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Abstract: Artificial intelligence has been utilized extensively in the healthcare sector for the last few
decades to simplify medical procedures, such as diagnosis, prognosis, drug discovery, and many
more. With the spread of the COVID-19 pandemic, more methods for detecting and treating COVID-
19 infections have been developed. Several projects involving considerable artificial intelligence
use have been researched and put into practice. Crowdsensing is an example of an application in
which artificial intelligence is employed to detect the presence of a virus in an individual based on
their physiological parameters. A solution is proposed to detect the potential COVID-19 carrier in
crowded premises of a closed campus area, for example, hospitals, corridors, company premises, and
so on. Sensor-based wearable devices are utilized to obtain measurements of various physiological
indicators (or parameters) of an individual. A machine-learning-based model is proposed for COVID-
19 prediction with these parameters as input. The wearable device dataset was used to train four
different machine learning algorithms. The support vector machine, which performed the best,
received an F1-score of 96.64% and an accuracy score of 96.57%. Moreover, the wearable device is
used to retrieve the coordinates of a potential COVID-19 carrier, and the YOLOv5 object detection
method is used to do real-time visual tracking on a closed-circuit television video feed.

Keywords: machine learning; crowdsensing; object detection; support vector machine; time-series
data; wearable device; YOLOv5

MSC: 68T01

1. Introduction

Since the beginning of 2020, the newly found coronavirus disease (COVID-19) has
turned the world upside down and has been declared a global pandemic. It has caused
countless deaths and even impacted the economy of many countries. According to the
World Health Organization’s (WHO) data, there have been 34,765,976 confirmed cases of
COVID-19, with 478,759 deaths as of 31 December 2021 [1] in the country. The clinical
studies carried out for COVID-19 testing have revealed that most hospitalized patients have
pneumonia-like symptoms and problems breathing [2]. COVID-19 is a highly contagious
virus that spreads through tiny droplets in the air when an affected person sneezes or
speaks directly without wearing a mask [3]. The WHO claimed that people in the early
stages of the sickness are likely to develop symptoms two days after becoming infected
by the virus [4]. Therefore, a person could be a COVID-19 carrier even when they are
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not experiencing any relevant symptoms (i.e., they could be asymptomatic). Therefore,
detecting the novel coronavirus and self-isolating oneself is vital to avoid its transmission.
In addition to COVID-19, another mutant was highlighted by WHO, dubbed the delta
variant, which was observed to be more hazardous than COVID-19 and produced the
second wave, resulting in many deaths internationally [5]. The WHO has designated this
variant as a variant of concern (VOC). Recently, another strain named omicron has been
found, which is claimed to be transmitted more swiftly than the novel coronavirus [6].
Testing is still underway to evaluate its severity and whether or not the vaccine offered to
people will function against the new version [7].

Due to the outbreak, people are advised to avoid crowded places; however, there are
specific places where people gather for several reasons, such as for religious purposes,
celebrations, and so on. Therefore, detecting the potential COVID-19 carriers and protecting
others from getting infected is essential. For this purpose, this paper proposes a crowdsens-
ing framework to detect potentially positive COVID-19 carriers using wearable devices and
the you only look once (YOLOv5) model for closed-circuit television (CCTV)-camera-based
real-time object tracking. Crowdsensing is a technique of sharing data collected by sensor
devices and predicting a pattern of information. This raises the question of this technology’s
potential in alerting people to this pandemic and preventing future COVID-19 outbreaks.
The healthcare industry has been developing new tools to detect the coronavirus during
this global pandemic. The use of artificial intelligence (AI) in this business is essential, and
numerous ground-breaking technologies have been developed in this field [8]. AI could
help analyze the degree of viral infection and even find clusters and ’hot spots,’ according
to a review study by R. Vaishya et al., which will aid in contact tracing and monitoring
infected people [9].

1.1. Related Works

This subsection discusses the various research works presented to date and their con-
tribution to the detection and early diagnosis of the COVID-19 virus. In 2021, Nguyen et al.
proposed a face mask prototype with wearable and disposable biosensors that can detect
the presence of COVID-19 in the wearer’s body in 90 min [10]. The wearable biosensors
in this diagnostic mask are made from freeze-dried, cell-free (FDCF) genetic circuits. For
privacy reasons, the findings are shown on the inside of the mask.

Moreover, A. Syrowatka et al. conducted a study review of the available literature on
the use of AI to make informed decisions for pandemic preparedness and response [11].
They have identified six key use cases where machine learning (ML) was leveraged for the
same, including “real-time monitoring of adherence to public health recommendations”.
A scoping review on applications of AI, telehealth, and several digital health solutions
to optimize the healthcare industry amidst the pandemic was presented by [12]. It sug-
gests a need for better evaluation of applications for population surveillance and points
of entry. Another study [13] utilized Biovitals Sentinel, which processed clinical data fed
from wearable biosensors for indications of early clinical progression in quarantined indi-
viduals with COVID-19 exposure. They proposed a protocol for a randomized controlled
trial, and it had a primary result of measuring the time taken for diagnosis of the virus.
C. Jin et al. [14] proposed a deep learning (DL)-based system to achieve rapid COVID-19
detection and performed a statistical analysis on computed tomography (CT) images of
COVID-19 patients based on the AI system. On applying deep convolutional neural net-
works (DCNN), an AUC score of 97.81% was achieved on the test data and approximately
93% on other databases used for validation. In addition to this, the guided gradient-
weighted class activation mapping (Guided Grad-CAM) method was used to capture
attention regions for the diagnosis. Another study [15] discussed a framework review to
categorize integrative research works on applications of AI and ML methodology on three
scales: molecular, clinical, and societal. It articulated the impacts of various AI-based solu-
tions proposed and the need to employ the principles of AI in practice with better solutions.

Mohammad-H. et al. published a survey paper that included AI applications in the
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fight against COVID-19 [16]. It provided in-depth information on clinical applications,
X-ray image processing, and other topics, such as treatment, diagnosis, patient monitoring,
and many others, employing machine learning algorithms [16]. Using CT scan image
processing, W. Zhang et al. suggested a novel dynamic fusion-based federated learning
approach for COVID-19 positive case detection [17]. Their evaluation showed that their
framework was practicable and provided superior model performance and communication
efficiency than the default setting of federated learning [17].

Furthermore, Imran et al. created an app called ’AI4covid-19,’ which records the
sound of three 3 s coughs and sends it to a cloud-based AI model, which delivers the results
of COVID-19 detection in a matter of minutes [18]. The paper was proposed before the
vaccine was invented. However, it was not proven to be an ideal solution because the
model was trained and tested on a small dataset, and it has been stated that the data quality
might have been compromised. Hirten et al. suggested another approach in which severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is diagnosed and COVID-19 is
forecasted using heart rate variability (HRV) reports collected from wearable devices with
sensors, such as smartwatches [19]. It was not demonstrated to be a realistic solution
because the data they utilized for testing was quite limited, which contradicts the ability
of precise infection prediction via HRV metrics. In other cases, mobile crowdsensing was
used to create smart quarantine tactics to prevent the virus [20] from spreading further.
The study also describes an application that self-diagnoses the COVID-19 infection and
sends out warning notifications to everyone in the area of the potentially infected person if
the result is positive. The current project aims to develop a method for crowdsensing and
accurately predicting when a person will exhibit COVID-19 symptoms. Table 1 shows the
comparison of the existing state-of-the-art work and our proposed work by considering
parameters, such as objective, performance measures and research gaps.

1.2. Contributions

The main contributions of this paper are as follows:

• We present a framework for crowdsensing in the context of COVID-19 carrier detection.
In this context, we use wearable device sensor data, such as live GPS coordinates and
temporary vital signs, to detect covid carriers.

• We employ a machine learning approach to train the sensor-based dataset for COVID-
19 prediction. For the same purpose, various algorithms are trained and assessed on a
test dataset. The support vector machine (SVM) model is shown to perform the best
after extensive examination utilizing the evaluation measures.

• We deploy a YOLOv5 algorithm over a CCTV video stream for real-time monitoring
of positive COVID-19 carriers for speedy reinforcement.

1.3. Organization

The organization of the paper is as follows. Section 2 discusses the system model and
the formulation of the problem being discussed. Section 3 describes the proposed solution
for the problem statement. Section 4 presents the obtained results for the trained model,
and Section 5 concludes the paper and provides insights for future works.
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Table 1. A relative comparison of various state-of-the-art approaches for the detection and early diagnosis of the COVID-19 virus.

Author Year Objective Performance Measures Research Gaps

A. Syrowatka et al.
[11] 2021

A study review of available literature on the use of
AI is conducted to make informed decisions with
regard to pandemic preparedness and response.

Six key use cases where ML was leveraged for
public health and clinical practices were identified

In response to pandemics, notably COVID-19,
significant ML-based solutions have been proposed,
although few have been refined for practical clinical
or public health use early in the pandemic.

D. V. Gunasekeran
et al. [12] 2021

Offered a systemic review of digital health
applications for population-level public health
responses during the first six months of
the pandemic.

Applications of AI = 44.9%; big data
analytics = 36.0%

Further need for better evaluation on applications
for population surveillance and points of entry is
discussed for better public health responses.

Nguyen et al. [10] 2021
Proposed a face mask prototype with wearable and
disposable biosensors that can detect the presence
of COVID-19 in the wearer’s body in 90 min

Under realistic simulation conditions, the
face-mask sensor was able to detect a contrived
SARS-CoV-2 viral RNA (vRNA) fragment after a
breath sample collection period of 30 min, with a
calculated accumulation of 106–107 vRNA copies
on the sample pad.

The electrochemical sensors deployed in the
wearable form only detected chemicals and not the
sensitive nucleic acid.

W. Zhang et al. [17] 2021

Proposed a novel dynamic fusion-based federated
learning approach for COVID-19 positive case
detection using computed tomography (CT) scan
image processing

Provided superior model performance and
communication efficiency compared to the default
setting of federated learning

Out of 18 groups, there are 4 groups in which the
system achieves lower accuracy than the default
setting (lower by 1.711%, 0.57%, 0.57%, and 1.141%,
respectively).

Hirten et al. [19] 2021
COVID-19 and its related symptoms is predicted
using HRV reports collected from wearable devices
with sensors, such as smartwatches

HRV metric: the mean amplitude of the circadian
pattern of the standard deviation of the interbeat
interval of normal sinus beats (SDNN) differed
between subjects with and without COVID-19
(p = 0.006)

The data utilized for testing was quite limited,
which contradicts the ability of precise infection
prediction via HRV metrics; sleeping patterns of the
participants were not considered

C. K. Wong et al. [13] 2020

Identified physiology changes and detected other
clinical data using wearable biosensors via Biovitals
Sentinel in order to indicate early clinical
progression in quarantined subjects with
COVID-19 exposure.

The primary outcome of the trial is to obtain the
time taken for diagnosis of COVID-19.

The clinical trial performed is exploratory in nature,
and the employment of ML techniques with
wearable technologies has yet to be incorporated in
the study.
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Table 1. Cont.

Author Year Objective Performance Measures Research Gaps

Imran et al. [18] 2020

The ’AI4covid-19’ app records the sound of three 3
s coughs and detects COVID-19 in a few minutes.
Implemented a risk-averse architecture for the
AI engine.

Accuracy = 95.60%; F1-Score = 95.61% The model was trained and tested on very little
data; need for large-scale trial-based validation

C. Jin et al. [14] 2020

Proposed DL-based system for rapid COVID-19
detection and conducted a statistical analysis of
chest CTs of COVID-19 based on the AI system;
employed deep CNN model on a large dataset with
slice-level training and tested on datasets of
different regions

AUC score = 97.81% on test cohort; 92.99% on
CC-CCII database; 93.25% on MosMedData
database

Data does not include subtypes of pnuemonias or
other lung diseases, which can improve diagnosis
capability, and guided grad-CAM only captured
attention region instead of lesion segmentation.

M. Luengo-Oroz
et al. [15] 2020

A framework is proposed to categorize
multidisciplinary research on the application of ML
and AI methods on three scales: molecular, clinical,
and societal (epidemiology and infodemics).

Various research works on remote monitoring
systems and development of solutions on AI
applications have been discussed

The impacts of various applications of AI are only
measured and not yet applied to provide
meaningful solutions.

Proposed 2022

Proposed a framework for crowdsensing in the
domain of COVID-19 carrier detection using
wearable sensors and employed an ML approach to
train the sensor-based dataset for COVID-19
prediction. YOLOv5 algorithm is integrated with
the input video stream to localize and track
potential carriers.

SVM model performed the best, with
F1-score = 96.64% and accuracy score of 96.57% -
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2. System Model and Problem Formulation

The proposed technique for crowdsensing to detect possible COVID-19 carriers in a
specific area is discussed in this section. This part also includes a detailed mathematical
explanation of the problem to be solved. Various assumptions about the context for which
the system is suggested are also explored in greater depth.

2.1. System Model

Figure 1 demonstrates the system model for crowdsensing to detect a probable COVID-
19 carrier. It is believed that the setup where the system is planned to be deployed is a
closed building or in an environment with well-defined boundaries, such as a company
campus, hospital rooms, corridors, and so on, and not in open spaces such as public parks,
playgrounds, and so on. It is also expected that all the institutional premises contain
functional wearable devices with temperature, pulse rate, and SpO2 sensor. It is also
expected that all wearable devices are global positioning system (GPS)-enabled, connected
to the cloud, and constantly broadcast the sensor and position data to the main server.
As demonstrated in Figure 1, each wearable device transmits sensor data to the cloud. A
CCTV camera, which is statically positioned inside the campus area, delivers the video
stream to the cloud. The acquired data in the cloud is fed to the AI interface. Sensor data
is made available to the trained ML model, which predicts whether that particular user
is a potential COVID-19 carrier or not. The nearest CCTV to each potentially positive
carrier is discovered, and the object-detection and localization algorithm is applied to the
incoming video stream. Potentially positive people can be then advised and medically
tested for COVID-19. Moreover, real-time tracking facilitates quicker detection and location
of such carriers.

Figure 1. System model for detecting and localizing potential COVID-19 carrier in crowd using the
sensor data transmitted by the wearable device.

2.2. Problem Formulation

The exponential spike in the COVID-19 epidemic raises the requirement for efficient
and effective crowd management as the virus spreads through the medium of human
contact. In confined private locations, such as a firm campus area where people work
and move about, it is of the greatest necessity to detect potential COVID-19 carriers to
safeguard the safety of people and that of the potential carriers as well. Faster detection,
localization, and reporting of the COVID-19 carriers help limit and prevent the hazards
of COVID-19 spread in the campus area. Hence, a wearable-device-based technique is
proposed to enable crowdsensing for rapid COVID-19 detection and tracking, which relies
on machine learning algorithms applying sensor data from wearable devices to predict
COVID-19. The next section provides a thorough description of the proposed framework
for the provided problem statement.
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3. The Proposed Framework

Figure 2 demonstrates the proposed framework to achieve the job of real-time COVID-
19 carrier prediction using the wearable sensor data combined with real-time tracking of
the potentially positive carrier. For better understandability, the Figure 2 is labeled with
numbers (1, 2, 3, and 4) to show the sequential flow of the proposed framework. First,
the ML algorithm (i.e., SVM) is used to classify the disease by generating a probability
value. Further, the object detection technique is employed to locate the potential carrier
in the video stream. Then, the proposed architecture is divided into four unique layers:
(i) environment layer, (ii) cloud layer, (iii) AI layer, and (iv) analytics layer. Each layer is
elaborated as follows.
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Figure 2. Proposed crowdsensing framework for real-time COVID-19 detection and tracking using
wearable devices.

3.1. Environment Layer

The environment layer is the high-level layer where actual actors reside and move
around in their surroundings. This layer consists of statically installed CCTV cameras
that constantly capture and transmit a video feed to the cloud layer. Based on the system
model’s assumptions, all the individuals present in the environment possess wearable
devices and are connected to the cloud environment. Real-time sensor data combined with
position coordinates are transferred to the cloud in real time. To explain it mathematically,
let us consider a system with a set W with a n number of wearable devices connected to
the cloud. Each wearable device has a unique id Di (where iε[1, n] ), which consists of m
sensors SDi = {s1, s2, .., sm} (where m = 4).

W = {D1, D2, ..., Di, ..., Dn}, ∀1 ≤ i ≤ n (1)

SDi = {s1, s2, s3, s4}, ∀1 ≤ i ≤ n (2)

Here, SDi , s1 = O2 (SPO2 sensor), s2 = T (temperature sensor), s3 = PR (pulse sensor),
and s4 = Px,y (GPS sensor). Assume an environment with total cameras c, where each
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camera ci is placed at the static location with coordinates Pcx,cy and transmits a video stream.
Hence, depending on the total cameras, V = {v1, v2, ..vj, ..., vc} is a set of video streams
that is transmitted to the cloud. Each vj = ( f , h, b, δ), where f = total frames, h = height,
b = width, and δ = channels.

C = {c1, c2..., cj, ..., cc}, ∀1 ≤ j ≤ c (3)

V = {v1, v2, ..vj, ..., vc}, ∀1 ≤ j ≤ c (4)

3.2. Cloud Layer

The cloud layer receives heterogeneous data consisting of sensor data S transmitted
by the wearable device and video stream data V transmitted by the CCTV cameras. The
data is separately stored and made available to the layer (i.e., the AI interface used) for
further prediction and detection.

3.3. AI Layer

The real-time data received at the cloud layer is fed to the AI layer as an input. The
segregated input video stream and sensor data are then handed to their respective models
for prediction/detection purposes. Sensor data from wearable devices are sent to the
trained ML model for COVID-19 prediction. A few algorithms are used for training, out
of which the SVM is found to be the best performing model. It has a greater accuracy
and lowers the false negative rate, due to which it is considered for prediction in the
final pipeline. The other algorithms for experimentation include decision tree, logistic
regression, and Bernoulli naive Bayes. These models, along with SVM, are the standard
classification algorithms in the ML domain; hence, the need to experiment with them is
evident. As the data is not complex in terms of its dimensionality, we stick to only machine
learning algorithms and do not apply neural network algorithms to the data. Moreover,
deep learning models are generally larger in size and have high inference time. The dataset
used in the paper is also not significant. Using deep learning models for them would yield
overfitting, which would also affect the model performance. Consider an SVM model ηsvm,
for which

f (SDi ) = wTSDi + b (5)

where f (SDi ) is the linear classifier function, and w and b are the unknowns and can be
determined by training the dataset. The training involves minimizing the loss function J.

min J(w) =
1
2
||w||2 (6)

s.t. yi f (SDi ) ≥ 1, i ε [1, n]

where yi is the target column for the ith training example. The kernel trick K(SDi , SDk ) can
be applied to map the input vector to higher-dimensional non-linear mappings.

K(SDi , SDk ) = e−γ||SDi
−SDk

||2 (7)

The minimization expression with kernel trick can be rewritten as

min Loss =
1
2

n

∑
i=1

n

∑
k=1

yiykK(SDi , SDk ) (8)

With this, a trained SVM model ηsvm can be used for predictions [21–23] as shown in
Algorithm 1. For each wearable device Wi with unique id Di, sensor data SDi is passed to
trained SVM model ηsvm to obtain prediction probability q.

q = ηsvm(SDi ) (9)
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Algorithm 1 AI layer algorithmic flow for carrier detection.
Input: SensorData S, VideoStream V
Output: BoundingBox B

S← fetchData()
if S.isClean() then

ηsvm ← SVC()
q← ηsvm.predict(S)
th← 0.5
if q > th then

B(cid ,vid)
Did

← φyolo(vid)
else

print(“Potential carrier not detected”)
end if

else
print(“Data needs further cleaning”)

end if

If q > th, where th = 0.5 represents the threshold value, it implies that the model
predicts the input to be potentially COVID-19 positive. This threshold value is decided
based on an ROC curve by plotting the true positive rate (TPR) vs the false positive rate
(FPR) value and finding the optimal point with the optimal threshold value. It is important
to note here that this threshold value depends on the distribution of the dataset used for
training. This distribution may change with the increase in the number of data instances.
Change in statistical semantics in data is called data drift and can occur over a long period
of time. To tackle this, the model has to be retrained regularly, and therefore new threshold
values have to be decided as well to ensure efficient model performance. The YOLOv5
person detection algorithm can be applied to the video stream. The video stream vj for
camera cj can be passed to YOLOv5 model function φyolo for object detection, which returns

rectangular bounding box B
(cj ,vj)

Di
with vertices (X1, Y1) and (X2, Y2), through which the

potential carrier can be identified and tracked through video footage. The YOLOv5 pipeline
that is applied on input steam vj contains a trained neural network N. This neural network
is trained to output the prediction vector given by P.

Pk = N(vk
j ) =

[
qc, bx1, by1, bx2, by2

]
(10)

where qc is the probability of classification. The probability of the face being detected in the
input image can be analyzed using bx1, by1, bx2, and by2, which represent the coordinates of
bounding boxes. Moreover, the k represents a single frame from the video stream (i.e., vk

j ).
As a result, the bounding boxes are obtained around the detected face in the input stream.
However, the problem persists if multiple bounding boxes for a single face id are obtained.
This problem is countered in YOLO by applying non-max suppression [24]. The objective
of non-max suppression can be understood as below.

Pk
max = max(Pk), Pk

t ∈ Pk (11)

max IoU(Pk
max, Pk

t ), Pk
max ∈ Pk (12)

IoU(r1, r2) =
r1∩ r2
r1∪ r2

(13)

where t refers to a single prediction vector obtained from Pk as output from the YOLO
algorithm; r1 and r2 are regions that are functions of bounding box coordinates (bx, by); and
Pk

max refers to a prediction vector with a maximum probability value. The final bounding
boxes obtained describe the identified and localized faces of the potential carriers in the
video input stream.
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3.4. Analytics Layer

The analytics layer gets activated by the AI layer depending on whether or not any
potentially positive carrier is detected. If detected, GPS sensor data S4

Di
= Px,y for wearable

device Wi is transmitted to the cloud. Furthermore, the nearest CCTV camera cj gets
activated for live tracking such that

min distance(Pcx,cy, Px,y) (14)

The above expression returns the real-time coordinates of the nearest CCTV camera to
a certain wearable device. The video stream gets recorded on the CCTV camera on which
the YOLOv5 algorithm is executed. Therefore, it can be considered that all the layers are
synchronized and operate seamlessly with each other.

4. Results and Discussion

In this section, the results of ML models implemented to predict the potential of a
person being COVID-19 positive based on multiple parameters recorded by the wearable
device are presented, along with an analysis of the models implemented. Furthermore, the
details of the dataset used for training are also discussed.

4.1. Dataset Description

According to the proposed solution, it can be predicted whether or not a person is
potentially COVID-19 positive by getting the data from the wearable device worn by the
person. For the training of the model for COVID-19 prediction, we have used a COVID-19
dataset containing the instantaneous readings of a person [25]. The data comprises vital
values such as oxygen level, pulse rate, and temperature with a label indicating if a person
with a given id is potentially positive or negative [25]. This dataset comprises the records
of 7392 distinct individuals, with 3719 labeled positive and 3673 labeled negative. The
attributes of the dataset are explained in Table 2.

Table 2. Features of the dataset.

Column Description

ID Unique identifier for identifying a person

Oxygen Oximeter values measuring the oxygen level at the moment in SpO2

PulseRate Pulse rate reading measured in beats per minute (BPM) at the moment

Temperature Body temperature recorded at the moment in Fahrenheit (F)

Result Result describing whether person has tested positive or negative

4.2. Model Training

This section describes the training configuration of all four algorithms experimented
with in the paper. The four ML algorithms trained on the dataset are logistic regression,
SVM, decision trees, and Bernoulli naive Bayes. The dataset used contained 3719 positively
labeled and 3673 negatively labeled classes. Hence, the dataset can be considered balanced,
with a total of 7392 entries. The train-to-test split ratio is taken as 4:1, which is 80% in the
training set and 20% in the testing set. External and trusted Python libraries, including
SciKit-Learn, are used for the training on the dataset. The hyperparameter settings of the
algorithms are as follows. These hyperparameters are the default hyperparameters of the
algorithm.

• Logistic regression: penalty = L2, solver = LBFGS
• SVM: Kernel = rbf, polynomial degree = 3
• Decision tree: criterion = gini, minimum sample split = 2
• Bernouli naive Bayes: alpha = 1
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4.3. Evaluation Metric

Once the training of models is concluded, it is necessary to evaluate their prediction
performance by their scores and accuracy, depending on several performance metrics.
These metrics are used to determine the model performance on the test data. We provide a
classification report that displays the F1-score, receiver operating characteristic—area under
the curve (ROC-AUC) values, precision, and recall. These measurements are obtained
from the confusion matrix, which compares the actual and anticipated classes. A detailed
description of the metrics and their findings is provided as follows.

1. Confusion Matrix: A confusion matrix is a tabular representation summarizing the per-
formance of a classification algorithm [26]. It is an N × N matrix, where N represents
the number of classes to be predicted, showing the actual and predicted classes.

2. Precision: Precision is defined as the number of TP (true positives) over total true
values predicted [26].

3. Recall: This is defined as the ratio of the number of TP and total potential true
values [26].

4. F1-Score: This is defined as the harmonic mean of precision and recall values in a
classification problem [26]. It gives the combined information of precision and recall,
which helps in comparing two different models with distinct precision and recall
values.

5. False Negative Rate (FNR): This is defined as the ratio of the number of FN (false
negatives) and the sum of FN and TP. The proportion specifies the number of patients
predicted to be negative that are actually positive. For the purpose discussed in the
paper, a lower false-negative rate is better suited for the application.

Four different ML algorithms were trained for the classification task to detect potential
COVID-19 carriers based on the sensor data. As the target classes are not overlapping, SVM
surpassed the other models by giving considerably better training and testing results.

As explained above, the F1 score is a major key evaluation metric as it provides the
combined precision and recall outcomes. In many circumstances, it becomes challenging to
find an acceptable model to train the dataset purely based on precision, as there is always
a chance that the model might overfit the data. Hence, the precision and recall values
interpretation is made in the form of F1-scores. Figure 3 displays a quantitative comparison
of F1-scores of the proposed models. It can be observed that SVM provides the best F1-score
compared to the other ML algorithms.

LR BNB SVM DT
Prediction Models

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Figure 3. F1-scores of the proposed ML algorithms for the potential COVID-19 carrier detection.
LR refers to linear regression, BNB refers to Bernoulli naive Bayes, SVM refers to support vector
machines, and DT refers to decision trees.
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As stated previously, a false negative rate (FNR) is considered a significant indicator
for the system as it corroborates the validity of the suggested system. Figure 4 displays the
quantitative comparison of the FNRs of the offered models. It is recognized that the lower
the FNR, the better the proposed model. In Figure 4, SVM has the lowest false-negative rate
and corresponds with the best F1-score as compared to other models. This is an important
observation as it demonstrates that the probability of a patient being positive but recorded
as negative is smaller, and this will subsequently avoid the transmission of the virus.

LR BNB SVM DT
Prediction Models
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Figure 4. False negative rates (FNR) of the proposed ML algorithms for the potential COVID-19
carrier detection.

4.4. ROC-AUC Curve

The ROC curve displays a classifier’s performance for different possible probability
thresholds. This curve is plotted for the true positive rate (TPR) vs false positive rate (FPR).
The area under the ROC curve is measured and calculated as an AUC score, which is an
essential judging parameter in model selection. A higher AUC denotes that the model
better predicts the target classes. In Figure 5, it can be seen that SVM has the highest AUC
value, which implies that it is the best performing model compared to the others in terms of
incorrectly detecting potential COVID-19 carriers. The decision trees and linear regression
models have also performed well, and they differ from the SVM by a tiny margin.

SVMs are trained by solving a constrained quadratic optimization problem, which im-
plies that there exists a unique optimal solution for each choice of the SVM parameters [27].
In the past, SVM has been successfully used in medical diagnosis, and it is therefore
considered an ideal solution to our problem statement.

In Figure 6, the heatmap reveals that there are much fewer incorrect values, and thus
the FNR is smaller. As the values of false positives and false negatives are lower, it boosts
precision and recall values. This leads to effective crowd screening and quick detection
of probable COVID-19 carriers. Table 3 presents the classification report of SVM on the
dataset describing the evaluation metrics for the class labels 0 (negative) and 1 (positive).
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Figure 5. ROC-AUC curve for the proposed algorithms. SVM has the highest AUC value, whereas
decision trees and linear regression have equal AUC values.
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Figure 6. Confusion matrix for SVM.

Table 3. Classification report of SVM on the test dataset.

Precision Recall F1-Score Support

0 (Negative) 0.96 0.97 0.97 1081

1 (Positive) 0.97 0.96 0.97 1137
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YOLOv5 is the latest and most cutting-edge version of the YOLO real-time object
detection technology. It recognizes objects by dividing input images into the SXS grid
system. In Figure 7, the inference time relation is illustrated for the various samples on
which the YOLOv5 algorithm was implemented. Further, the Inference time defines the
amount of time taken to apply the trained neural network model to the test data. It is vital
to apprehend the time taken as in the graph given; it can be shown that a higher amount
of time is taken by the model to detect a face in a series of frames with a single face or no
face in comparison to the samples with numerous faces. The reason behind this is that
the system recognizes multiple faces in a single forward propagation/pass and does not
require much time to screen the complete frame for predicting them. On the other hand, the
samples not containing faces take more inference time as the algorithm repeatedly checks
for faces to predict and draw bounding boxes.
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nc

e 
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)

Single Face
No Face
Multiple Faces

Figure 7. Inference time relation with samples on which YOLOv5 algorithm has been implemented.

Furthermore, to see and comprehend the link between multiple aspects in a huge
dataset, a correlation matrix is produced where the values of coefficients span from −1
to 1. It is typically utilized in feature selection when multi-dimensional data is included
in the dataset. Figure 8 presents the correlation matrix, which illustrates the correlation
coefficients of the three attributes of the dataset. By monitoring the values of coefficients
between the characteristics (i.e., less than 0.2, which is almost tending to zero), it can
be determined that the features are independent of each other. Therefore, there is no
connection between these properties, which is advantageous for the prediction.

Table 4 provides the mean inference time in seconds for 10-fold cross-validation on
the test dataset for the different ML classifiers. It can be observed that the highest score is
for the SVM model (i.e., 0.152), which is a good indication of its performance on the data
compared to the other models, whose values almost tend to be 0.
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Figure 8. Correlation matrix for the parameters of the dataset.

Table 4. Mean inference time for 10 fold cross-validation on the test dataset.

Linear
Regression

Bernoulli
Naive Bayes

Support Vector
Machine

Decision
Tree

Sample 1 0.002 0.001 0.155 0.001
Sample 2 0.0009 0.001 0.149 0.001
Sample 3 0.002 0.001 0.151 0.002
Sample 4 0.0009 0.001 0.151 0.001
Sample 5 0.0009 0.001 0.147 0.002
Sample 6 0.0009 0.0009 0.151 0.001
Sample 7 0.001 0.001 0.156 0.0009
Sample 8 0.0009 0.0009 0.162 0.0009
Sample 9 0.0009 0.0009 0.148 0.0009
Sample 10 0.001 0.0009 0.151 0.0009
Mean Inference Time 0.00114 0.00096 0.1521 0.00116

5. Conclusions and Discussions

This research presents a deployable crowdsensing strategy based on wearable sensor
data to detect and localize probable COVID-19 carriers in a specific environment. Various
ML models are trained on an existing wearable sensors dataset, and their performances
are compared shown in Figure 5. We concluded that the SVM classifier performed best
in predicting the probable COVID-19 carriers based on the input data. On implementing
SVM, we achieved an F1-score of 96.64% and an accuracy score of 96.57%. In addition, the
inference time for 10-fold cross-validation on the test dataset has been evaluated for the
chosen ML classifiers. It is found that SVM has the highest mean inference time, 0.1521 s,
which has been proven beneficial in selecting the best ML model for integration with the
proposed framework. Further, the YOLOv5 object detection algorithm is integrated with
the input video stream to localize and track potential carriers visually. Figure 7 corroborates
the usage of the YOLOv5 algorithm as it does not require much time to predict multiple
faces in a series of frames fed into the system.

In the future, we will make the system highly efficient and robust by improving the
dataset. The competition dataset used in the paper is static and limited in size. As the
proposed system aims to be deployed in a real-life scenario, real-time data instances must
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be included. Hence, the proposed system can be regularly retrained to increase the accuracy
of the outcome. The proposed framework also leverages GPS signals to locate the potential
carrier. However, there is a possibility of a loss of GPS signals, weak GPS signals, errors in
transmissions of the positions, and so on. There is also a possibility that the transmission
channel gets compromised by hackers, who may then send fake locations instead of the
actual position data. Currently, we are not focusing on addressing these security issues,
but rather entirely focused on making the crowdsensing framework intelligent. In future
works, we will integrate a blockchain network with the proposed crowdsensing framework
to achieve the framework’s security and privacy.
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