
Citation: Yin, L.; Xu, J.; Wang, Z.;

Wang, C. A Provable Secure Session

Key Distribution Protocol Based on

NSSK for In-Vehicle CAN Network.

Mathematics 2022, 10, 2903. https://

doi.org/10.3390/math10162903

Academic Editors: Ding Wang,

Qi Jiang and Chunhua Su

Received: 21 July 2022

Accepted: 11 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Provable Secure Session Key Distribution Protocol Based on
NSSK for In-Vehicle CAN Network †

Long Yin , Jian Xu *, Zihao Wang and Chen Wang

Software College, Northeastern University, Shenyang 110167, China
* Correspondence: xuj@mail.neu.edu.cn
† This paper is an extended version of our paper published in SPNCE 2021: Security and Privacy in New

Computing Environments, Virtual Event, 10–11 December 2021; pp. 35–52.

Abstract: Many CAN-based session key sharing approaches are based on the group key scheme,
which can easily lead advanced adversaries to infiltrate all ECUs (electronic control units) in the
network if the sharing key is leaked. To address the above problem, we propose a provable secure
session key distribution protocol based on the improved NSSK (Needham–Schroeder shared key)
protocol for the in-vehicle CAN network. We applied the mechanisms of message authentication
and digital signature to fix the defects of the original NSSK regarding its lack of resistance to the
Denning–Sacco attack. Then, we analyzed the provable security of the proposed protocol on the
random oracle model and verified the security goals of the protocol by using the simulation tools
AVISPA and Tamarin Prover; the results reflect that the protocol met the security requirements for
key distribution such as session key secrecy, injective agreement, and known key secrecy. Finally, we
compared our new protocol with other key distribution protocols in CAN bus communication to
evaluate the performance of the new protocol in actual scenarios. The result shows that the protocol
is secure against many payload-based attacks and is practical for in-vehicle CAN networks.

Keywords: CAN security; security protocols; vehicle cybersecurity; the NSSK protocol

MSC: 68M12

1. Introduction

The controller area network (CAN) bus is a widely deployed Fieldbus protocol that has
been used in in-vehicle networks for more than three decades. Due to the characteristics of
the CAN bus broadcasting mechanism, the raw CAN packet data are in plain text and easily
eavesdropped by an adversary through an OBD (on-board diagnostics) tool connected to
the network. There are two major types of attacks on the in-vehicle CAN bus, namely, the
frequency-based attacks such as DoS or bus-off attacks, and the payload-based attacks such
as impersonation or replay attacks. If the adversaries exploit the compromised ECU to
transmit the masquerade or replayed CAN packets, due to a lack the protection of access
control, some safe-critical ECUs may receive the malicious command within the forged
CAN packet and cause an unexpected failure during vehicle driving.

A majority of research works on CAN-based security protocols focus on providing
message authentication to combat impersonation and replay attacks. In many proposed
schemes, all ECUs share a group key for in-vehicle secure communication. The sharing
key can, however, be compromised by an adversary through wireless or physical access
vulnerabilities of CAN bus networks. The adversary may inject malicious CAN packets
with forged MACs by exploiting the compromised sharing key, then all ECUs in the network
may accept the masquerade CAN packet and consider these packets to originate from
a trustable ECU. So, when an ECU is compromised, other ECUs in the network are not
secure anymore.

Mathematics 2022, 10, 2903. https://doi.org/10.3390/math10162903 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10162903
https://doi.org/10.3390/math10162903
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0552-3516
https://doi.org/10.3390/math10162903
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10162903?type=check_update&version=2

Mathematics 2022, 10, 2903 2 of 20

To alleviate these unfavorable factors of using a group-key-based scheme, an effective
tactic is to establish a dynamic session key distribution process based on a centralized
node-based key management scheme. Considering the actual scenarios of in-vehicle CAN
communication, the ECUs in the different domains are connected to the gateway module in
the center of the network, which is responsible for session key establishment and updates.
The centralized node-based key distribution scheme is that the gateway module contains
the different long-term keys with each ECU, and each two ECUs within the same domain
transfer the shared session key under the participation of the centralized gateway module.
Even if an ECU is compromised and the adversary possesses the session key of one domain,
the adversary cannot communicate with the other ECUs in different domains. If the
adversary sends a request to the gateway module for the session key of the other domains
because it does not have the correct long-term key to decrypt the response from the gateway
module, the adversary therefore fails to corrupt the ECUs in the other domains. Thus, a
centralized node-based key distribution protocol is more secure and suitable for the CAN
bus communication scenarios.

1.1. Related Works

Many CAN-based secure protocols for message authentication and session key sharing
have arisen in recent years. Woo et al. produced a malicious self-diagnostic Android app to
perform a long-range wireless attack by transmitting the masquerade control data from
the attacker’s server, and they proposed a security protocol based on AKEP2 to construct
a secure initial session key distribution [1]. Wang et al. proposed a trusted group-based
security framework, VeCure, which adopted a trust group-based structure combined with
a self-designed message authentication scheme BME [2]; their proposed protocol reduced
a large amount of computing consumption of traditional heavy-weight cryptographic
function and online message processing delay by using an offline computation technique.
Nürnberger et al. proposed a backward-compatible framework, vatiCAN, which provided
a series of merits such as message authentication, replay-attacks resistance, spoof attacks
detection, and prevention [3]. Radu et al. proposed an AUTOSAR-compliant, backward-
compatible, and lightweight authentication protocol, LeiA, which has proven security and
unforgeability under chosen message attacks [4]. Kang et al. proposed a lightweight authen-
tication protocol SAP to resist masquerade attacks and replay attacks, being based on the
one-way hash chain with the group key; they also proposed an attack-resilient mechanism,
ART, to avoid hash collision attacks of the CAN environment [5]. Bella et al. proposed a
protocol TOUCAN to secure the CAN bus against eavesdropping by unauthorized adver-
saries, one that uses a fast hash algorithm called Chaskey for message authentication and
AES-128 for encryption [6]. Mun et al. proposed a model-based design to optimize the
latency and the number of transmitted messages over the CAN bus for safety purposes and
applied the HMAC for message authentication to enhance the security against spoofing
attacks [7]. Youn et al. proposed sender authentication and key management schemes
able to invalidate the impersonation and replay attacks, which update the session key
seamlessly without requiring additional communication [8].

Palaniswamy et al. identified the weaknesses of the protocol in [1] and proposed a
new protocol suite by adding a secure message exchange protocol for RTR frames and a key
update protocol for the group session key renewing when the external device is released [9].
Schmandt et al. proposed Mini-MAC, which utilizes a provably secure HMAC to protect
the ECUs against masquerade attacks, applying authentication keys shared among groups
rather than sending separate messages to different recipients [10]. Groza et al. proposed a
TESLA-like protocol that can perform broadcast authentication keys and MAC codes on
the basis of a key-chain in the environment of CAN-bus, which operates without any pro-
cess of session key distribution or negotiation [11]. Kurachi et al. proposed a lightweight
authentication approach that employs a point-to-point authentication mechanism by using
the monitor node to check the MAC in data frames and making minor modifications to the
existing CAN controller to be easily used [12]. Wang et al. proposed a hardware-based

Mathematics 2022, 10, 2903 3 of 20

module security ECU, providing key distribution and management, as well as the MAC
authentication against the adversaries transmitting malicious CAN packets to take over
a vehicle, and uses Huffman coding with CAN frame compression to reduce the redun-
dancy of messages and storage costs [13]. Jo et al. proposed an authentication protocol
MAuth-CAN, wherein each ECU has a unique authentication key to protect itself from
masquerade attacks initiated by a compromised ECU fabricating authentication values;
the authors applied a dual CAN-controller to enhance the robustness of the authenticator
in MAuth-CAN protocol against the bus-off attacks [14]. Wu et al. proposed a key man-
agement scheme based on AKEP2 and OTA techniques and utilized a trusted key usage
environment based on hardware for key storage [15]. Pullen used implicit certificates to
derive authenticated public keys for ECUs, then applied the ECDH to calculate a sharing
key and derived actual group keys by using an OTP secure cryptosystem [16]. Pan pro-
posed a dynamic key generation scheme based on extracting the transient signal when the
vehicle starts and generating the master key by the ECC algorithm [17]. Jain utilized the
CAN bus arbitration mechanism to cause a collision by transmitting data simultaneously
from two ECUs, deriving a secret group key from the arbitration result [18]. King proposed
a solution that uses the HMAC algorithm and timestamping mechanism against denial
of service attacks or replay attacks [19]. Fassak proposed a protocol based on ECC for
ECU authentication and the session key establishment in CAN bus networks, then derived
symmetric keys from the established session key for authenticating CAN frames [20].

1.2. Our Goal and Contribution

After introducing the related works, we here provide a comparison of the session
or temporary key distribution in these works, as shown in Table 1. In some group-key-
based schemes [2,3,6,7,10], there does not exist a key distribution scheme, and all the
authentication keys are pre-assigned at the manufacturing stage. The other group-key-
based schemes [1,5,8,9] adopt a key update scheme based on a variant of AKEP2, which
transmits a secret seed in plain text and derives the session keys from a group shared long-
term key. Once the group shared long-term key is compromised, the session key can be
easily derived by the adversary who possesses the secret seed. The works [1,9,16,17,20] used
the asymmetric authentication key exchange or ECDH protocols to update the session keys,
bringing some considerable computational overhead to the resource-constrained ECUs. The
centralized-node-based schemes [11–14] are based on the hash-chain-based authentication
method, producing a group of authentication keys and broadcasting them periodically. The
authentication keys are transmitted in public with the messages simultaneously to check
the validity of the message, which increases the CAN bus load. The NSSK protocol [21]
proposed a symmetric encryption key distribution approach to deliver the session key
generated by the trust agent; however, it cannot recognize and resist the known key
attacks such as the Denning–Sacco attack. The other NSSK-like protocols [22,23] eliminate
this defect by adopting asymmetric encryption and cyclic group multiplication. These
approaches have some considerable computational costs on cryptographic operations that
cannot meet the real-time demand of resource-constrained ECUs in automotive CAN. After
analyzing the above key distribution schemes, we proposed a lightweight provable secure
centralized-node-based key distribution protocol based on symmetric encryption to solve
the above shortcomings.

Our main contributions are as follows:

(1) We summarize the related cryptographic protocols and applications of in-vehicle
CAN and analysis the disadvantages in their key distribution or update protocols.
To prevent the risk of group-key-based schemes being compromised by exploiting
vulnerabilities for launching impersonation attacks, we adopt the tactic of central-
ized node-based schemes and propose a new secure centralized node-based key
distribution protocol that is based on the NSSK (Needham–Schroeder shared key)
distribution protocol.

Mathematics 2022, 10, 2903 4 of 20

(2) To fix the defect of the original NSSK distribution protocol on resisting the Denning–
Sacco attack, we adopt the message authentication and signature verification mecha-
nism on NSSK against the invalid replayed encrypting message attack. Considering
the application in the actual communication scenarios of the automotive CAN, we
split the key distribution protocol into two-stage protocols, namely, the initial SKDP
(initial session key distribution protocol) and second SKDP (second session key distri-
bution protocol). We prove the security and robustness of the initial SKDP and second
SKDP by formally analyzing with the ROM (random oracle model) and verifying the
security goals in the simulation tool AVISPA and Tamarin Prover. The results showed
that the proposed protocol is safe and fits the security demand of session key secrecy
and known key secrecy.

(3) We evaluated the performance of our proposed protocol on a CAN prototype test
suite. We compared our proposed protocol with the other session key distribution
on the computation time complexity and the number of storage message bits. The
evaluation result showed that our proposed protocol has a competitive performance
on both the computation time and storage cost. We measured the actual execution
time and data frame number of the protocols. Moreover, we found these observed
indicators of our proposed protocol dropped by 70% and 23% when we replaced the
ECDSA with a lightweight signature algorithm ED25519, which showed the fitness of
our new protocol on the real-time demand of the resource-constrained ECUs.

Table 1. Summary of some related cryptographic works of the automotive CAN.

Scheme Research Work Key Usage Key Distribution
Approach Resistance to Attacks

Group-key-based

Wang et al. [2]
Nürnberger et al. [3]

Bella et al. [6]
Mun et al. [7]

Schmandt et al. [10]

Message authentication No fixed or
pre-assigned keys

Impersonation and
replay attacks

Woo et al. [1]
Palaniswamy et al. [9]

Message authentication
and encryption

Based on AKEP2 and
asymmetric DH protocol

Impersonation, replay, and
MITM attacks

Kang et al. [5]
Youn et al. [8] Message authentication Based on AKEP2 Impersonation and

replay attacks

Wu et al. [15] Message authentication
and encryption

Based on asymmetric
encryption

Impersonation, replay, and
MITM attacks

Püllen et al. [16]
Pan et al. [17] Encryption Based on ECDH Impersonation, replay, and

MITM attacks

Centralized
node-based

Groza et al. [11]
Kurachi et al. [12]
Wang et al. [13]

Jo et al. [14]

Message authentication Based on hash-chain Impersonation and
replay attacks

Two parties Fassak et al. [20] Message authentication Based on ECC-AKE Impersonation, replay, and
MITM attacks

Three parties

Needham et al. [21] Encryption Based on symmetric
encryption Impersonation attack

Yu et al. [22] Encryption Based on symmetric and
asymmetric encryption

Impersonation, replay, MITM,
and Denning–Sacco attacks

Arora et al. [23] Encryption
Based on symmetric

encryption with cyclic
group multiplication

Impersonation, replay, MITM,
and Denning–Sacco attacks

Centralized
node-based This work Message authentication

and encryption

Based on symmetric
encryption and signature

verification

Impersonation, replay, MITM,
and Denning–Sacco attacks

Mathematics 2022, 10, 2903 5 of 20

2. Preliminaries
2.1. System Architecture

The system model of the in-vehicle network is shown in Figure 1. The ECUs belong to
different communication subnets of the CAN bus network. The ECUs are connected to the
central gateway module directly or indirectly. In some research [1,9], the gateway module
represents a host ECU node that organizes the ECUs negotiating a sharing session key. We
call the gateway GECU. In our proposed protocols, it plays the role of a trusted agent to
generate a secret seed for session key derivation.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 21

Arora et al. [23] Encryption

Based on symmetric en-

cryption with cyclic group

multiplication

Impersonation, replay,

MITM, and Denning–Sacco

attacks

Centralized

node-based
This work

Message authenti-

cation and encryp-

tion

Based on symmetric en-

cryption and signature ver-

ification

Impersonation, replay,

MITM, and Denning–Sacco

attacks

2. Preliminaries

2.1. System Architecture

The system model of the in-vehicle network is shown in Figure 1. The ECUs belong

to different communication subnets of the CAN bus network. The ECUs are connected to

the central gateway module directly or indirectly. In some research [1,9], the gateway

module represents a host ECU node that organizes the ECUs negotiating a sharing session

key. We call the gateway GECU. In our proposed protocols, it plays the role of a trusted

agent to generate a secret seed for session key derivation.

Figure 1. The structure of the in-vehicle network.

2.2. Session Key Sharing Approaches

There are two common session key sharing approaches often used in the automotive

CAN environment: (1) a group-key-based approach, and (2) a centralized node-based ap-

proach. Some advantages and disadvantages of these approaches are listed as follows.

(1) Group-key-based approach [1–9]: All ECUs in the CAN bus network share one

key to authenticate or encrypt CAN packet in automotive CAN. Figure 2a shows the

group-key-based approach’s network topological structure. Due to all ECUs sharing the

same key, the sender ECU only sends a CAN message once. All ECUs in the network can

receive the message and verify or decrypt the message data. Although the group-key-

based approach is convenient, it cannot, however, completely resist the impersonation

attack initiated by an advanced adversary. The group sharing key for message encryption

and authentication may have a risk of being compromised by an advanced adversary to

penetrate the ECU. Although each group sharing key is usually only bound to one group,

some cases may exist where an ECU is located in two different domains at the same time.

Thus, the connection points between different groups are more likely to be exploited to

launch attacks by advanced adversaries.

(2) Centralized node-based approach: some works [11–14] applied a centralized

node-based approach for key sharing. In this approach, each ECU establishes its secret

Figure 1. The structure of the in-vehicle network.

2.2. Session Key Sharing Approaches

There are two common session key sharing approaches often used in the automotive
CAN environment: (1) a group-key-based approach, and (2) a centralized node-based
approach. Some advantages and disadvantages of these approaches are listed as follows.

(1) Group-key-based approach [1–9]: All ECUs in the CAN bus network share one key
to authenticate or encrypt CAN packet in automotive CAN. Figure 2a shows the
group-key-based approach’s network topological structure. Due to all ECUs sharing
the same key, the sender ECU only sends a CAN message once. All ECUs in the
network can receive the message and verify or decrypt the message data. Although
the group-key-based approach is convenient, it cannot, however, completely resist
the impersonation attack initiated by an advanced adversary. The group sharing key
for message encryption and authentication may have a risk of being compromised by
an advanced adversary to penetrate the ECU. Although each group sharing key is
usually only bound to one group, some cases may exist where an ECU is located in
two different domains at the same time. Thus, the connection points between different
groups are more likely to be exploited to launch attacks by advanced adversaries.

(2) Centralized node-based approach: some works [11–14] applied a centralized node-
based approach for key sharing. In this approach, each ECU establishes its secret
key with a centralized ECU to defend against masquerade attacks launched by com-
promised ECUs. The centralized ECU is responsible for message authentication and
encryption. Figure 2b shows the network topological structure of the centralized
node-based approach and message data flows. In general, each ECU shares a distinct
key with the central ECU. Each sender ECU encrypts its CAN packets or generates

Mathematics 2022, 10, 2903 6 of 20

MACs by using the shared key with the central ECU. The central ECU uses its sender
ECU’s shared key to decrypt the CAN packets and verify the MACs. Finally, the
centralized ECU informs other ECUs about the verification results, which are en-
crypted by different receiver ECUs’ shared keys. These studies mostly employed the
hash-chain-based authentication method.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 21

key with a centralized ECU to defend against masquerade attacks launched by compro-

mised ECUs. The centralized ECU is responsible for message authentication and encryp-

tion. Figure 2b shows the network topological structure of the centralized node-based ap-

proach and message data flows. In general, each ECU shares a distinct key with the central

ECU. Each sender ECU encrypts its CAN packets or generates MACs by using the shared

key with the central ECU. The central ECU uses its sender ECU’s shared key to decrypt

the CAN packets and verify the MACs. Finally, the centralized ECU informs other ECUs

about the verification results, which are encrypted by different receiver ECUs’ shared

keys. These studies mostly employed the hash-chain-based authentication method.

(a) (b)

Figure 2. Session key sharing methods: (a) group-key-based approach; (b) centralized-node-based

approach.

2.3. Attack Surfaces of Automotive CAN

There are two major attack surfaces for the in-vehicle network adversaries: (1) phys-

ical attack surfaces and (2) wireless attack surfaces.

(1) Physical attack surfaces: Modern vehicles have many exposed physical or hard-

ware access interfaces such as the OBD or USB port, which can be used for ECU status of

diagnosis and firmware updates. Attackers may access these interfaces to compromise

ECUs. For example, Checkoway et al. [24] plugged an OBD-II dongle device into the au-

tomotive CAN to find vulnerabilities. They demonstrated the OBD-II dongle device could

be easily exploited by attackers within the same network due to a lack of access control.

The adversary can easily install a malicious program on the device to compromise the

ECU via firmware updates. In addition, they found the vehicle’s audio system updated

automatically by re-flashing the firmware at a specific USB drive file path. They demon-

strated that an adversary can exploit the defect of the target audio system to plant a mod-

ified firmware or an executable file that can transmit malicious packets.

(2) Wireless attack surfaces: Physical-based attacks on the vehicle need physical ac-

cess to penetrate the in-vehicle network. However, some physical access points to a vehi-

cle may be removed before leaving the factory. Therefore, the wireless access attack is

proposed to overcome the limitations of physical access requirements. The adversary can

transmit malicious CAN packets remotely through wireless channels between the adver-

sary and telematics devices. Checkoway et al. demonstrated that some telematics devices

equipped with Bluetooth may more likely offer remote access to the CAN bus. They re-

verse-engineered the target vehicle’s Bluetooth protocol stack and found the vulnerability

that the program did not check the input size of allocated memory. They launched a buffer

overflow attack on a Bluetooth pairwise device, then they proved that the penetrated de-

vice can execute malicious code on the target telematics device by sending arbitrary pack-

ets remotely [24]. Miller et al. found remote access vulnerabilities in Jeep’s Uconnect sys-

tem. They manipulated a femtocell device to establish the wireless access channel to the

Uconnect device and sent arbitrary packets remotely to the CAN bus network [25].

2.4. Adversary and Attack Types

We summarized the actual in-vehicle network adversaries into two types: common

adversary and advanced adversary.

ECU A ECU B ECU C

ECU D ECU E

CAN-bus

GK GK GK

GK GK

ECU A Centralized ECU ECU B

ECU C ECU D

CAN-bus

 , (), () , (), () (), ()

 (), () (), ()

Figure 2. Session key sharing methods: (a) group-key-based approach; (b) centralized-node-based approach.

2.3. Attack Surfaces of Automotive CAN

There are two major attack surfaces for the in-vehicle network adversaries: (1) physical
attack surfaces and (2) wireless attack surfaces.

(1) Physical attack surfaces: Modern vehicles have many exposed physical or hardware
access interfaces such as the OBD or USB port, which can be used for ECU status of
diagnosis and firmware updates. Attackers may access these interfaces to compromise
ECUs. For example, Checkoway et al. [24] plugged an OBD-II dongle device into
the automotive CAN to find vulnerabilities. They demonstrated the OBD-II dongle
device could be easily exploited by attackers within the same network due to a lack
of access control. The adversary can easily install a malicious program on the device
to compromise the ECU via firmware updates. In addition, they found the vehicle’s
audio system updated automatically by re-flashing the firmware at a specific USB
drive file path. They demonstrated that an adversary can exploit the defect of the
target audio system to plant a modified firmware or an executable file that can transmit
malicious packets.

(2) Wireless attack surfaces: Physical-based attacks on the vehicle need physical access to
penetrate the in-vehicle network. However, some physical access points to a vehicle
may be removed before leaving the factory. Therefore, the wireless access attack is
proposed to overcome the limitations of physical access requirements. The adversary
can transmit malicious CAN packets remotely through wireless channels between
the adversary and telematics devices. Checkoway et al. demonstrated that some
telematics devices equipped with Bluetooth may more likely offer remote access
to the CAN bus. They reverse-engineered the target vehicle’s Bluetooth protocol
stack and found the vulnerability that the program did not check the input size of
allocated memory. They launched a buffer overflow attack on a Bluetooth pairwise
device, then they proved that the penetrated device can execute malicious code on
the target telematics device by sending arbitrary packets remotely [24]. Miller et al.
found remote access vulnerabilities in Jeep’s Uconnect system. They manipulated a
femtocell device to establish the wireless access channel to the Uconnect device and
sent arbitrary packets remotely to the CAN bus network [25].

2.4. Adversary and Attack Types

We summarized the actual in-vehicle network adversaries into two types: common
adversary and advanced adversary.

(1) Common adversary: They attempt to launch an attack on automotive CAN through
the OBD port. They can exploit the vulnerabilities of OBD-based services to access

Mathematics 2022, 10, 2903 7 of 20

safety-critical ECUs and cause a CAN bus network hazard by injecting many CAN
packet into the vehicle.

(2) Advanced adversary: They can compromise ECUs through vulnerable physical or
wireless access points. They can exploit the vulnerabilities of remote opening ports of
external networks and physical access ports to gain access to compromise the ECUs.
By injecting malicious packets to the CAN bus network through these attack surfaces,
they can control the safety-critical ECUs or cause a network hazard without using
physical OBD-based services or devices.

The attack on the CAN bus can be classified into two categories: frequency-based
attacks and payload-based attacks. Most of the cryptographic-based research focuses on
protecting the ECUs from payload-based attacks.

(1) Frequency-based attacks: The frequency-based attacks contain two major types: DoS
(denial of service) and bus-off attacks. The DoS attack is shown in Figure 3a. It
is initiated by a common or advanced adversary who injects the highest priority
CAN packet to the automotive CAN network, such as the CAN ID of 0x00. When the
network is flooded by the highest priority CAN packet, the ECUs that send the packets
with lower priority will lose the arbitration of the CAN bus. The bus-off attack, which
is shown in Figure 3b, exploits the defect of the CAN bus arbitration mechanism to
execute the attack. A common or advanced adversary knows the regularity of the
target ECU data transmission period and sends the same CAN-ID packets with bit
errors simultaneously while the target ECU sends legitimate packets. The adversary
causes a series of arbitration conflicts to suspend the target ECU. While the target
ECU enters the bus-off state, the compromised ECU will take over the traffic with
forged packets.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 21

(1) Common adversary: They attempt to launch an attack on automotive CAN

through the OBD port. They can exploit the vulnerabilities of OBD-based services to ac-

cess safety-critical ECUs and cause a CAN bus network hazard by injecting many CAN

packet into the vehicle.

(2) Advanced adversary: They can compromise ECUs through vulnerable physical

or wireless access points. They can exploit the vulnerabilities of remote opening ports of

external networks and physical access ports to gain access to compromise the ECUs. By

injecting malicious packets to the CAN bus network through these attack surfaces, they

can control the safety-critical ECUs or cause a network hazard without using physical

OBD-based services or devices.

The attack on the CAN bus can be classified into two categories: frequency-based

attacks and payload-based attacks. Most of the cryptographic-based research focuses on

protecting the ECUs from payload-based attacks.

(1) Frequency-based attacks: The frequency-based attacks contain two major types:

DoS (denial of service) and bus-off attacks. The DoS attack is shown in Figure 3a. It is

initiated by a common or advanced adversary who injects the highest priority CAN packet

to the automotive CAN network, such as the CAN ID of 0x00. When the network is

flooded by the highest priority CAN packet, the ECUs that send the packets with lower

priority will lose the arbitration of the CAN bus. The bus-off attack, which is shown in

Figure 3b, exploits the defect of the CAN bus arbitration mechanism to execute the attack.

A common or advanced adversary knows the regularity of the target ECU data transmis-

sion period and sends the same CAN-ID packets with bit errors simultaneously while the

target ECU sends legitimate packets. The adversary causes a series of arbitration conflicts

to suspend the target ECU. While the target ECU enters the bus-off state, the compromised

ECU will take over the traffic with forged packets.

(2) Payload-based attacks: The payload-based attacks consist of many different types

such as impersonation attacks, replay attacks, and MITM (man-in-the-middle) attacks.

The impersonation attack is a so-called spoofing attack that is launched by a packet pay-

load modification adversary. The impersonation adversary changes the content of CAN

packets to disturb the safe-critical ECUs’ function and judgment. Conversely, the replay

attack adversary retransmits the past CAN packets without any modification to prevent

the vehicle from operating properly in a normal state. The MITM attack is a combination

attack of an impersonation attack and a replay attack—it will make the pair-wise ECUs

think that the adversary is the real communicating entity with them and finally cause data

leakage. Figure 3c shows the payload-based attacks.

(a) (b) (c)

Figure 3. The CAN bus attack types: (a) DoS attack; (b) bus-off attack; (c) payload-based attack.

(3) Denning–Sacco attack: This attack is a kind of known-key attack for the Need-

ham–Schroeder SKDS scheme [21]. After the role Alice and Bob in NSSK have executed

many rounds, the Denning–Sacco adversary cracks the session key from the past transfer

messages and replays an old encrypted message with a form such as {Kab, ID𝐴𝑙𝑖𝑐𝑒}Kbs to

Bob, where Kab represents the cracked session key, ID𝐴𝑙𝑖𝑐𝑒 is the identity of Alice, and

Kbs is the long-term symmetric key for Bob. Due to the lack of timestamp validation stage

in NSSK, the receiver Bob will accept the replayed message from the adversary and con-

firm the replacement of the sharing session key between the actual role of Alice and Bob

[26].

ECU A ECU C

ECU B

0x000

0x000

0x2C0 0x5A2

Delayed Delayed

ECU A ECU C

ECU B

0x2C0

0x5A2

0x2C0 0x5A2

ECU A ECU C

ECU B

0x2C0

0x2C0 0x5A1

Removed

Figure 3. The CAN bus attack types: (a) DoS attack; (b) bus-off attack; (c) payload-based attack.

(2) Payload-based attacks: The payload-based attacks consist of many different types
such as impersonation attacks, replay attacks, and MITM (man-in-the-middle) attacks.
The impersonation attack is a so-called spoofing attack that is launched by a packet
payload modification adversary. The impersonation adversary changes the content of
CAN packets to disturb the safe-critical ECUs’ function and judgment. Conversely, the
replay attack adversary retransmits the past CAN packets without any modification
to prevent the vehicle from operating properly in a normal state. The MITM attack is
a combination attack of an impersonation attack and a replay attack—it will make the
pair-wise ECUs think that the adversary is the real communicating entity with them
and finally cause data leakage. Figure 3c shows the payload-based attacks.

(3) Denning–Sacco attack: This attack is a kind of known-key attack for the Needham–
Schroeder SKDS scheme [21]. After the role Alice and Bob in NSSK have exe-
cuted many rounds, the Denning–Sacco adversary cracks the session key from the
past transfer messages and replays an old encrypted message with a form such as
{Kab, IDAlice}Kbs to Bob, where Kab represents the cracked session key, IDAlice is the
identity of Alice, and Kbs is the long-term symmetric key for Bob. Due to the lack
of timestamp validation stage in NSSK, the receiver Bob will accept the replayed
message from the adversary and confirm the replacement of the sharing session key
between the actual role of Alice and Bob [26].

Mathematics 2022, 10, 2903 8 of 20

We acknowledge that it is hard to resist the frequency-based attacks at the protocol
level. To deal with these attacks requires the help of physical level methods by isolating
the compromised ECU who broadcasts the flooding traffic in the CAN bus. Thus, the
focus of this paper is to prevent an adversary to permeate the in-vehicle network from
payload-based attacks and avoid the adversary getting the vulnerabilities at the protocol
level of automotive CAN.

3. Proposed Scheme

The reason that the original NSSK cannot resist the Denning–Sacco attack is mainly
due to a lack of time stamping. In addition, the receiver cannot recognize the identity of the
message sender, whether it is an honest party or a Denning–Sacco adversary. To overcome
these issues, we proposed the improved protocols: initial session key distribution protocol
(abbreviated as initial SKDP) and second session key distribution protocol (abbreviated as
second SKDP). The declarations we used in the protocols are shown in Table 2.

Table 2. Notations of some cryptography terms.

Notation Description

ECUi ith electronic control unit
IDECUi The identifier of ECUi, i = A, B, C, . . .
GECU Gateway ECU
Seed A seed value of the session
EK Encryption key of the session
AK Authentication key of the session
GK The root key for session key derivation

KA, i
Long-term key of ECUA; KA,1 is the encryption key and KA,2 is

authentication key
KDFx() Keyed one-way function used for key derivation

HK(.) Keyed-hash message authentication code (HMAC)
EK(.)/DK(.) Symmetric encryption/decryption function
{ .} sk Signature-generating function, where sk is the private key

3.1. Initial Session Key Distribution Protocol

When the ECUs within the communication domain initiate the session key distribution,
they elect an organizer ECU to send a session key update request to the gateway module
GECU. The ECUs may be clustered in a subnet (as shown in Figure 4a) or scattered in
different subnets (as shown in Figure 4b). The elected organizer ECUA plays the role of the
initiator of NSSK and initiates the key distribution with GECU and another ECU, i.e., ECUB.
The GECU plays the role of a trusted agent to generate the secret session key materials. We
call the first stage of key distribution the initial session key distribution protocol, which is
abbreviated as initial SKDP.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 21

We acknowledge that it is hard to resist the frequency-based attacks at the protocol

level. To deal with these attacks requires the help of physical level methods by isolating

the compromised ECU who broadcasts the flooding traffic in the CAN bus. Thus, the fo-

cus of this paper is to prevent an adversary to permeate the in-vehicle network from pay-

load-based attacks and avoid the adversary getting the vulnerabilities at the protocol level

of automotive CAN.

3. Proposed Scheme

The reason that the original NSSK cannot resist the Denning–Sacco attack is mainly due to a

lack of time stamping. In addition, the receiver cannot recognize the identity of the message sender,

whether it is an honest party or a Denning–Sacco adversary. To overcome these issues, we proposed

the improved protocols: initial session key distribution protocol (abbreviated as initial SKDP) and

second session key distribution protocol (abbreviated as second SKDP). The declarations we used

in the protocols are shown in Table 2.

Table 2. Notations of some cryptography terms.

Notation Description

𝐸𝐶𝑈𝑖 𝑖𝑡ℎ electronic control unit
𝐼𝐷ECUi The identifier of ECUi, i= A,B,C…

GECU Gateway ECU

𝑆𝑒𝑒𝑑 A seed value of the session

𝐸𝐾 Encryption key of the session

𝐴𝐾 Authentication key of the session

𝐺𝐾 The root key for session key derivation

𝐾𝐴,𝑖
Long-term key of ECUA; 𝐾𝐴,1 is the encryption key and 𝐾𝐴,2 is authentica-

tion key

𝐾𝐷𝐹𝑥() Keyed one-way function used for key derivation

𝐻𝐾(.) Keyed-hash message authentication code (HMAC)

𝐸𝐾(.)/𝐷𝐾(.) Symmetric encryption/decryption function

{.}𝑠𝑘 Signature-generating function, where sk is the private key

3.1. Initial Session Key Distribution Protocol

When the ECUs within the communication domain initiate the session key distribu-

tion, they elect an organizer ECU to send a session key update request to the gateway

module GECU. The ECUs may be clustered in a subnet (as shown in Figure 4a) or scat-

tered in different subnets (as shown in Figure 4b). The elected organizer 𝐸𝐶𝑈𝐴 plays the

role of the initiator of NSSK and initiates the key distribution with GECU and another

ECU, i.e., 𝐸𝐶𝑈𝐵. The GECU plays the role of a trusted agent to generate the secret session

key materials. We call the first stage of key distribution the initial session key distribution

protocol, which is abbreviated as initial SKDP.

(a) (b)

Figure 4. The initial SKDP in different scenarios: (a) one single subnet; (b) multiple subnets.

Mathematics 2022, 10, 2903 9 of 20

The initial SKDP is shown in Figure 5. The ECUA firstly generates a random number
RA and transmits the request containing the random number RA to GECU. Then, GECU
generates a secret seed and seals it into cipher-text tB by the long-term key KB,1. Following
this, GECU encrypts the message sequence RA||IDECUB||IDGECU||Seed||tB as y1 by
the long-term key KA,1. Thus, the tB and y1 are cipher-texts that contain the secret seed.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 21

Figure 4. The initial SKDP in different scenarios: (a) one single subnet; (b) multiple subnets.

The initial SKDP is shown in Figure 5. The 𝐸𝐶𝑈𝐴 firstly generates a random number

𝑅𝐴 and transmits the request containing the random number 𝑅𝐴 to GECU. Then, GECU

generates a secret seed and seals it into cipher-text 𝑡𝐵 by the long-term key 𝐾𝐵,1. Follow-

ing this, GECU encrypts the message sequence 𝑅𝐴||𝐼𝐷𝐸𝐶𝑈𝐵||𝐼𝐷𝐺𝐸𝐶𝑈||𝑆𝑒𝑒𝑑||𝑡𝐵 as 𝑦1 by

the long-term key 𝐾𝐴,1. Thus, the 𝑡𝐵 and 𝑦1 are cipher-texts that contain the secret seed.

When 𝐸𝐶𝑈𝐴 and 𝐸𝐶𝑈𝐵 receive the 𝒚𝟏 and 𝑡𝐵, respectively, and decrypt the secret

seed, they run a key derivation function KDF to generate session key pair 𝐸𝐾 and 𝐴𝐾.

Before each message transmission, the sender ECU calculates the MAC of the transmitted

message for ensuring its data integrity.

At the time that 𝐸𝐶𝑈𝐴 commits 𝑡𝐵 to 𝐸𝐶𝑈𝐵 , 𝐸𝐶𝑈𝐴 uses its private key to sign the

message H (𝑡𝐵||𝐼𝐷𝐸𝐶𝑈𝐴||T), in which T is the current timestamp. Then, 𝐸𝐶𝑈𝐴 sends 𝑡𝐵,

T, and signature Z to 𝐸𝐶𝑈𝐵, and 𝐸𝐶𝑈𝐵 checks the T and verifies the Z by the correspond-

ing public key from the 𝐸𝐶𝑈𝐴’s lightweight certificate 𝐶𝑒𝑟𝑡𝐸𝐶𝑈𝐴, which can only be sent

once only when it updates.

When 𝐸𝐶𝑈𝐵 receives 𝑡𝐵, it decrypts 𝑡𝐵 and derives the session key pair from the

secret seed. Then, ECUB generates a random number 𝑅𝐵 and the cipher-text 𝒚𝟐 by the

session key 𝐸𝐾 and calculates the 𝑀𝐴𝐶2 by the session key 𝐴𝐾. 𝐸𝐶𝑈𝐴 takes them as the

confirmation of the secret seed and the timestamp T.

Figure 5. Initial session key distribution protocol (initial SKDP).

3.2. Second Session Key Distribution Protocol

Figure 5. Initial session key distribution protocol (initial SKDP).

When ECUA and ECUB receive the y1 and tB, respectively, and decrypt the secret seed,
they run a key derivation function KDF to generate session key pair EK and AK. Before
each message transmission, the sender ECU calculates the MAC of the transmitted message
for ensuring its data integrity.

At the time that ECUA commits tB to ECUB, ECUA uses its private key to sign the
message H (tB||IDECUA||T), in which T is the current timestamp. Then, ECUA sends tB, T,
and signature Z to ECUB, and ECUB checks the T and verifies the Z by the corresponding
public key from the ECUA’s lightweight certificate CertECUA, which can only be sent once
only when it updates.

When ECUB receives tB, it decrypts tB and derives the session key pair from the secret
seed. Then, ECUB generates a random number RB and the cipher-text y2 by the session key
EK and calculates the MAC2 by the session key AK. ECUA takes them as the confirmation
of the secret seed and the timestamp T.

3.2. Second Session Key Distribution Protocol

While the ECUA finishes the session key distribution with ECUB, if there is more
than one rest ECU in the communication group, ECUA will enter the second stage of
key distribution and transfer the secret seed to the other ECUs such as the ECUC by the
assistance of GECU. The rest of the ECUs may sit in a subnet (as shown in Figure 6a) or be
scattered in different subnets (as shown in Figure 6b).

Mathematics 2022, 10, 2903 10 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 21

While the 𝐸𝐶𝑈𝐴 finishes the session key distribution with 𝐸𝐶𝑈𝐵, if there is more than

one rest ECU in the communication group, 𝐸𝐶𝑈𝐴 will enter the second stage of key dis-

tribution and transfer the secret seed to the other ECUs such as the 𝐸𝐶𝑈𝐶 by the assis-

tance of GECU. The rest of the ECUs may sit in a subnet (as shown in Figure 6a) or be

scattered in different subnets (as shown in Figure 6b).

The second session key distribution protocol, which is abbreviated as second SKDP

and is shown in Figure 7, is identical to the initial SKDP, except for only a small difference

at the beginning of the protocol. Because 𝐸𝐶𝑈𝐴 has learned the secret seed after running

the initial SKDP, it therefore sends the 𝑀𝐴𝐶0 to GECU as a confirmation for the secret

seed. While GECU receives the request and verifies the MAC, it agrees on the secret seed

and then encrypts it with the long-term keys 𝐾𝐴,1 and 𝐾𝐶,1, as what has been performed

in initial SKDP. The remaining steps of second SKDP are identical to those in initial SKDP

as well, only the recipient ECU changes to the 𝐸𝐶𝑈𝐶.

(a) (b)

Figure 6. The second SKDP in different scenarios: (a) one single subnet; (b) multiple subnets.

Figure 6. The second SKDP in different scenarios: (a) one single subnet; (b) multiple subnets.

The second session key distribution protocol, which is abbreviated as second SKDP
and is shown in Figure 7, is identical to the initial SKDP, except for only a small difference
at the beginning of the protocol. Because ECUA has learned the secret seed after running
the initial SKDP, it therefore sends the MAC0 to GECU as a confirmation for the secret seed.
While GECU receives the request and verifies the MAC, it agrees on the secret seed and
then encrypts it with the long-term keys KA,1 and KC,1, as what has been performed in
initial SKDP. The remaining steps of second SKDP are identical to those in initial SKDP as
well, only the recipient ECU changes to the ECUC.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 21

While the 𝐸𝐶𝑈𝐴 finishes the session key distribution with 𝐸𝐶𝑈𝐵, if there is more than

one rest ECU in the communication group, 𝐸𝐶𝑈𝐴 will enter the second stage of key dis-

tribution and transfer the secret seed to the other ECUs such as the 𝐸𝐶𝑈𝐶 by the assis-

tance of GECU. The rest of the ECUs may sit in a subnet (as shown in Figure 6a) or be

scattered in different subnets (as shown in Figure 6b).

The second session key distribution protocol, which is abbreviated as second SKDP

and is shown in Figure 7, is identical to the initial SKDP, except for only a small difference

at the beginning of the protocol. Because 𝐸𝐶𝑈𝐴 has learned the secret seed after running

the initial SKDP, it therefore sends the 𝑀𝐴𝐶0 to GECU as a confirmation for the secret

seed. While GECU receives the request and verifies the MAC, it agrees on the secret seed

and then encrypts it with the long-term keys 𝐾𝐴,1 and 𝐾𝐶,1, as what has been performed

in initial SKDP. The remaining steps of second SKDP are identical to those in initial SKDP

as well, only the recipient ECU changes to the 𝐸𝐶𝑈𝐶.

(a) (b)

Figure 6. The second SKDP in different scenarios: (a) one single subnet; (b) multiple subnets.

Figure 7. Second session key distribution protocol (second SKDP).

Mathematics 2022, 10, 2903 11 of 20

4. Security Analysis
4.1. Formal Security Analysis of the Proposed Protocol

In this subsection, we use the random oracle model to verify the semantic security
attributes of the new protocols and define a series of random oracle model queries, as
shown in Table 3.

Table 3. The random oracle model operation queries.

Query Operation Description

Hash (·)

A hash query initiated by an adversary for the correlate plain text M or
the ciphertext C. If the correlate record has been already stored in the
form of (M, f) or (C, g), the oracle will return the stored hash record f or
g; otherwise, it returns a new random number f’ or g’ to the adversary
and stores (M, f’) and (C, g’) in the oracle’s hash table [26].

Sig (·)

A signature query initiated by an adversary for the correlate plain text
M; the oracle uses the signature table S to store plain text M and
signature S pair in the form of (M, S). The working mechanism of
Sig (·) is similar to Hash (·).

Enc (·)

A ciphertext query initiated by an adversary for the correlate plain text
M; the oracle uses the ciphertext table E to store plain text M and cipher
text C pair in the form of (M, C). The working mechanism of Enc (·) is
similar to Hash (·).

Send (·) The query imitates the message sent by the adversary.

Execute (·) The query imitates passive attacks such as spoofing or replaying the
eavesdropped message.

RevealSessKey (·) The query imitates acquiring the session keys of the parties.

RevealSessState (·) The query imitates acquiring the secret internal variables of the parties.

Corrupt (·) The query imitates acquiring the long-term key of the parties.

Test (·)

The adversary initiates the query in the final game. The queried party
tosses a bit-value b of 0 or 1. If b = 1, it returns the real session key;
otherwise, it returns a random number. The query succeeds only if an
adversary can guess the b’s value correctly in every game [26].

We summarize some symbolic definitions and theorems about the description of
protocol semantic security as follows:

Definition 1 (Negligible function). A function µ(n) is negligible if there exists n0 ∈ Z+ for any
c> 0; it has |µ(n)| ≤ 1

nc for all n > n0 [26].

Definition 2 (Semantic security). An adversary A initiates the query Test(·) for a given protocol P,
only if the advantage of A is negligible or it satisfiesAdvSS

A (P, n) = Pr[A(P, n) = b]− 1
2 ≤ µ(n),

the protocol P is semantically secure [26].

Definition 3 (Difference lemma). M, N, and F are events defined in the same probability
distribution [26]. If M∧

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 21

Figure 7. Second session key distribution protocol (second SKDP).

4. Security Analysis
4.1. Formal Security Analysis of the Proposed Protocol

In this subsection, we use the random oracle model to verify the semantic security
attributes of the new protocols and define a series of random oracle model queries, as
shown in Table 3.

Table 3. The random oracle model operation queries.

Query Operation Description

𝐻𝑎𝑠ℎ (·)

A hash query initiated by an adversary for the correlate plain text M or the ciphertext C.
If the correlate record has been already stored in the form of (M, f) or (C, g), the oracle
will return the stored hash record f or g; otherwise, it returns a new random number f’
or g’ to the adversary and stores (M, f’) and (C, g’) in the oracle’s hash table [26]. 𝑆𝑖𝑔 (·)
A signature query initiated by an adversary for the correlate plain text M; the oracle
uses the signature table S to store plain text M and signature S pair in the form of (M, S).
The working mechanism of 𝑆𝑖𝑔 (·) is similar to 𝐻𝑎𝑠ℎ (·). 𝐸𝑛𝑐 (·)
A ciphertext query initiated by an adversary for the correlate plain text M; the oracle
uses the ciphertext table E to store plain text M and cipher text C pair in the form of (M,
C). The working mechanism of 𝐸𝑛𝑐 (·) is similar to 𝐻𝑎𝑠ℎ (·). 𝑆𝑒𝑛𝑑 (·) The query imitates the message sent by the adversary. 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (·) The query imitates passive attacks such as spoofing or replaying the eavesdropped mes-
sage. 𝑅𝑒𝑣𝑒𝑎𝑙𝑆𝑒𝑠𝑠𝐾𝑒𝑦 (·) The query imitates acquiring the session keys of the parties. 𝑅𝑒𝑣𝑒𝑎𝑙𝑆𝑒𝑠𝑠𝑆𝑡𝑎𝑡𝑒 (·) The query imitates acquiring the secret internal variables of the parties. 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 (·) The query imitates acquiring the long-term key of the parties.

𝑇𝑒𝑠𝑡 (·)

The adversary initiates the query in the final game. The queried party tosses a bit-value
b of 0 or 1. If b = 1, it returns the real session key; otherwise, it returns a random num-
ber. The query succeeds only if an adversary can guess the b’s value correctly in every
game [26].

We summarize some symbolic definitions and theorems about the description of pro-
tocol semantic security as follows:

Definition 1 (Negligible function). A function μ(n) is negligible if there exists 𝑛 ∈ 𝑍ା for
any c>0; it has |𝜇(𝑛)| ≤ ଵ for all 𝑛 > 𝑛 [26].

Definition 2 (Semantic security). An adversary A initiates the query 𝑇𝑒𝑠𝑡(·) for a given pro-
tocol P, only if the advantage of A is negligible or it satisfies 𝐴𝑑𝑣ௌௌ(𝑃, 𝑛) = 𝑃𝑟[𝐴(𝑃, 𝑛) = 𝑏] −ଵଶ ≤ 𝜇(𝑛), the protocol P is semantically secure [26].

Definition 3 (Difference lemma). M, N, and F are events defined in the same probability distri-
bution [26]. If M∧┐F ≡ N∧┐F, then 𝑃𝑟[M]-𝑃𝑟[N]≤ 𝑃𝑟[F].

Theorem 1. For the initial SKDP or second SKDP, we provide the assumptions as follows: The
advantage of guessing a long-term key is 𝐴𝑑𝑣ௌௌ, where l represents the MAC length, and m pre-
sents the signature size; the encryption function can ensure k bits security. Then, the adversary

can break the semantic security of the protocol with an advantage 𝐴𝑑𝑣ௌௌ ≤ ೌೞమଶ + 𝐴𝑑𝑣௦ +
ೞమଶ

+ ಶమଶೖ , where 𝑞௦ represents the number of queries to oracle’s hash table, and 𝑞௦ and 𝑞ா
represent the number of queries to signature and encryption function oracle, respectively.

F ≡ N∧

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 21

Figure 7. Second session key distribution protocol (second SKDP).

4. Security Analysis
4.1. Formal Security Analysis of the Proposed Protocol

In this subsection, we use the random oracle model to verify the semantic security
attributes of the new protocols and define a series of random oracle model queries, as
shown in Table 3.

Table 3. The random oracle model operation queries.

Query Operation Description

𝐻𝑎𝑠ℎ (·)

A hash query initiated by an adversary for the correlate plain text M or the ciphertext C.
If the correlate record has been already stored in the form of (M, f) or (C, g), the oracle
will return the stored hash record f or g; otherwise, it returns a new random number f’
or g’ to the adversary and stores (M, f’) and (C, g’) in the oracle’s hash table [26]. 𝑆𝑖𝑔 (·)
A signature query initiated by an adversary for the correlate plain text M; the oracle
uses the signature table S to store plain text M and signature S pair in the form of (M, S).
The working mechanism of 𝑆𝑖𝑔 (·) is similar to 𝐻𝑎𝑠ℎ (·). 𝐸𝑛𝑐 (·)
A ciphertext query initiated by an adversary for the correlate plain text M; the oracle
uses the ciphertext table E to store plain text M and cipher text C pair in the form of (M,
C). The working mechanism of 𝐸𝑛𝑐 (·) is similar to 𝐻𝑎𝑠ℎ (·). 𝑆𝑒𝑛𝑑 (·) The query imitates the message sent by the adversary. 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (·) The query imitates passive attacks such as spoofing or replaying the eavesdropped mes-
sage. 𝑅𝑒𝑣𝑒𝑎𝑙𝑆𝑒𝑠𝑠𝐾𝑒𝑦 (·) The query imitates acquiring the session keys of the parties. 𝑅𝑒𝑣𝑒𝑎𝑙𝑆𝑒𝑠𝑠𝑆𝑡𝑎𝑡𝑒 (·) The query imitates acquiring the secret internal variables of the parties. 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 (·) The query imitates acquiring the long-term key of the parties.

𝑇𝑒𝑠𝑡 (·)

The adversary initiates the query in the final game. The queried party tosses a bit-value
b of 0 or 1. If b = 1, it returns the real session key; otherwise, it returns a random num-
ber. The query succeeds only if an adversary can guess the b’s value correctly in every
game [26].

We summarize some symbolic definitions and theorems about the description of pro-
tocol semantic security as follows:

Definition 1 (Negligible function). A function μ(n) is negligible if there exists 𝑛 ∈ 𝑍ା for
any c>0; it has |𝜇(𝑛)| ≤ ଵ for all 𝑛 > 𝑛 [26].

Definition 2 (Semantic security). An adversary A initiates the query 𝑇𝑒𝑠𝑡(·) for a given pro-
tocol P, only if the advantage of A is negligible or it satisfies 𝐴𝑑𝑣ௌௌ(𝑃, 𝑛) = 𝑃𝑟[𝐴(𝑃, 𝑛) = 𝑏] −ଵଶ ≤ 𝜇(𝑛), the protocol P is semantically secure [26].

Definition 3 (Difference lemma). M, N, and F are events defined in the same probability distri-
bution [26]. If M∧┐F ≡ N∧┐F, then 𝑃𝑟[M]-𝑃𝑟[N]≤ 𝑃𝑟[F].

Theorem 1. For the initial SKDP or second SKDP, we provide the assumptions as follows: The
advantage of guessing a long-term key is 𝐴𝑑𝑣ௌௌ, where l represents the MAC length, and m pre-
sents the signature size; the encryption function can ensure k bits security. Then, the adversary

can break the semantic security of the protocol with an advantage 𝐴𝑑𝑣ௌௌ ≤ ೌೞమଶ + 𝐴𝑑𝑣௦ +
ೞమଶ

+ ಶమଶೖ , where 𝑞௦ represents the number of queries to oracle’s hash table, and 𝑞௦ and 𝑞ா
represent the number of queries to signature and encryption function oracle, respectively.

F, then Pr[M]− Pr[N] ≤ Pr[F].

Theorem 1. For the initial SKDP or second SKDP, we provide the assumptions as follows: The
advantage of guessing a long-term key is AdvSS

P , where l represents the MAC length, and m presents
the signature size; the encryption function can ensure k bits security. Then, the adversary can break

the semantic security of the protocol with an advantage AdvSS
P ≤

q2
hash
2l + Advsk +

q2
sig

2m + q2
Enc
2k , where

qhash represents the number of queries to oracle’s hash table, and qsig and qEnc represent the number
of queries to signature and encryption function oracle, respectively.

Mathematics 2022, 10, 2903 12 of 20

To prove the theorem of the adversary’s advantage to corrupt the initial SKDP and
second SKDP, we define five games, namely, G0, G1, G2, G3, and G4, where Si represents
the event when adversary A wins the game Gi, i = 0, 1, 2, 3, 4.

Game G0. This game describes a real attack on the semantic security of initial SKDP
(abbreviated as P). The adversary first activates protocol by Send (P, ”start”) and then uses
Execute (P) to eavesdrop on the protocol message. The adversary initiates a series of queries,
namely, RevealSessKey (P), RevealSessState (P), and Corrupt (P), to fabricate the identity
and takes a probabilistic polynomial-time to initiate the queries Execute (P) and Hash (P).
Finally, the adversary initiates the Test (P) query. The adversary wins the game only if it
can correctly guess the bit b. According to Definition 2, the adversary wins the game with
an advantage AdvSS

P , as shown in Equation (1):

AdvSS
P = |Pr(S0)−

1
2
| (1)

Game G1. There is a collision with MACs in this game, which may happen in steps 4,
14, and 18 of initial SKDP, as shown in Table 2. If a MAC collision occurs, the adversary can
falsify the secret seed and deceive ECUs to accept the fake secret seed. According to the

birthday paradox, the advantage of a MAC collision happening is q2
hash
2l , and the difference

in the advantage of this game and game G0 is represented in Equation (2):

|Pr(S1)− Pr(S0)| ≤
q2

hash
2l (2)

Game G2. This game is relevant to the known key secrecy of the protocol. The
adversary initiates RevealSessKey (P) for attaining the expired session keys [26]. Despite
possessing the expired session keys, the adversary must acquire the secret seed to compute
the current session key. The advantage of the adversary attaining seed is represented as
Advsk, which denotes the probability of replacing the seed with a random number. Thus,
the advantage difference is represented in Equation (3):

|Pr(S2)− Pr(S1)| ≤ Advsk (3)

Game G3. The game is identical to the previous game G2 except that there is a collision
with the signature Z in this game, which may happen in step 7 of initial SKDP, as shown in
Table 2. If a signature collision occurs, the adversary can forge a valid signature Z′ that is
generated in step 8 of initial SKDP shown in Table 2 and cheat the other ECUs to accept

what they have received. The advantage of a signature collision happening is
q2

Sig

2k . Thus,
the advantage difference is represented in Equation (4):

|Pr(S3)− Pr(S2)| ≤
q2

sig

2l (4)

Game G4. This game is identical to the previous game G3 except that the adversary
queries the encryption table E to find the collision of tB and y1 in step 4 of initial SKDP
shown in Table 2. If the adversary finds a collision, it can inject a forged secret seed and

send it to the other ECUs. The advantage of a cipher-text collision happening is q2
Enc
2k . Thus,

the advantage difference is represented in Equation (5):

|Pr(S4)− Pr(S3)| ≤
q2

Enc
2k (5)

On the basis of the above proofs, the advantage AdvSS
P is calculated according to the

triangle inequality as in Equation (6):

Mathematics 2022, 10, 2903 13 of 20

AdvSS
P = |Pr(S4)− Pr(S0)| = |Pr(S4)− Pr(S3) + Pr(S3)− Pr(S2) + Pr(S2)− Pr(S1)+

Pr(S1)− Pr(S0)|≤ |Pr(S4)− Pr(S3)|+ |Pr(S3)− Pr(S2)|+ |Pr(S2)− Pr(S1)|+|Pr(S1)−

Pr(S0)| ≤
q2

hash
2l + Advsk +

q2
sig

2l +
q2

Enc
2k

(6)

The result of Equation (6) concludes the semantics security theorem. It means that if
the secret seed is not compromised, the initial SKDP and second SKDP are semantically
secure. During the cryptographic games executed on the random oracle model, the active
adversary launches the impersonation attack and the replay attack by employing the Execute
(P) queries and tries to launch the key stealing attack by employing the RevealSessKey (P)
and RevealSessState (P) queries. Due to the provable security of the proposed protocol, the
secrecy of the session key is secure on the robustness of the protocol and the secrecy of
the secret seed. We have proven that our protocol is safe in Section 5 so that the adversary
cannot guess the secret seed by employing the Corrupt (P) queries without the knowledge
of the secret seed. Then, the semantic security of the proposed protocol is proven in that the
proposed protocol is secure to resist the impersonation; replay; Denning–Sacco attack; and
the MITM attack, which is a combination of the replay attack and impersonation attack.

4.2. Informal Security Analysis of the Proposed Protocol

With the proof of proposed protocols on provable security, we discuss the capability
of protocols for resisting some common session key stealing attacks by taking an informal
security analysis of proposed protocols. There are some merits of our proposed protocols
that are listed as follows.

(1). Session key freshness: The initial SKDP and second SKDP guarantee the session
key freshness by a random generated Seed and generate session key pair (EK, AK) by using
the key derivation function KDF.

(2). Resistance to replay attack: For the initial SKDP and second SKDP, any replay
attack is invalid. For the proof of initial SKDP, when an adversary impersonates ECUA to
replay cipher-text tB, signature Z, and timestamp T in a stored message to ECUB, ECUB
will examine the timestamp T and whether it is expired at first; if the examination fails, then
the replayed data will be discarded. For the data transmission and reception, the receiver
uses a long-term key shared with the GECU to authenticate MACs as soon as the data are
received. If the MAC authentication fails, then the receiver will discard the received data.
The proof of second SKDP is identical to initial SKDP, and therefore the protocols can resist
replay attacks.

(3). Resistance to impersonation and Denning–Sacco attack: For the initial SKDP
and second SKDP, the probability of an adversary succeeding to guess the session key by
launching the impersonation attack is negligible. According to the proof we have analyzed
above, the adversary can win this game only by gaining the leaked long-term keys of ECUA
and ECUB; otherwise, they cannot solve the encrypted seed value and derive the session
keys. In addition, the initial SKDP adversary has to provide a valid signature to ECUB
for authenticating the identity. It means that the adversary requires the knowledge of the
signing private key to fake the signature. The difficulty of cracking the signing private
key is equivalent to the difficulty to solve a discrete logarithmic problem, which might fail
with an overwhelming probability in probabilistic polynomial time. Thus, the proposed
protocols can resist the Denning–Sacco attack by rejecting the invalid replayed message.

(4). Resistance to MITM attack: The initial SKDP and second SKDP can resist MITM
attacks. The adversary may utilize the past session’s eavesdropped messages or newly
forged messages to launch an MITM attack. This is a combination of a replay attack and a
masquerade attack. According to the results discussed above in (2) and (3), our proposed
protocols can resist MITM attacks as well.

Mathematics 2022, 10, 2903 14 of 20

5. Security Verification

For the proposed scheme security and robustness verification, we used the well-known
simulation tool AVISPA to prove the validation results of the proposed schemes. We verified
our proposed schemes on the backends of AVISPA such as OFMC and CLAtSe. The role
establishment and validation results are shown in the following figures.

5.1. The Role of HLPSL Codes

In this subsection, we explain the role of the ECUA, GECU, and ECUB in our proposed
scheme. The ECUA requests the key distribution process with the GECU and exchanges
the session key materials with the ECUB. The brief HLPSL code for the ECUA role is shown
in Figure 8.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 21

We verified our proposed schemes on the backends of AVISPA such as OFMC and

CLAtSe. The role establishment and validation results are shown in the following figures.

5.1. The Role of HLPSL Codes

In this subsection, we explain the role of the ECUA, GECU, and ECUB in our pro-

posed scheme. The ECUA requests the key distribution process with the GECU and ex-

changes the session key materials with the ECUB. The brief HLPSL code for the ECUA

role is shown in Figure 8.

Figure 8. The ECUA role HLPSL code.

Then, we present the role of the GECU in our proposed scheme. The GECU receives

the key distribution request from the ECUA and responds to the messages with an en-

crypted secret seed for session key derivation and a sealed credential encrypted by a dis-

tinct long-term key with the ECUB. The HLPSL code for the GECU role is shown in Figure

9.

Figure 9. The GECU role HLPSL code.

Figure 8. The ECUA role HLPSL code.

Then, we present the role of the GECU in our proposed scheme. The GECU receives the
key distribution request from the ECUA and responds to the messages with an encrypted
secret seed for session key derivation and a sealed credential encrypted by a distinct
long-term key with the ECUB. The HLPSL code for the GECU role is shown in Figure 9.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 21

We verified our proposed schemes on the backends of AVISPA such as OFMC and

CLAtSe. The role establishment and validation results are shown in the following figures.

5.1. The Role of HLPSL Codes

In this subsection, we explain the role of the ECUA, GECU, and ECUB in our pro-

posed scheme. The ECUA requests the key distribution process with the GECU and ex-

changes the session key materials with the ECUB. The brief HLPSL code for the ECUA

role is shown in Figure 8.

Figure 8. The ECUA role HLPSL code.

Then, we present the role of the GECU in our proposed scheme. The GECU receives

the key distribution request from the ECUA and responds to the messages with an en-

crypted secret seed for session key derivation and a sealed credential encrypted by a dis-

tinct long-term key with the ECUB. The HLPSL code for the GECU role is shown in Figure

9.

Figure 9. The GECU role HLPSL code. Figure 9. The GECU role HLPSL code.

Mathematics 2022, 10, 2903 15 of 20

Finally, we explain the role of the ECUB in our proposed scheme. The ECUB receives
the sealed credential containing the secret seed with the valid signature and timestamp
generated by the ECUA. It verifies whether the MACs, signature, and timestamp are valid
or not for the session key confirmation. The brief HLPSL code for the ECUB role is shown
in Figure 10.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 21

Finally, we explain the role of the ECUB in our proposed scheme. The ECUB receives

the sealed credential containing the secret seed with the valid signature and timestamp

generated by the ECUA. It verifies whether the MACs, signature, and timestamp are valid

or not for the session key confirmation. The brief HLPSL code for the ECUB role is shown

in Figure 10.

Figure 10. The ECUB role HLPSL code.

5.2. The Environment and Verification Goals

The HLPSL code for proposed scheme verification and environment definition is

shown in Figure 11. The goals defined for secret seed kab’s secrecy and authentication on

the random numbers generated by the ECUA and ECUB are listed. In addition, the in-

truder knowledge and session compositions are also defined in the role environment. If

these specified goals are fulfilled, then the proposed scheme’s security can be proven.

Figure 11. The environment of HLPSL code.

5.3. Simulation Result in AVISPA

We present the simulation results according to the HLPSL code. We applied HLPSL

code to the following two protocols: OFMC and ATSE.

Figure 10. The ECUB role HLPSL code.

5.2. The Environment and Verification Goals

The HLPSL code for proposed scheme verification and environment definition is
shown in Figure 11. The goals defined for secret seed kab’s secrecy and authentication
on the random numbers generated by the ECUA and ECUB are listed. In addition, the
intruder knowledge and session compositions are also defined in the role environment. If
these specified goals are fulfilled, then the proposed scheme’s security can be proven.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 21

Finally, we explain the role of the ECUB in our proposed scheme. The ECUB receives

the sealed credential containing the secret seed with the valid signature and timestamp

generated by the ECUA. It verifies whether the MACs, signature, and timestamp are valid

or not for the session key confirmation. The brief HLPSL code for the ECUB role is shown

in Figure 10.

Figure 10. The ECUB role HLPSL code.

5.2. The Environment and Verification Goals

The HLPSL code for proposed scheme verification and environment definition is

shown in Figure 11. The goals defined for secret seed kab’s secrecy and authentication on

the random numbers generated by the ECUA and ECUB are listed. In addition, the in-

truder knowledge and session compositions are also defined in the role environment. If

these specified goals are fulfilled, then the proposed scheme’s security can be proven.

Figure 11. The environment of HLPSL code.

5.3. Simulation Result in AVISPA

We present the simulation results according to the HLPSL code. We applied HLPSL

code to the following two protocols: OFMC and ATSE.

Figure 11. The environment of HLPSL code.

5.3. Simulation Result in AVISPA

We present the simulation results according to the HLPSL code. We applied HLPSL
code to the following two protocols: OFMC and ATSE.

Mathematics 2022, 10, 2903 16 of 20

(1) ATSE protocol result: The simulation results of our proposed scheme based on the
ATSE protocol are shown in Figure 12a, showing that our scheme is safe as it prevents
the key sharing process from all kinds of common stealing session key and payload-
based attacks.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 21

(1) ATSE protocol result: The simulation results of our proposed scheme based on

the ATSE protocol are shown in Figure 12a, showing that our scheme is safe as it prevents

the key sharing process from all kinds of common stealing session key and payload-based

attacks.

(a) (b)

Figure 12. Results of the proposed scheme: (a) on the basis of the ATSE protocol; (b) on the basis of

the OFMC protocol.

(2) OFMC protocol result: The simulation results of our proposed scheme on the basis

of the OFMC protocol are shown in Figure 12b, which shows the safety of our proposed

scheme and it is efficiency in resisting all kinds of the common stealing session key and

payload-based attacks.

5.4. Simulation Result in Tamarin Prover

In this section, we use Tamarin Prover to verify the semantic secure attributes of our

proposed protocol. We have described the tamarin-prover in our previous work [26]. In

order to prove the semantic security of our proposed scheme, we need to verify the lem-

mas for security properties of initial SKDP as Executability, SessionKey_secrecy, Injec-

tiveagreement_ECUA, and ECUA_KKS, which are listed in Table 4.

Table 4. The initial SKDP’s lemmas in Tamarin Prover.

The Lemmas of Initial SKDP

lemma Executability:

exists-trace “ Ex ECUA ECUB RB EK AK #i #j #k. Commit_strongB(Ri)@#i & Commit_strongA

(Ri)@#j & #j<#i & Running_strongA(Ri) @#j & Running_strongB(Ri)@#k & #k<#j & not(Ex #r1. Re-

veal(ECUA)@#r1) & not(Ex #r2. Reveal(ECUB)@#r2) “

lemma SessionKey_secrecy:

“not(Ex ECUA ECUB EK AK #i. Secret(ECUA,ECUB,EK,AK)@#i & (Ex#r. K(<EK,AK>)#j)& not(Ex

#j. Reveal(ECUA) @ #j & not(Ex #j. Reveal(ECUB) @ #j)”

lemma Injectiveagreement_ECUA:

“ (All Ri #i. Commit_strongA(Ri)@ #i ==> (Ex #j. Running_strongA(Ri) @ #j & #j < #i) & (not (Ex #j

. Commit_strongA(Ri) @ #j & not (#i = #j))))”

lemma ECUA_KKS:

all-traces “ All ECUA EK AK #i #m #n. Secret(ECUA,EK,AK) @ i & Honest(ECUA)@ m &Sesre-

veal(ECUA) @ n & #i<#n ==> not(Ex EK AK #r.K(<EK,AK>)@r)”

Figure 12. Results of the proposed scheme: (a) on the basis of the ATSE protocol; (b) on the basis of
the OFMC protocol.

(2) OFMC protocol result: The simulation results of our proposed scheme on the basis of
the OFMC protocol are shown in Figure 12b, which shows the safety of our proposed
scheme and it is efficiency in resisting all kinds of the common stealing session key
and payload-based attacks.

5.4. Simulation Result in Tamarin Prover

In this section, we use Tamarin Prover to verify the semantic secure attributes of our
proposed protocol. We have described the tamarin-prover in our previous work [26]. In
order to prove the semantic security of our proposed scheme, we need to verify the lemmas
for security properties of initial SKDP as Executability, SessionKey_secrecy, Injectiveagree-
ment_ECUA, and ECUA_KKS, which are listed in Table 4.

Table 4. The initial SKDP’s lemmas in Tamarin Prover.

The Lemmas of Initial SKDP

lemma Executability:
exists-trace “Ex ECUA ECUB RB EK AK #i #j #k. Commit_strongB(Ri)@#i & Commit_strongA
(Ri)@#j & #j<#i & Running_strongA(Ri) @#j & Running_strongB(Ri)@#k & #k<#j & not(Ex #r1.
Reveal(ECUA)@#r1) & not(Ex #r2. Reveal(ECUB)@#r2)”

lemma SessionKey_secrecy:
“not(Ex ECUA ECUB EK AK #i. Secret(ECUA,ECUB,EK,AK)@#i & (Ex#r. K(<EK,AK>)#j)& not(Ex
#j. Reveal(ECUA) @ #j & not(Ex #j. Reveal(ECUB) @ #j)”

lemma Injectiveagreement_ECUA:
“(All Ri #i. Commit_strongA(Ri)@ #i ==> (Ex #j. Running_strongA(Ri) @ #j & #j < #i) & (not (Ex #j.
Commit_strongA(Ri) @ #j & not (#i = #j))))”

lemma ECUA_KKS:
all-traces “All ECUA EK AK #i #m #n. Secret(ECUA,EK,AK) @ i & Honest(ECUA)@ m
&Sesreveal(ECUA) @ n & #i<#n ==> not(Ex EK AK #r.K(<EK,AK>)@r)”

Mathematics 2022, 10, 2903 17 of 20

The SessionKey_secrecy denotes that the session key pair <EK, AK> is secret if it is
generated by honest parties that are not revealed to the adversary; then, the lemma ensures
the session key secrecy. The Injectiveagreement_ECUA denotes the verification of the injective
agreement property of the protocol. The lemma describes that for any committed action
of ECUA at the time i, it must have a prior receiver awaiting for the committed variable.
The lemma states that for a committed variable Ri at the time i, there exists a running Ri
at j [26], where j is earlier than i, and j is not identical to i at any time. The ECUA_KKS
lemma denotes that the revealed session keys EK and AK of the honest ECUA are secret
if the adversary does not know about them. In addition, the adversary cannot infer them
by utilizing the knowledge of the past session keys, which are irrelevant with EK and AK.
Thus, the lemma is relevant to the known key secrecy of the initial SKDP.

We verified the same security lemmas of the second SKDP as initial SKDP; the dif-
ferences between the two protocols were very small, so we omitted the derivation of the
second SKDP. We list four lemmas about the semantic security issues that we are con-
cerned about. The executable lemma verifies the executability of the protocol. The injective
agreement lemma confirms the two parties exchanging their messages sequentially within
an injective mapping. The session key secrecy lemma ensures that the knowledge of the
session key or other secrets is not compromised by adversaries. The known key secrecy
lemma ensures that the adversary cannot derive the current session key by using past
session keys.

Table 5 shows the verification results generated by the Tamarin Prover for the proposed
protocols. It can be seen that all the protocols passed the semantic security verification, and
thus the proposed key distribution protocol fit the security goals for resisting the common
session key stealing attacks.

Table 5. Verified lemma for the initial SKDP and second SKDP.

Executable Injective
Agreement

Session Key
Secrecy

Known Key
Secrecy

Initial SKDP Yes Yes Yes Yes
Second SKDP Yes Yes Yes Yes

6. Performance

As described in this section, we conducted simulation experiments with embedded de-
vices to evaluate the performance of the protocol suite. We used the LANCHXL-TMS57004
evaluation kit to simulate ECUA and ECUB by programming the CAN bus application
based on the FreeRTOS system. At the same time, we used Raspberry Pi 4B with MCP2515
to simulate the gateway device and used python-can to develop a test application for es-
tablishing a key distribution protocol between the ECUA and ECUB. The key distribution
protocol used the ISO-TP protocol to realize the data communication between the ECUs
and the gateway. Then, we used the CAN analyzer to capture and analyze the data frames
sent on the bus to evaluate the time overhead in the execution of the protocol suite.

We used the 500 kbps CAN bus speed to perform multiple rounds of performance
testing and obtained the results shown in Figure 13. We used AES as the encryption
algorithm and SHA1 as the HMAC algorithm by default for the proposed initial SKDP and
second SKDP. For the data signature and verification part, the ECDSA and the ED25519 [27]
were used for comparison. In addition, we measured the computation time of calculating
HMAC in SHA-256, encrypting and decrypting messages in AES-128 or RSA-2048, and
signing and verifying with ECDSA-256 on the test suite. Moreover, we compared the actual
computation complexity and the number of storage message bits of our proposed protocol
with the other key updating protocols. We used the following notations shown in Table 6 to
present the approximate computation time of the basic cryptographic primitive operations
in the protocols. The comparison results are shown in Table 7.

Mathematics 2022, 10, 2903 18 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 21

ms with 158 data frames, respectively. Our proposed protocol suite initial SKDP with

ED25519 sent 114 data frames, and second SKDP with ED25519 sent 112 data frames (ini-

tial SKDP with ECDSA sent 128 frames, second SKDP with ECDSA sent 126 frames). Thus,

adopting the lightweight ED25519 as the signature verification algorithm in our proposed

protocols more accurately fit the real-time constraints of the in-vehicle CAN network.

Figure 13. Comparison of the protocol executed time and total frames with the other protocols.

7. Conclusions

In this work, by considering the common payload-based attacks in actual in-vehicle

network scenarios, we proposed a provable secure key distribution protocol based on

NSSK for the in-vehicle network to prevent these malicious impacts. First, we applied the

mechanisms of message authentication and digital signature to fix the defect of the origi-

nal NSSK’s session key distribution process in resisting the known Denning–Sacco attack.

Next, we present a formal security analysis of the new protocol in a random oracle model.

The proof shows the new protocol is provably secure and can resist the attacks, namely,

replay, impersonation, and MITM. Then, we verified the security attributes of the proto-

col’s semantics by using the AVISPA and Tamarin Prover, with the results ensuring that

the protocol met the security requirements for sharing keys, such as session key secrecy,

injective agreement, and known key secrecy. Finally, we provided a comparison of our

protocol with other key distribution protocols in CAN bus communication to evaluate the

performance of the proposed protocol in actual scenarios. Compared with the other

schemes of adopting the group-key-based approach, our scheme is more secure and fea-

sible in its application in the session key distribution for different independent domains

of an in-vehicle network.

In future works, we will take the security issue of the long-term shared keys into

account and design the lightweight key exchange protocol suite for the in-vehicle CAN

network to enhance the resistance against the compromise of long-term shared keys.

Author Contributions: Methodology, L.Y.; software, Z.W.; validation, L.Y., J.X., and C.W.; formal

analysis, C.W.; writing—original draft preparation, L.Y.; writing—review and editing, L.Y.; super-

vision, J.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China

under grants 61872069,62072090 and 62173101, and in part by the Fundamental Research Funds for

the Central Universities under grant N2017012 and N2217009.

Institutional Review Board Statement: Not applicable.

Figure 13. Comparison of the protocol executed time and total frames with the other protocols.

Table 6. The notations of the cryptographic primitive operation computation time.

Notation Description Computation Time (ms)

TH The time to perform an HMAC or hash operation in SHA-256 1.21

TE/D The time for symmetric encryption or decryption operation in AES-256 0.35

TS The time to sign the message in ECDSA-256 64

TCv /TSv The time of verifying a certificate/signature in ECDSA-256 96

TEp The time for asymmetric encryption operation in RSA 230

TDp The time for asymmetric decryption operation in RSA 184

TCp The time to perform the cyclic group multiplication 265

Table 7. Comparison of computation complexity and storage bits with other protocols.

WCED [1] VCP [9] Initial SKDP Yu et al. [23] Arora et al. [25]

EDEV TS+TCv +TSv TS+TCv +TSv +TH 6TH+6TE/D+TS+TCv +TSv 4TEp +4TDp +3TE/D 8TE/D+2TCp

GECU TS+TCv +TSv +TE/D TS+TCv +TSv +TE/D 2TH+2TE/D 3TEp +3TDp 6TE/D

Computation
complexity 2TS+2TCv +2TSv +TE/D ≈ 512 ms 2TS+2TCv +2TSv +TE/D + TH ≈ 513 ms 8TH+8TE/D+TS+TCv +TSv ≈ 266 ms 7TEp +7TDp +3TE/D ≈ 2896 ms 14TE/D+2TCp ≈ 515 ms

WCED [1] NSKUP [9] Second SKDP Yu et al. [23] Arora et al. [25]

EDEV - TSv +TS 7TH+6TE/D+TS+TCv +TSv - -

GECU - TS+TSv 3TH+2TE/D - -

Computation
complexity - 2TS+2TSv≈320 ms 10TH+8TE/D+TS+TCv +TSv ≈ 269 ms - -

Total computation
complexity 2× (2TS +2TCv +2TSv +TE/D) ≈ 1024 ms 4TS+2TCv +4TSv +TE/D + TH ≈ 833 ms 18TH+14TE/D+2TS+2TCv +2TSv

≈ 535 ms 14TEp +14TDp +6TE/D ≈ 5792 ms 28TE/D+4TCp ≈ 1030 ms

Number of storage
message bits 3578 3164 1890 8976 2528

The results showed that the average execution time of the initial SKDP and second
SKDP execution by the ED25519 signature algorithm were about 121 milliseconds and
117 milliseconds, respectively, while the average execution times of the protocol obtained
by applying the ECDSA algorithm were about 414 milliseconds and 413 milliseconds,
respectively. Therefore, we recommend using the ED25519 algorithm as the lightweight
signature and verification algorithm for the proposed key distribution protocol.

At the same time, we compared the proposed key distribution protocol suite with the
other protocols under the same experimental environment. The protocol execution time of

Mathematics 2022, 10, 2903 19 of 20

Yu et al. [22] was about 3457 milliseconds, and a total of 561 data frames were sent on the
CAN bus. Arora and colleagues’ [23] protocol execution time was 797 ms with 183 data
frames sent on the bus. WCED’s [1] execution time was 735 ms with 224 data frames sent,
while VCP’s [9] and NSKUP’s execution times were 751 ms with 237 data frames and
479 ms with 158 data frames, respectively. Our proposed protocol suite initial SKDP with
ED25519 sent 114 data frames, and second SKDP with ED25519 sent 112 data frames (initial
SKDP with ECDSA sent 128 frames, second SKDP with ECDSA sent 126 frames). Thus,
adopting the lightweight ED25519 as the signature verification algorithm in our proposed
protocols more accurately fit the real-time constraints of the in-vehicle CAN network.

7. Conclusions

In this work, by considering the common payload-based attacks in actual in-vehicle
network scenarios, we proposed a provable secure key distribution protocol based on
NSSK for the in-vehicle network to prevent these malicious impacts. First, we applied
the mechanisms of message authentication and digital signature to fix the defect of the
original NSSK’s session key distribution process in resisting the known Denning–Sacco
attack. Next, we present a formal security analysis of the new protocol in a random oracle
model. The proof shows the new protocol is provably secure and can resist the attacks,
namely, replay, impersonation, and MITM. Then, we verified the security attributes of the
protocol’s semantics by using the AVISPA and Tamarin Prover, with the results ensuring
that the protocol met the security requirements for sharing keys, such as session key secrecy,
injective agreement, and known key secrecy. Finally, we provided a comparison of our
protocol with other key distribution protocols in CAN bus communication to evaluate
the performance of the proposed protocol in actual scenarios. Compared with the other
schemes of adopting the group-key-based approach, our scheme is more secure and feasible
in its application in the session key distribution for different independent domains of an
in-vehicle network.

In future works, we will take the security issue of the long-term shared keys into
account and design the lightweight key exchange protocol suite for the in-vehicle CAN
network to enhance the resistance against the compromise of long-term shared keys.

Author Contributions: Methodology, L.Y.; software, Z.W.; validation, L.Y., J.X. and C.W.; formal anal-
ysis, C.W.; writing—original draft preparation, L.Y.; writing—review and editing, L.Y.; supervision,
J.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under grants 61872069, 62072090 and 62173101, and in part by the Fundamental Research Funds for
the Central Universities under grant N2017012 and N2217009.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Woo, S.; Jo, H.J.; Kim, I.S.; Lee, D.H. A practical security architecture for in-vehicle CAN-FD. IEEE Trans. Intell. Transp. Syst. 2016,

17, 2248–2261. [CrossRef]
2. Wang, Q.; Sawhney, S. VeCure: A practical security framework to protect the CAN bus of vehicles. In Proceedings of the 2014

International Conference on the Internet of Things (IoT), Cambridge, MA, USA, 6–8 October 2014; pp. 13–18.
3. Nürnberger, S.; Rossow, C. vatiCAN–vetted, authenticated CAN bus. In Proceedings of the International Conference on

Cryptographic Hardware and Embedded Systems, Santa Barbara, CA, USA, 17–19 August 2016; pp. 106–124.
4. Radu, A.I.; Garcia, F.D. LeiA: A lightweight authentication protocol for CAN. In Proceedings of the European Symposium on

Research in Computer Security, Heraklion, Greece, 28–30 September 2016; pp. 283–300.
5. Kang, K.D.; Baek, Y.; Lee, S.; Son, S.H. An Attack-Resilient Source Authentication Protocol in Controller Area Network. In

Proceedings of the 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Beijing,
China, 18–19 May 2017; pp. 109–118.

http://doi.org/10.1109/TITS.2016.2519464

Mathematics 2022, 10, 2903 20 of 20

6. Bella, G.; Biondi, P.; Costantino, G.; Matteucci, I. TOUCAN: A protocol to secure controller area network. In Proceedings of the
ACM Workshop on Automotive Cybersecurity, Richardson, TX, USA, 27 March 2019; pp. 3–8.

7. Mun, H.; Han, K.; Lee, D.H. Ensuring safety and security in CAN-based automotive embedded systems: A combination of design
optimization and secure communication. IEEE Trans. Veh. Technol. 2020, 69, 7078–7091. [CrossRef]

8. Youn, T.-Y.; Lee, Y.; Woo, S. Practical Sender Authentication Scheme for In-Vehicle CAN with Efficient Key Management. IEEE
Access 2020, 8, 86836–86849. [CrossRef]

9. Palaniswamy, B.; Camtepe, S.; Foo, E.; Pieprzyk, J. An efficient authentication scheme for intra-vehicular controller area network.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 3107–3122. [CrossRef]

10. Schmandt, J.; Sherman, A.T.; Banerjee, N. Mini-MAC: Raising the bar for vehicular security with a lightweight message
authentication protocol. Veh. Commun. 2017, 9, 188–196. [CrossRef]

11. Groza, B.; Murvay, S. Efficient protocols for secure broadcast in controller area networks. IEEE Trans. Ind. Inform. 2013, 9,
2034–2042. [CrossRef]

12. Kurachi, R.; Matsubara, Y.; Takada, H.; Adachi, N.; Miyashita, Y.; Horihata, S. CaCAN-centralized authentication system in
CAN(controller area network). In Proceedings of the 14th International Conference on Embedded Security in Cars (ESCAR 2014),
Hamburg, Germany, 19 November 2014; pp. 1–9.

13. Wang, E.; Xu, W.; Sastry, S.; Liu, S.; Zeng, K. Hardware module-based message authentication in intra-vehicle networks. In
Proceedings of the 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), Pittsburgh, PA, USA,
18–20 April 2017; pp. 207–216.

14. Jo, H.J.; Kim, J.H.; Choi, H.-Y.; Choi, W.; Lee, D.H.; Lee, I. Mauth-can: Masquerade-attack-proof authentication for in-vehicle
networks. IEEE Trans. Veh. Technol. 2020, 69, 2204–2218. [CrossRef]

15. Wu, Z.; Zhao, J.; Zhu, Y.; Lu, K.; Shi, F. Research on in-vehicle key management system under upcoming vehicle network
architecture. Electronics 2019, 8, 1026. [CrossRef]

16. Püllen, D.; Anagnostopoulos, N.A.; Arul, T.; Katzenbeisser, S. Using implicit certification to efficiently establish authenticated
group keys for in-vehicle networks. In Proceedings of the 2019 IEEE Vehicular Networking Conference (VNC), Los Angeles, CA,
USA, 4–6 December 2019; pp. 1–8.

17. Pan, Q.; Tan, J. A dynamic key generation scheme based on CAN bus. In Proceedings of the 2019 10th International Conference
on Information Technology in Medicine and Education (ITME), Qingdao, China, 23–25 August 2019; pp. 564–569.

18. Jain, S.; Guajardo, J. Physical layer group key agreement for automotive controller area networks. In Proceedings of the
International Conference on Cryptographic Hardware and Embedded Systems, Santa Barbara, CA, USA, 17–19 August 2016;
pp. 85–105.

19. King, Z. Investigating and securing communications in the Controller Area Network (CAN). In Proceedings of the 2017
International Conference on Computing, Networking and Communications (ICNC), Silicon Valley, CA, USA, 26–29 January 2017;
pp. 814–818.

20. Fassak, S.; Idrissi, Y.E.H.E.; Zahid, N.; Jedra, M. A secure protocol for session keys establishment between ECUs in the CAN bus.
In Proceedings of the International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, Morocco,
1–4 November 2017; pp. 37–42.

21. Needham, R.M.; Schroeder, M.D. Using encryption for authentication in large networks of computers. Commun. ACM 1978, 21,
993–999. [CrossRef]

22. Jin-Gang, Y.; Zhi-Gang, Z. An improved NSSK authentication protocol and its formal analysis. In Proceedings of the 2017 10th
International Conference on Intelligent Computation Technology and Automation (ICICTA), Changsha, China, 9–10 October 2017;
pp. 132–136.

23. Arora, S.; Hussain, M. Secure session key sharing using symmetric key cryptography. In Proceedings of the 2018 Inter-
national Conference on Advances in Computing, Communications and Informatics (ICACCI), South Campus, Bangalore,
19–22 September 2018; pp. 850–855.

24. Checkoway, S.; Mccoy, D.; Anderson, D.; Kantor, B.; Kohno, T. Comprehensive Experimental Analyses of Automotive Attack Sur-
faces. In Proceedings of the 20th USENIX Security Symposium (USENIX Security 11), San Francisco, CA, USA, 8–12 August 2011;
pp. 447–462.

25. Miller, C.; Valasek, C. A Survey of Remote Automotive Attack Surfaces; Black Hat: Isanti, MN, USA, 2014; p. 94.
26. Long, Y.; Xu, J.; Wang, C.; Wang, Z. An Improved Needham-Schroeder Session Key Distribution Protocol for In-Vehicle CAN

Network. In Proceedings of the International Conference on Security and Privacy in New Computing Environments, Xi’an,
China, 27–28 November 2022; pp. 35–52.

27. Bernstein, D.J.; Duif, N.; Lange, T.; Schwabe, P.; Yang, B.Y. High-speed high-security signatures. J. Cryptogr. Eng. 2012, 2, 77–89.
[CrossRef]

http://doi.org/10.1109/TVT.2020.2989808
http://doi.org/10.1109/ACCESS.2020.2992112
http://doi.org/10.1109/TIFS.2020.2983285
http://doi.org/10.1016/j.vehcom.2017.07.002
http://doi.org/10.1109/TII.2013.2239301
http://doi.org/10.1109/TVT.2019.2961765
http://doi.org/10.3390/electronics8091026
http://doi.org/10.1145/359657.359659
http://doi.org/10.1007/s13389-012-0027-1

	Introduction
	Related Works
	Our Goal and Contribution

	Preliminaries
	System Architecture
	Session Key Sharing Approaches
	Attack Surfaces of Automotive CAN
	Adversary and Attack Types

	Proposed Scheme
	Initial Session Key Distribution Protocol
	Second Session Key Distribution Protocol

	Security Analysis
	Formal Security Analysis of the Proposed Protocol
	Informal Security Analysis of the Proposed Protocol

	Security Verification
	The Role of HLPSL Codes
	The Environment and Verification Goals
	Simulation Result in AVISPA
	Simulation Result in Tamarin Prover

	Performance
	Conclusions
	References

