.; Wang, S. A Lagrangian relaxation approach for the electric bus charging scheduling optimisation problem. Transp. A Transp. Sci. 2022, 1–24. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Y. A Branch-and-Price Algorithm for Large-Scale Multidepot Electric Bus Scheduling. IEEE Trans. Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
- Iliopoulou, C.; Kepaptsoglou, K. Integrated transit route network design and infrastructure planning for on-line electric vehicles. Transp. Res. Part D Transp. Environ. 2019, 77, 178–197. [Google Scholar] [CrossRef]
- He, Y.; Song, Z.; Liu, Z. Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustain. Cities Soc. 2019, 48, 101530. [Google Scholar] [CrossRef]
- Alwesabi, Y.; Wang, Y.; Avalos, R.; Liu, Z. Electric bus scheduling under single depot dynamic wireless charging infrastructure planning. Energy 2020, 213, 118855. [Google Scholar] [CrossRef]
- Perrotta, D.; Macedo, J.L.; Rossetti, R.J.; de Sousa, J.F.; Kokkinogenis, Z.; Ribeiro, B.; Afonso, J.L. Route planning for electric buses: A case study in Oporto. Procedia-Soc. Behav. Sci. 2014, 111, 1004–1014. [Google Scholar] [CrossRef]
- Xu, Y.; Gbologah, F.E.; Lee, D.-Y.; Liu, H.; Rodgers, M.O.; Guensler, R.L. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling. Appl. Energy 2015, 154, 143–159. [Google Scholar] [CrossRef]
- Rupp, M.; Handschuh, N.; Rieke, C.; Kuperjans, I. Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany. Appl. Energy 2019, 237, 618–634. [Google Scholar] [CrossRef]
- Al-Ogaili, A.S.; Al-Shetwi, A.Q.; Sudhakar Babu, T.; Hoon, Y.; Abdullah, M.A.; Alhasan, A.; Al-Sharaa, A. Electric buses in malaysia: Policies, innovations, technologies and life cycle evaluations. Sustainability 2021, 13, 11577. [Google Scholar] [CrossRef]
- Borén, S. Electric buses’ sustainability effects, noise, energy use, and costs. Int. J. Sustain. Transp. 2020, 14, 956–971. [Google Scholar] [CrossRef]
- Lajunen, A. Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C Emerg. Technol. 2014, 38, 1–15. [Google Scholar] [CrossRef]
- Fleury, S.; Tom, A.; Jamet, E.; Colas-Maheux, E. What drives corporate carsharing acceptance? A French case study. Transp. Res. Part F Traffic Psychol. Behav. 2017, 45, 218–227. [Google Scholar] [CrossRef]
- Wolf, A.; Seebauer, S. Technology adoption of electric bicycles: A survey among early adopters. Transp. Res. Part A Policy Pract. 2014, 69, 196–211. [Google Scholar] [CrossRef]
- Jain, N.K.; Bhaskar, K.; Jain, S. What drives adoption intention of electric vehicles in India? An integrated UTAUT model with environmental concerns, perceived risk and government support. Res. Transp. Bus. Manag. 2022, 42, 100730. [Google Scholar] [CrossRef]
- Yuen, K.F.; Choo, L.Q.; Li, X.; Wong, Y.D.; Ma, F.; Wang, X. A theoretical investigation of user acceptance of autonomous public transport. Transportation 2022, 1–25. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, H.; Mundorf, N.; Redding, C.; Ye, Y. Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China. Int. J. Env. Res. Public Health 2017, 14, 1593. [Google Scholar] [CrossRef]
- Møller, M.; Haustein, S.; Bohlbro, M.S. Adolescents’ associations between travel behaviour and environmental impact: A qualitative study based on the Norm-Activation Model. Travel Behav. Soc. 2018, 11, 69–77. [Google Scholar] [CrossRef]
- Nordlund, A.; Jansson, J.; Westin, K. Acceptability of electric vehicle aimed measures: Effects of norm activation, perceived justice and effectiveness. Transp. Res. Part A Policy Pract. 2018, 117, 205–213. [Google Scholar] [CrossRef]
- Chen, Y. An investigation of the influencing factors of Chinese WeChat users’ environmental information-sharing behavior based on an integrated model of UGT, NAM, and TPB. Sustainability 2020, 12, 2710. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Guo, D.; Zhang, B.; Wang, Z. Analysis of factors influencing residents’ habitual energy-saving behaviour based on NAM and TPB models: Egoism or altruism? Energy Policy 2018, 116, 68–77. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Wang, N.; Huang, G.Q. How do rural households accept straw returning in Northeast China? Resour. Conserv. Recycl. 2022, 182, 106287. [Google Scholar] [CrossRef]
- Rezaei, R.; Safa, L.; Damalas, C.A.; Ganjkhanloo, M.M. Drivers of farmers’ intention to use integrated pest management: Integrating theory of planned behavior and norm activation model. J. Environ. Manag. 2019, 236, 328–339. [Google Scholar] [CrossRef]
- Madigan, R.; Louw, T.; Wilbrink, M.; Schieben, A.; Merat, N. What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems. Transp. Res. Part F Traffic Psychol. Behav. 2017, 50, 55–64. [Google Scholar] [CrossRef]
- Madigan, R.; Louw, T.; Dziennus, M.; Graindorge, T.; Ortega, E.; Graindorge, M.; Merat, N. Acceptance of Automated Road Transport Systems (ARTS): An Adaptation of the UTAUT Model. Transp. Res. Procedia 2016, 14, 2217–2226. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lesch, M.F.; Horrey, W.J.; Strawderman, L. Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accid. Anal. Prev. 2017, 108, 361–373. [Google Scholar] [CrossRef]
- Chen, J.; Li, R.; Gan, M.; Fu, Z.; Yuan, F.; Wang, T. Public Acceptance of Driverless Buses in China: An Empirical Analysis Based on an Extended UTAUT Model. Discret. Dyn. Nat. Soc. 2020, 2020, 4318182. [Google Scholar] [CrossRef]
- Udo, G.; Bagchi, K.; Maity, M. Exploring Factors Affecting Digital Piracy Using the Norm Activation and UTAUT Models: The Role of National Culture. J. Bus. Ethics 2014, 135, 517–541. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Zavareh, M.F.; Nordfjaern, T. Mono- and multimodal green transport use on university trips during winter and summer: Hybrid choice models on the norm-activation theory. Transp. Res. Part A Policy Pract. 2019, 130, 317–332. [Google Scholar] [CrossRef]
- Sharda, S.; Ye, X.; Raman, A.; Pendyala, R.M.; Pinjari, A.R.; Bhat, C.R.; Srinivasan, K.K.; Ramadurai, G. Accounting for the Influence of Attitudes and Perceptions in Modeling the Adoption of Emerging Transportation Services and Technologies in India. Transp. Res. Rec. 2022. [Google Scholar] [CrossRef]
- Chen, C.-F. Factors affecting the decision to use autonomous shuttle services: Evidence from a scooter-dominant urban context. Transp. Res. Part F Traffic Psychol. Behav. 2019, 67, 195–204. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Antonides, G.; Bartels, J. The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour. J. Econ. Psychol. 2013, 39, 141–153. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, H.; Xi, H.; Wu, N. Analysing public acceptance of autonomous buses based on an extended TAM model. IET Intell. Transp. Syst. 2021, 15, 1318–1330. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Selya, A.S.; Rose, J.S.; Dierker, L.C.; Hedeker, D.; Mermelstein, R.J. A practical guide to calculating Cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 2012, 3, 111. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Cudeck, R.; Jöreskog, K.G.; Sörbom, D.; Du Toit, S. Structural Equation Modeling: Present and Future: A Festschrift in Honor of Karl Jöreskog; Scientific Software International: Skokie, IL, USA, 2001. [Google Scholar]
- Reinartz, W.; Haenlein, M.; Henseler, J. An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int. J. Res. Mark. 2009, 26, 332–344. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Ringle, C.M.; Thiele, K.O.; Gudergan, S.P. Estimation issues with PLS and CBSEM: Where the bias lies! J. Bus. Res. 2016, 69, 3998–4010. [Google Scholar] [CrossRef]
- Raykov, T. Estimation of composite reliability for congeneric measures. Appl. Psychol. Meas. 1997, 21, 173–184. [Google Scholar] [CrossRef]
- Ab Hamid, M.; Sami, W.; Sidek, M.M. Discriminant Validity Assessment: Use of Fornell & Larcker Criterion Versus HTMT Criterion. J. Phys. Conf. Ser. 2017, 890, 012163. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Processes 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Oh, S.; Lehto, X.Y.; Park, J. Travelers’ Intent to Use Mobile Technologies as a Function of Effort and Performance Expectancy. J. Hosp. Mark. Manag. 2009, 18, 765–781. [Google Scholar] [CrossRef]
- Kim, J.J.; Hwang, J. Merging the norm activation model and the theory of planned behavior in the context of drone food delivery services: Does the level of product knowledge really matter? J. Hosp. Tour. Manag. 2020, 42, 1–11. [Google Scholar] [CrossRef]
- Han, H.; Meng, B.; Kim, W. Emerging bicycle tourism and the theory of planned behavior. J. Sustain. Tour. 2016, 25, 292–309. [Google Scholar] [CrossRef]
- Chen, C.-F.; Chao, W.-H. Habitual or reasoned? Using the theory of planned behavior, technology acceptance model, and habit to examine switching intentions toward public transit. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 128–137. [Google Scholar] [CrossRef]
- Furnham, A.; Tu, B.-L.; Swami, V. Cross-cultural differences in self-assessed intelligence: A comparison of british and chinese undergraduates. Psychologia 2012, 55, 21–27. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G. Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Q. 2000, 24, 115–139. [Google Scholar] [CrossRef]
Constructs | Items | Contents and Origins |
---|---|---|
Behavioral Intention | BI1 | I will try to adopt the electric shuttle bus service if it is put on the market [49]. |
BI2 | I plan to adopt the electric shuttle bus service if it is put on the market [49]. | |
BI3 | I will adopt the electric shuttle bus service in the future [49]. | |
Performance Expectancy | PE1 | I find electric shuttle bus services useful in my daily life [49]. |
PE2 | Adopting electric shuttle bus services improves travel efficiency [49]. | |
PE3 | Adopting electric shuttle bus services helps me reach my destination more quickly [49]. | |
PE4 | In general, adopting electric shuttle bus services makes my life convenient [49]. | |
Effort Expectancy | EE1 | Learning how to adopt electric shuttle bus services is easy for me [49]. |
EE2 | My interaction with electric shuttle bus services is clear and understandable [49]. | |
EE3 | I find electric shuttle bus services easy to adopt [49]. | |
EE4 | It is easy for me to become skillful at adopting electric shuttle bus services [49]. | |
Social Influence | SI1 | People who are important to me think that I should adopt electric shuttle bus services [49]. |
SI2 | People who influence my behavior think that I should adopt electric shuttle bus services [49]. | |
SI3 | People whose opinions I value think that I should adopt electric shuttle bus services [49]. | |
Personal Norms | PN1 | I feel a sense of moral obligation to adopt electric shuttle bus services to save road resources, conserve fossil fuel consumption, and reduce greenhouse gas emissions [50]. |
PN2 | I feel that it is important for people to adopt electric shuttle bus services to save road resources, conserve fossil fuel consumption, and reduce greenhouse gas emissions [50]. | |
PN3 | I feel that I should adopt electric shuttle bus services to save road resources, conserve fossil fuel consumption, and reduce greenhouse gas emissions [50]. | |
Awareness of Consequences | AC1 | Adopting electric shuttle bus services can save road resources [50]. |
AC2 | Adopting electric shuttle bus services can conserve fossil fuel consumption [50]. | |
AC3 | Adopting electric shuttle bus services can reduce greenhouse gas emissions [50]. | |
Ascription of Responsibility | AR1 | I have a responsibility to save road resources [50]. |
AR2 | I have a responsibility to conserve fossil fuel consumption [50]. | |
AR3 | I have a responsibility to reduce greenhouse gas emissions [50]. | |
Attitude | AT1 | My attitude toward adopting electric shuttle bus services is positive [51]. |
AT2 | Adopting electric shuttle bus services is a wise choice [51]. | |
AT3 | Electric shuttle bus services will play an essential role in public transport systems [51]. |
Constructs | Items | Mean (SD) | Factor Loadings | Cronbach’s Alpha | Composite Reliability | AVE |
---|---|---|---|---|---|---|
BI | BI1 | 5.998 (1.040) | 0.959 | 0.967 | 0.978 | 0.938 |
BI2 | 5.899 (1.085) | 0.984 | ||||
BI3 | 5.865 (1.123) | 0.963 | ||||
AT | AT1 | 5.812 (1.106) | 0.936 | 0.944 | 0.964 | 0.899 |
AT2 | 5.725 (1.187) | 0.960 | ||||
AT3 | 5.840 (1.135) | 0.948 | ||||
PE | PE1 | 5.568 (1.393) | 0.917 | 0.959 | 0.970 | 0.890 |
PE2 | 5.720 (1.281) | 0.951 | ||||
PE3 | 5.719 (1.289) | 0.950 | ||||
PE4 | 5.762 (1.278) | 0.955 | ||||
EE | EE1 | 5.210 (1.613) | 0.886 | 0.933 | 0.952 | 0.834 |
EE2 | 5.417 (1.437) | 0.928 | ||||
EE3 | 5.272 (1.535) | 0.933 | ||||
EE4 | 5.423 (1.479) | 0.904 | ||||
SI | SI1 | 5.380 (1.344) | 0.973 | 0.975 | 0.984 | 0.952 |
SI2 | 5.292 (1.343) | 0.981 | ||||
SI3 | 5.333 (1.344) | 0.972 | ||||
PN | PN1 | 6.113 (1.070) | 0.958 | 0.967 | 0.979 | 0.939 |
PN2 | 6.152 (1.007) | 0.972 | ||||
PN3 | 6.134 (1.020) | 0.976 | ||||
AC | AC1 | 5.665 (1.308) | 0.937 | 0.918 | 0.948 | 0.860 |
AC2 | 5.685 (1.304) | 0.936 | ||||
AC3 | 5.828 (1.221) | 0.909 | ||||
AR | AR1 | 6.218 (1.006) | 0.984 | 0.985 | 0.990 | 0.971 |
AR2 | 6.190 (1.035) | 0.987 | ||||
AR3 | 6.191 (1.035) | 0.985 |
BI | AT | PE | EE | SI | PN | AR | AC | |
---|---|---|---|---|---|---|---|---|
BI1 | 0.959 | 0.794 | 0.658 | 0.531 | 0.567 | 0.656 | 0.668 | 0.645 |
BI2 | 0.984 | 0.815 | 0.664 | 0.523 | 0.612 | 0.640 | 0.654 | 0.663 |
BI3 | 0.963 | 0.799 | 0.643 | 0.510 | 0.625 | 0.616 | 0.629 | 0.662 |
AT1 | 0.768 | 0.936 | 0.629 | 0.548 | 0.604 | 0.613 | 0.614 | 0.642 |
AT2 | 0.793 | 0.960 | 0.685 | 0.556 | 0.673 | 0.598 | 0.576 | 0.680 |
AT3 | 0.795 | 0.948 | 0.674 | 0.510 | 0.597 | 0.600 | 0.581 | 0.701 |
PE1 | 0.618 | 0.656 | 0.917 | 0.696 | 0.523 | 0.432 | 0.412 | 0.564 |
PE2 | 0.620 | 0.656 | 0.951 | 0.661 | 0.458 | 0.457 | 0.448 | 0.542 |
PE3 | 0.638 | 0.648 | 0.950 | 0.688 | 0.477 | 0.428 | 0.437 | 0.532 |
PE4 | 0.675 | 0.677 | 0.955 | 0.697 | 0.481 | 0.480 | 0.487 | 0.571 |
EE1 | 0.441 | 0.488 | 0.611 | 0.886 | 0.381 | 0.334 | 0.354 | 0.373 |
EE2 | 0.531 | 0.543 | 0.684 | 0.928 | 0.443 | 0.400 | 0.403 | 0.445 |
EE3 | 0.484 | 0.528 | 0.688 | 0.933 | 0.449 | 0.384 | 0.374 | 0.445 |
EE4 | 0.505 | 0.510 | 0.668 | 0.904 | 0.429 | 0.389 | 0.401 | 0.433 |
SI1 | 0.621 | 0.658 | 0.518 | 0.475 | 0.973 | 0.517 | 0.452 | 0.584 |
SI2 | 0.600 | 0.635 | 0.486 | 0.450 | 0.981 | 0.497 | 0.428 | 0.566 |
SI3 | 0.597 | 0.635 | 0.500 | 0.440 | 0.972 | 0.492 | 0.423 | 0.570 |
PN1 | 0.613 | 0.589 | 0.457 | 0.383 | 0.501 | 0.958 | 0.840 | 0.495 |
PN2 | 0.649 | 0.626 | 0.465 | 0.408 | 0.488 | 0.972 | 0.857 | 0.527 |
PN3 | 0.649 | 0.635 | 0.463 | 0.411 | 0.509 | 0.976 | 0.852 | 0.544 |
AR1 | 0.665 | 0.619 | 0.474 | 0.416 | 0.430 | 0.865 | 0.984 | 0.520 |
AR2 | 0.655 | 0.602 | 0.455 | 0.409 | 0.433 | 0.862 | 0.987 | 0.530 |
AR3 | 0.666 | 0.618 | 0.470 | 0.417 | 0.454 | 0.866 | 0.985 | 0.539 |
AC1 | 0.600 | 0.633 | 0.516 | 0.417 | 0.535 | 0.487 | 0.495 | 0.937 |
AC2 | 0.618 | 0.656 | 0.568 | 0.439 | 0.536 | 0.492 | 0.498 | 0.936 |
AC3 | 0.664 | 0.687 | 0.544 | 0.438 | 0.561 | 0.518 | 0.501 | 0.909 |
AC | AR | AT | BI | EE | PE | PN | SI | |
---|---|---|---|---|---|---|---|---|
AC | 0.927 | |||||||
AR | 0.537 | 0.986 | ||||||
AT | 0.711 | 0.622 | 0.948 | |||||
BI | 0.678 | 0.672 | 0.828 | 0.968 | ||||
EE | 0.466 | 0.420 | 0.567 | 0.538 | 0.913 | |||
PE | 0.586 | 0.473 | 0.699 | 0.676 | 0.727 | 0.943 | ||
PN | 0.539 | 0.877 | 0.637 | 0.658 | 0.414 | 0.476 | 0.969 | |
SI | 0.588 | 0.446 | 0.659 | 0.621 | 0.467 | 0.514 | 0.515 | 0.976 |
Hypothesis | Path Coefficient (β) | p-Value | Standard Deviation | t Statistics | Supported? (Yes/No) |
---|---|---|---|---|---|
H1: PE→BI | 0.177 | <0.001 | 0.046 | 3.874 | Yes |
H2: EE→BI | −0.012 | 0.714 | 0.034 | 0.366 | No |
H3: EE→PE | 0.727 | <0.001 | 0.024 | 30.036 | Yes |
H4: SI→BI | 0.085 | <0.01 | 0.033 | 2.615 | Yes |
H5: PN→BI | 0.197 | <0.001 | 0.044 | 4.521 | Yes |
H6: SI→PN | 0.145 | <0.001 | 0.022 | 6.537 | Yes |
H7: AC→PN | 0.024 | 0.400 | 0.029 | 0.842 | No |
H8: AR→PN | 0.799 | <0.001 | 0.024 | 32.738 | Yes |
H9: AT→BI | 0.530 | <0.001 | 0.046 | 11.621 | Yes |
H10: PN→AT | 0.286 | <0.001 | 0.035 | 8.170 | Yes |
H11: SI→AT | 0.299 | <0.001 | 0.033 | 8.991 | Yes |
H12: PE→AT | 0.391 | <0.001 | 0.045 | 8.752 | Yes |
H13: EE→AT | 0.025 | 0.503 | 0.038 | 0.669 | No |
Direct Effect (β) | p Value | Standard Deviation | Indirect Effect (β) | p Value | Standard Deviation | Total Effect (β) | p Value | Standard Deviation | |
---|---|---|---|---|---|---|---|---|---|
PE→BI | 0.177 | <0.001 | 0.046 | 0.207 | <0.001 | 0.032 | 0.384 | <0.001 | 0.049 |
EE→BI | −0.012 | 0.714 | 0.034 | 0.293 | <0.001 | 0.040 | 0.281 | <0.001 | 0.039 |
SI→BI | 0.085 | <0.01 | 0.024 | 0.209 | <0.001 | 0.022 | 0.294 | <0.001 | 0.034 |
AT→BI | 0.530 | <0.001 | 0.033 | - | - | - | 0.530 | <0.001 | 0.046 |
PN→BI | 0.197 | <0.001 | 0.046 | 0.152 | <0.001 | 0.021 | 0.349 | <0.001 | 0.048 |
AC→BI | - | - | - | 0.009 | 0.421 | 0.011 | 0.009 | 0.421 | 0.011 |
AR→BI | - | - | - | 0.279 | <0.001 | 0.039 | 0.279 | <0.001 | 0.039 |
PE→AT | 0.391 | <0.001 | 0.045 | - | - | - | 0.391 | <0.001 | 0.045 |
EE→AT | 0.025 | 0.503 | 0.038 | 0.284 | <0.001 | 0.035 | 0.309 | <0.001 | 0.034 |
SI→AT | 0.299 | <0.001 | 0.033 | 0.041 | <0.001 | 0.008 | 0.340 | <0.001 | 0.031 |
PN→AT | 0.286 | <0.001 | 0.035 | - | - | - | 0.286 | <0.001 | 0.035 |
AC→AT | - | - | - | 0.007 | 0.421 | 0.009 | 0.007 | 0.421 | 0.009 |
AR→AT | - | - | - | 0.229 | <0.001 | 0.028 | 0.229 | <0.001 | 0.028 |
Hypothesis | Male | Female | p-Value | t Value | |
---|---|---|---|---|---|
H1 | 0.184 *** | 0.143 | 0.041 | 0.648 | 0.471 |
H2 | −0.052 | 0.036 | −0.088 | 0.189 | 1.338 |
H3 | 0.741 *** | 0.710 *** | 0.031 | 0.511 | 0.654 |
H4 | 0.020 | 0.156 ** | −0.136 | <0.05 | 2.237 |
H5 | 0.204 *** | 0.201 ** | 0.003 | 0.968 | 0.032 |
H6 | 0.127 *** | 0.170 *** | −0.043 | 0.329 | 0.974 |
H7 | 0.021 | 0.019 | 0.002 | 0.970 | 0.025 |
H8 | 0.805 *** | 0.801 *** | 0.004 | 0.956 | 0.074 |
H9 | 0.627 *** | 0.428 *** | 0.199 | <0.05 | 2.311 |
H10 | 0.204 *** | 0.382 *** | −0.178 | <0.01 | 2.695 |
H11 | 0.328 *** | 0.257 *** | 0.071 | 0.270 | 1.105 |
H12 | 0.474 *** | 0.295 *** | 0.179 | <0.05 | 1.993 |
H13 | −0.005 | 0.072 | −0.077 | 0.310 | 1.018 |
Hypothesis | Age <= 45 | Age >= 46 | p-Value | t Value | |
---|---|---|---|---|---|
H1 | 0.169 ** | 0.221 ** | −0.052 | 0.531 | 0.516 |
H2 | −0.011 | −0.041 | 0.029 | 0.651 | 0.385 |
H3 | 0.701 *** | 0.825 *** | −0.123 | <0.01 | 2.259 |
H4 | 0.065 | 0.191 *** | −0.126 | <0.05 | 1.800 |
H5 | 0.233 *** | −0.027 | 0.260 | <0.05 | 2.757 |
H6 | 0.145 *** | 0.144 * | 0.001 | 0.956 | 0.010 |
H7 | 0.045 | −0.114 | 0.159 | <0.05 | 2.416 |
H8 | 0.778 *** | 0.923 *** | −0.145 | <0.01 | 2.828 |
H9 | 0.520 *** | 0.641 *** | −0.121 | 0.197 | 1.158 |
H10 | 0.289 *** | 0.417 *** | −0.128 | 0.064 | 2.041 |
H11 | 0.296 *** | 0.311 *** | −0.016 | 0.839 | 0.209 |
H12 | 0.429 *** | 0.179 * | 0.250 | <0.05 | 2.537 |
H13 | 0.009 | 0.164 * | −0.154 | 0.058 | 1.816 |
Hypothesis | Completed High School or Below | Bachelor’s Degree or Above | p-Value | t Value | |
---|---|---|---|---|---|
H1 | 0.199 ** | 0.171 ** | 0.028 | 0.744 | 0.284 |
H2 | −0.062 | 0.000 | −0.062 | 0.300 | 0.877 |
H3 | 0.789 *** | 0.710 *** | 0.079 | 0.085 | 1.517 |
H4 | 0.135 ** | 0.082 * | 0.053 | 0.383 | 0.784 |
H5 | 0.228 * | 0.181 *** | 0.047 | 0.698 | 0.447 |
H6 | 0.243 *** | 0.130 *** | 0.113 | 0.070 | 2.140 |
H7 | 0.038 | 0.028 | 0.010 | 0.913 | 0.144 |
H8 | 0.689 *** | 0.803 *** | −0.115 | 0.061 | 2.024 |
H9 | 0.477 *** | 0.540 *** | −0.063 | 0.615 | 0.574 |
H10 | 0.513 *** | 0.245 *** | 0.268 | <0.01 | 3.460 |
H11 | 0.208 ** | 0.306 *** | −0.098 | 0.183 | 1.381 |
H12 | 0.189 * | 0.428 *** | −0.239 | <0.05 | 2.508 |
H13 | 0.066 | 0.021 | 0.045 | 0.550 | 0.565 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Pei, Y.; Wang, Y.-J. Antecedents in Determining Users’ Acceptance of Electric Shuttle Bus Services. Mathematics 2022, 10, 2896. https://doi.org/10.3390/math10162896
Wang N, Pei Y, Wang Y-J. Antecedents in Determining Users’ Acceptance of Electric Shuttle Bus Services. Mathematics. 2022; 10(16):2896. https://doi.org/10.3390/math10162896
Chicago/Turabian StyleWang, Naihui, Yulong Pei, and Yi-Jia Wang. 2022. "Antecedents in Determining Users’ Acceptance of Electric Shuttle Bus Services" Mathematics 10, no. 16: 2896. https://doi.org/10.3390/math10162896
APA StyleWang, N., Pei, Y., & Wang, Y. -J. (2022). Antecedents in Determining Users’ Acceptance of Electric Shuttle Bus Services. Mathematics, 10(16), 2896. https://doi.org/10.3390/math10162896