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Abstract: Accurate vessel track prediction is key for maritime traffic control and management.
Accurate prediction results can enable collision avoidance, in addition to being suitable for planning
routes in advance, shortening the sailing distance, and improving navigation efficiency. Vessel
track prediction using automatic identification system (AIS) data has attracted extensive attention
in the maritime traffic community. In this study, a combining density-based spatial clustering
of applications with noise (DBSCAN)-based long short-term memory (LSTM) model (denoted as
DLSTM) was developed for vessel prediction. DBSCAN was used to cluster vessel tracks, and LSTM
was then used for training and prediction. The performance of the DLSTM model was compared
with that of support vector regression, recurrent neural network, and conventional LSTM models.
The results revealed that the proposed DLSTM model outperformed these models by approximately
2–8%. The proposed model is able to provide a better prediction performance of vessel tracks, which
can subsequently improve the efficiency and safety of maritime traffic control.

Keywords: automatic identification system; density-based spatial clustering of applications with
noise; long short-term memory

MSC: 68T07

1. Introduction

Approximately 79% of the world’s surface area is covered by water, and more than
80% of all cargo is transported over the ocean [1,2]. Maritime traffic accidents often result in
large property losses and environmental damage. Therefore, the development of measures
for improving maritime traffic safety has attracted research attention. The availability of
maritime information collected by the automatic identification system (AIS) has created an
unprecedented opportunity to avoid maritime accidents and improve maritime situational
awareness. AIS collects various maritime surveillance data, including maritime traffic
spatial information, to provide accurate early warning information to maritime traffic
participants and to support various navigation operation decisions [3]. The widespread
adoption of AIS has resulted in the accumulation of a large quantity of ship navigation
data [4]; approximately 1 trillion pieces of information are stored in the system every
day. Thus, ship transportation has also entered the era of big data. Numerous researchers
have proposed various machine learning methods, theories, and technologies for big
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data processing and exploration. Methods of fully exploiting AIS data and promoting the
intellectualization of maritime transportation have thus become a key research priority [5,6].

Numerous studies have been conducted on trajectory prediction problems. For exam-
ple, studies predicted the trajectory of human actions [7] and that of vehicles or aircraft [8].
The Markov model is the most commonly used model for trajectory prediction [9]. In recent
years, neural networks have also been used for trajectory prediction [10]. However, the
aforementioned studies have mainly focused on trajectory prediction in confined areas,
such as public spaces, road intersections, and highways. To the best of our knowledge, the
previous studies have not comprehensively explored trajectory prediction using sequence-
to-sequence models in a broad geographical area (such as the ocean). A possible reason
for this research gap is that these predictions are highly complex due to the presence of
various influencing factors (such as tide level, wind speed, and weather conditions) and
differences in ship characteristics (such as between fishing boats, cargo ships, and ferries).
In the present study, we used DBSCAN to identify similar tracks and used various neu-
ral network models, namely support vector regression (SVR), recurrent neural networks
(RNN), and LSTM models, to produce prediction models for solving various tracks and
schemes. A prediction system for the destinations and arrival times of maritime traffic
must be accurate [11,12], efficient, and scalable. Such a system must also be applicable
to large and complex geographical areas, such as oceans or large cities. Deep learning
methods have been successfully applied for sequence-to-sequence prediction, in which
an input sequence is mapped to a predicted output sequence. Long short-term memory
(LSTM) is an effective and scalable sequence-to-sequence prediction model. Due to the lag
period between the input sequence and the output prediction, LSTM is the best choice for
track prediction as it demonstrates high suitability for learning data with a long-term time
dependence [13].

Since AIS data always contain inaccurate and uncertain noise, outlier detection and
filtering are required during organizing and modeling with AIS data. Additionally, given
the significant size of the AIS dataset, unsupervised learning is in modeling and anomaly
detection processes. Scholars developed various methods to identify similar tracks. For
example, in 1914, Hausdorff proposed the Hausdorff distance algorithm, which uses a
similarity measure between two points, and if each point of X is close to y, the set X and y are
considered similar. The Hausdorff distance is calculated as the maximum of all minimum
distances from each point in X to any point in y. However, if the number of calculations for
the Hausdorff distance is excessive, the metric is prone to noise [14]. The Douglas–Peucker
algorithm downsamples a curve comprising line segments into similar curves with fewer
points. It is one of the earliest algorithms successfully used in cartographic generalization,
which is used in processing vector graphics and cartography [15]. These two algorithms
both typically produce good results for adjacent tracks. On the basis of these algorithms,
one can consider that if similar tracks must be in the same group, a variable must be created
to represent the characteristics of the track paths. Thus, the clustering model provides
foundations for route planning, monitoring vessel behaviors, and detecting anomalies. By
organizing similar AIS data and clustering them together, vessel behaviors can be profiled
under labeled clusters, with each representing a specific vessel behavior stage. Within each
behavior stage, the vessel behaviors share maximum similarities and are different from
other clusters.

Trajectory data for a ship can be confirmed from its past motion and mode. AIS data
for ships in the sea near Taiwan can be downloaded from a public database. These AIS data
comprise various pieces of information, including ship speed over ground (SOG), course
over ground (COG), type, length, and width. Because raw AIS data are not preprocessed,
some data items may be lost or inaccurate; hence, quality control methods such as track
separation, data denoising, and standardization must be applied to process the data. In this
study, abnormal values in raw AIS data were identified by using the moving average to
smooth the SOG data, standardizing the noisy data, and finally subtracting the COG data
to judge the data. COG does not change due to fluctuations; thus, any changes in COG are
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due to a change in the ship’s heading relative to the ground. Accordingly, changes in COG
were used to identify abnormal values. Subsequently, DBSCAN was used to determine
the characteristics of the ship track and similar tracks [16], and LSTM was used to make
predictions for similar ships. These predictions were then compared with those of support
vector machine (SVM) [17] and RNN models. The results revealed that among all models
included in this study, the proposed DLSTM model had the best performance, which
exceeded that of the other models by approximately 2–8%. If more similar trajectories were
used in the training model, both the data accuracy and the model’s track prediction could
be improved. Accordingly, in this study, a density-based spatial clustering of applications
with noise (DBSCAN)-based long short-term memory (LSTM) model (hereafter denoted
as DLSTM) was developed for vessel prediction. Moreover, a recurrent neural network
(RNN) model, a clustering approach, and a prediction model were used to predict future
ship tracks on the basis of a given AIS observation sequence for comparison.

2. Related Work

The challenges of automation differ considerably between sea and land scenarios.
Cars on the road typically travel in a lane; by contrast, ships can travel in any direction.
Moreover, compared with automobile traffic rules, the International Regulations for Pre-
venting Collisions at Sea (COLREGs) are less strictly codified and depend on operator
experience, thus increasing the difficulty of predicting ship behavior. Early studies on ship
track prediction have relied on the physical motion of a ship, which is mainly based on a
curve model [18], transverse model [19,20], and ship model [21,22]. The physical motion
of a ship can be expressed by combining mathematical equations and physical laws in
which all possible influencing factors, such as mass, size, and inertia, are considered. The
accuracy of such models depends on the accuracy of assumptions about the environment
and the ideal state; making such assumptions is difficult in most real-world ship track
prediction tasks. Numerous studies executed track prediction processes by using AIS data
and techniques or models such as the Kalman filter model [23], Markov model [9], and
optimal route estimation based on clustering and the ant colony algorithm [24]. Some
researchers also applied neural networks to solve prediction problems without using pro-
fessional knowledge. For example, Wang et al., used two-way gated recurrent units (GRU)
to predict ship tracks [25]. Thus, neural networks play an important role in trajectory
prediction [26–28].

Large collections of AIS data can be used in various research fields and for ship
prediction to maximize the public benefit of these data. Trajectory prediction is a challenging
research problem because it must be completed rapidly with both high accuracy and
efficiency. Numerous studies in various fields have predicted the trajectories of various
entities, including the trajectories of human actions [7] and those of aircraft and vehicles [29].
Trajectory data constitute a unique type of time series data that includes both spatial and
temporal dimensions [30]. Conventionally, the Kalman filter is applied to waypoints to
predict ship trajectories. Advancements in deep learning have enhanced the effectiveness
of RNNs and variational automatic encoders in trajectory prediction [31]. AIS data are
crucial for constructing a ship operation model, and such data contain information about
COG, SOG, turn rate, and navigation. These data enable understanding of the course and
running track of a ship, which can help prevent ship accidents [11].

Neural networks can be considered as a set of weighted connections between points
that mimic neurons in the human brain. Neural networks can learn, imitate, and predict
the behavior of a system [32]. The algorithms of neural networks can classify input data to
identify correlations between the data items, and such algorithms can continually learn and
improve over time. They are ideal for solving complex real-world problems. Support Vector
Regression (SVR), an extension of the SVM model, is a machine learning method proposed
by the Russian statistician Vapnik [33]. It has been successfully applied for predicting
ship trajectories. In SVR, statistical learning is used to find a hyperplane with minimal
distance to each of the two sets. SVR has three parameters: C, the penalty constant; ε, the
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loss function; and σ, the width of the kernel function. Recurrent neural networks (RNNs)
were proposed by David Rumelhart in 1986 [34]. However, RNNs are simple and cannot
handle recursively accumulated weight indices, which may lead to gradient explosion or
gradient disappearance [35]. Therefore, Hochreiter and Schmidhuber proposed LSTM as
an improvement to RNNs in 1997. LSTM has been used in numerous fields, including
text classification [36], stock analysis [37], and trajectory prediction [38]. RNNs have lower
computational requirements than LSTM; however, LSTM has outstanding feature selection
performance, resulting in improved track prediction.

3. Method
3.1. Study Design

The steps involved in the study method are detailed in the flowchart presented in
Figure 1. The main steps are as follows: (a) collecting ship track, speed, and course data;
(b) cleaning the data through track separation, outlier deletion, and data standardization;
(c) calculating changes in COG track; (d) preliminarily clustering the collected tracks by
using DBSCAN; (e) applying the RNN, SVR or LSTM model to predict the trajectory from
the denoised data; (f) predicting the ship tracks using the proposed model and comparing
the prediction results with those obtained by other algorithms; (g) comparing the predicted
trajectory with the original trajectory data to verify the accuracy of the proposed model.

Figure 1. Flowchart of the study method.

3.1.1. Collection of Data on Vessel Trajectory, Speed, Course, and Other Features

The AIS data set was downloaded from a public database on 6 July 2019, and each
entry included the time and the maritime mobile service identity (MMSI), SOG, COG, and
boat length of a ship. A total of 1,048,256 entries for 1326 ships were collected. After the
clustering process, six ships were selected for trajectory prediction and comparison.

3.1.2. Data Cleaning through Track Separation and Outlier Deletion

AIS data may contain abnormalities that must be removed before vessel track analysis.
The quality of the collected AIS vessel trajectory data was enhanced through data cleaning,
data standardization, and deduplication. The raw AIS data set contained numerous ship
features for hundreds of ships. The MMSI, a unique identifier for ships, was used to classify
the AIS data by ship. Classification by ship improves the accuracy of neural network
prediction and enables the establishment of different prediction models for the trajectories
of different vessels. Generally, four types of erroneous and noisy effects on the AIS data,
including (a) abnormalities that exist in the data in the SOG column. It is difficult for a
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vessel to accelerate or decelerate very quickly over a short period (it would require 1 s to
speed up from 5.5 to 124 knots); therefore, the values highlighted are deemed abnormal.
(b) The MMSI column is abnormal; the standard MMSI length should be 9. (c) Duplicate
data, which are not conducive to neural network training and may cause overfitting, are
removed. (d) Abnormalities exist in the data in the COG column; COG values range from
0 to 360. Figure 2 presents the example of four common error types in AIS data.

Figure 2. Four types of erroneous and noisy effects. (a) Abnormalities exist in the data in the SOG
column; (b) MMSI column is abnormal; (c) Duplicate data; (d) Abnormalities exist in the data in the
COG column.

The data were acquired from ships off the island of Taiwan at latitudes between
20◦ and 25◦ N and longitudes between 120◦ and 123◦ E. Raw AIS data collected from a
single vessel were cleaned by deleting duplicate data and abnormal COG, SOG, and MMSI
data. Figure 2 shows examples of noisy AIS data. For example, manual inspection of the
original AIS data revealed abnormal vessel speeds exceeding 30 knots; such abnormal data
were deleted.

3.2. Trajectory Similarity Measurement

A ship’s course changes in response to changes in the winds and currents. The COG is
the ship’s actual direction of travel and does not change unless the ship’s course changes.
Figure 3 presents the relationship between COG and a vessel. At point B, the vessel is
under heavy wind and changes its heading to 135◦ to counteract the effects of the wind.
Despite the change in heading, the ship’s actual course (i.e., COG) does not change due
to the wind and remains 90◦. After the wind fades at point C, the ship’s heading is still
135◦; thus, its COG becomes 135◦ at point D. In order to return to its original course, the
ship turns left to return its heading to 90◦, and at point E, both the heading and COG are
90◦. The trajectory of a ship can be determined by using left- and right-turn data obtained
from COG data (Table 1). An increase or decrease in COG indicates a right or left turn,
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respectively. Figure 4 presents (for all vessels): Each unit in Figure 4 represents 5 entries,
with the yellow and red plots indicating right and left turns, respectively. Figure 5 presents
the vessel’s two-dimensional (2D) trajectory calculated from the one-dimensional (1D) COG
data. Figure 6 illustrates the algorithm used for this transformation in this study.

Figure 3. Judgment of COG transform.

Figure 4. The COG transforms of vessel (a) 411747900; (b) 215280000; (c) 477118100; (d) 413484000;
(e) 413697130; (f) 413705580. Red line, left turn; Yellow line, right turn.



Mathematics 2022, 10, 2936 7 of 19

Table 1. Score of vessel trajectory after signature transform.

Index MMSI Left_Score Right_Score

1 538006353 0 0

2 538006573 0 1.52

3 538005414 4.448 4.252

4 538004214 1.44 0

5 477946000 39.36 3.84

6 477943000 1.116 6.16

7 477938400 8.948 9.14

8 477800200 20.32 0

9 477698600 1.964 1.916
MMSI, maritime mobile service identity.

Figure 5. Verify The COG transforms of vessel (a) 411747900; (b) 215280000; (c) 477118100;
(d) 413484000; (e) 413697130; (f) 413705580. Red line, left turn; Yellow line, right turn.
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Figure 6. Transform 1D vessel trajectory data into 2D signature.

3.3. DBSCAN

Clustering analysis is a common data mining technique. In this analysis, a set of points
are grouped into several clusters such that points in the same cluster are more similar to
each other than to those in other clusters. The DBSCAN model can find clusters of arbitrary
shapes and remove noisy data. The model requires only one search to obtain the final
clustering result; thus, it is highly efficient. The main concept of a density-based algorithm
such as the DBSCAN model is that for each point in a cluster, its neighborhood with a given
radius must contain at least a minimum number of points. Moreover, the density of the
points in the same cluster must be larger than that of points in different clusters [39]. The
density in areas that are mostly noise should be lower than the density of any cluster. To
identify a cluster, the DBSCAN model begins searching from an arbitrary object p at all
search points and retrieves all points that are density-reachable from p with respect to the
minimum radius around the point, eps (epsilon), and the minimum number of points in
a cluster (MinPts). If p is a core point, then the neighborhood of p can be obtained with
respect to eps and MinPts. Points in this neighborhood are used as seeds in the next circle
to expand the cluster. If p is a border point and no points are density-reachable from p, p is
temporarily determined to be noise. The DBSCAN model then chooses the next point in the
database for clustering. The DBSCAN model [40] requires setting the global parameters eps
and MinPts in advance. The original DBSCAN algorithm selects the optimal parameters
by using the k-nearest neighbors of each point. The pseudocode of the DBSCAN model is
presented in Algorithm 1.

3.4. Support Vector Regression (SVR)

Based on the structural risk minimization principle proposed by Vapnik, a loss function
ε was derived, and an SVR model was developed to solve nonlinear problems, especially
time series prediction problems. SVR was proposed by Vapnik et al. in 1997 [41] and
has been used in numerous forecasting tasks such as short-term load forecasting [42] and
monthly rainfall forecasting [43]. In order to obtain favorable forecasting performance, all
three hyperparameters (C, ε, and σ, a kernel parameter) of the SVR model must be properly
selected. These hyperparameters are usually determined through data resampling, which is
computationally time-consuming. Thus, an efficient approach to simultaneously determine
all parameters is necessary.
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Algorithm 1 DBSCAN

DBSCAN (eps, minpts, D)
mark all patterns in D as unvisited
cluid← 1
for each unvisited pattern x in D

do
Z← Find Neighbours (x, eps, minpts)
if |Z| < minpts
mark x as noise
else
mark x and each pattern of Z with cluid
queue_list← all unvisited patterns of Z
until queue_list is empty
do
y← delete a pattern from queue_list
Z← Find Neighbours (x, eps, minpts)
if |Z| = minpts

for each pattern w in Z
mark w with cluid
if w is unvisited
queue_list← w U queue_list
end for

end if
mark x as visited
cluid← cluid + 1

end for
Output all patterns in D marked with cluid or noise

3.5. Recurrent Neural Network (RNN)

RNNs were proposed by Rumelhart in 1986 for extracting long-term dependency in
sequential data [44,45]. An RNN has a unique memory unit that enables it to be used for
short sequence prediction. However, in practical applications, the length of the problem
sequence is not known, which may result in gradient vanishing or gradient explosion
during the learning process. Therefore, the practical applications of RNNs are limited.
However, variants of RNNs exist, such as LSTM [13] and GRU [46]. A simple RNN has
only one internal memory unit ht, which can be expressed as follows:

ht = f
(

Wxt + U f ht−1 + b
)

(1)

where f is the activation function, U and W are the weight matrices of the hidden layer, b is
the bias, and xt is the input vector at time t [47].

3.6. Long Short-Term Memory (LSTM)

LSTM is an extension of RNNs [13]. The LSTM model is versatile in handling parame-
ters with high dimensionality and involves nonlinear activation functions in each layer;
therefore, it can capture nonlinear trends in data and remember previous information over
long sequences. Accordingly, LSTM was successfully applied to numerous time series
problems. The advantage of the LSTM structure is that it contains three types of gates:
input, forget, and output gates. As displayed in Figure 7, the LSTM model solves the
vanishing gradient problem of RNNs and enables the long-term storage of information.

The symbols ⊕ and ⊗ denote addition and multiplication in the model, and the arrow
denotes the flow of information. The first layer of the memory gate determines the removal
of unnecessary information from the cell state and can be expressed as follows:

ft = σ
(

W f ·xt + U f ·ht−1 + b f

)
(2)
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where ft denotes forgetting threshold at time t, σ denotes the sigmoid activation function,
ft and U f denote the weights, xt denotes the input value, ht−1 denotes the output value at
time t − 1, and b f denotes the bias term.

The input gate determines which information from the current input vector should be
stored in the cell state. This includes the decision it, which updates the value and tanh layer
for generating a new state value ct. The specific expressions are as follows:

it = σ(Wi·xt + Ui·ht−1 + bi) (3)

c̃t = σ(Wc·xt + Uc·ht−1 + bc) (4)

where it represents the input threshold at time t; Wi, Ui, Wc and Uc represent the weights;
and bi and bc represent bias terms. The term for updating the state of the cell at time t can
be expressed as follows:

ct = σ ft × ct−1 + it × c̃t (5)

The third layer is used to produce output information in the current time step and can
be expressed as follows:

ot = σ(Wo·xt + Uo·ht−1 + bo) (6)

where ot denotes the output threshold at time t, Wo and Uo denote the weights, and bo
denotes the bias term. Accordingly, the output value of the cell can be expressed as follows:

ht = ot × tanh(ct) (7)

where ht denotes the output value of the cell at time t, tanh denotes the activation function,
and ct denotes the state of the cell at time t. After the data pass through the three gates, the
effective information is the output, and the invalid information is forgotten.

Figure 7. Architecture of LSTM.

3.7. Performance Verification

This study verified the predictive performance of the proposed method by using
relevant performance metrics, namely mean absolute percentage error (MAPE), root mean
square error (RMSE), p-value, and determination coefficient (R2) score. Each metric can be
expressed as follows:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣× 100% (8)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − fi)
2 (9)

p-value =

(
X− µ

)
s/
√

n
=

√
n
(
X− µ

)
s

(10)
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where n represents the number of samples, X represents the average value, s represents
the sample standard deviation, and µ = µ0 represents the null hypothesis. For distribution
with n − 1 degrees of freedom,

R2 =

 ∑n
i=1(ηio − ηo)(ηiM − ηM)√

∑n
i=1(ηio − ηo)

2 ∑n
i=1(ηiM − ηM)2

2

, (11)

where ηio is the observation track point of the ith time step, ηiM is the corresponding
predicted trajectory point, n is the time step, ηo is the average of the observations, and ηM
is the average of the predictions.

4. Result and Discussions
4.1. Clustering

Trajectory clustering has attracted growing attention because trajectory data mining
plays a critical role in modern intelligent systems for navigation, surveillance, security,
abnormal behavior detection, crowd behavior analysis, and traffic control. Similar ship
trajectories were identified by first determining the left and right turns of ships in the AIS
data. Special trajectories were effectively excluded. If there is a nontrend navigation, COG
changes have no research value. After data clustering using the DBSCAN method, this
study divided the data into four groups on the basis of their characteristics. Of these four
groups, three with obvious characteristics (yellow, blue, and green) were used as the test
data (Figure 8). The description of data samples in this study is shown in Table 2.

Figure 8. Clustering results of the DBSCAN. Green, cluster 1; Blue, cluster 2; Yellow, cluster 3; Purple,
cluster 4.

Table 2. Description of samples in this study.

MMSI Cluster Cluster
Data AIS Data DLSTM

Train Data Train Data Test Data

477147900
1 15,372

1819 13,553 1455 364
215280000 1188 14,184 950 238

477118100
2 5662

1500 4162 1200 300
413484000 786 4876 629 157

413697130
3 4004

736 3268 589 147
413705580 533 3471 426 107

The DBSCAN model parameters were set as follows: eps = 4 and MinPts = 5. The
results are presented in Figure 8, where yellow, blue, green, and purple represent different
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trajectory clustering results. Left- and right-turn data were used as the basis for the
clustering process (Figure 9a). Further cluster analysis of the relevant results revealed
15,372 trajectories in the blue cluster, most of which were characterized by straight lines
(Figure 9b). Moreover, a total of 5662 trajectories were observed in the yellow cluster;
these trajectories were slightly more curved than the blue cluster trajectories (Figure 9c).
Finally, 4004 trajectories were noted in the green cluster; these trajectories had the greatest
curvature (Figure 9d).

Figure 9. Vessel trajectories through clustering. (a) Corresponding trajectory clustering results; Green,
cluster 1; Blue, cluster 2; Yellow, cluster 3; (b) Vessel trajectory of cluster blue; (c) Vessel trajectory of
cluster yellow; (d) Vessel trajectory of cluster green.

4.2. Parameter Settings

In this study, trial and error were used to optimize the prediction accuracy of the
DLSTM. Taking MMSI 413697130 as an example, using the unit numbers 50, 80, 128, and
256 to perform the test, it was found that unit 80 in the first layer obtained MAPE 0.026 and
RMSE 0.01 was better than the other three units. Thus, unit 80 is the best value selected in
the first layer. Same as the first layer determination, unit 50 has the best performance in the
second layer with MAPE 0.019 and RMSE 0.009, which is better than the other three unit
combinations. Therefore, for the case of MMSI 413676130, the best units for the first layer
and second layer are 80 and 50, respectively, which is significantly better than the other
combinations, as shown in Table 3. The parameter setting of DLSTM is shown in Table 4.

Table 3. Vessel trajectory prediction performance on different parameter settings for DLSTM.

MMSI Layer1 Layer2 Lr Epoch Batch MAPE RMSE

413697130

50

0.00001 250 128

0.03 0.04

80 0.026 0.01

128 0.04 0.019

256 0.03 0.01

80

50 0.019 0.009

80 0.14 0.04

128 0.18 0.06

256 0.03 0.03
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Table 4. Parameter settings of the proposed method.

Input LSTM_1 LSTM_2 Output Activation
Function

Learning
Rate Epochs

238 128 50 1 Adam 1 × 10−5 300

4.3. Trajectory Prediction Results

In order to clearly understand the relationship between the models and the test set,
the vessel with MMSI 413484000 was used as an example for description. The prediction
made by the SVR model differed substantially from the observed values (Figure 10). A
possible reason for this is that the SVR model did not bend the data due to the unclear
characteristics of the ship data when considering hyperparameter. The predictive accuracy
of the LSTM model was higher than that of the RNN model; however, the difference in
accuracy was small (Figure 10). The predictive accuracy of the proposed DLSTM model
was substantially higher than that of the LSTM or RNN model, which can be attributed to
its improved feature extraction.

Figure 10. Models predicted result in vessel 413484000. (a) SVR, (b) RNN, (c) LSTM, (d) DLSTM.

Table 5 shows the prediction results using all vessel tracks as the training set. Because
the training data contain noise and too many different types of trajectories, the prediction
results are quite bad. MAPE is between 0.12 and 0.41, RMSE is between 0.05 and 0.217,
and R2 has a negative correlation (−0.5~−46). The results highlight the importance of data
preprocessing and clustering.

In order to verify the performance of the DLSTM model, the tracks of six ships were
extracted from the AIS data through a clustering process, and the accuracy metrics (RMSE,
MAPE, R2, and p) of the DLSTM, SVR, RNN, LSTM, and other models were evaluated and
compared. The results shown in Table 6 revealed that the DLSTM model had the lowest
prediction error for the six ships; the average MAPE value derived for the DLSTM model
(0.016) was lower than those derived for the SVR, RNN, and LSTM models (0.029, 0.023,
and 0.022, respectively). The RMSE value derived for the DLSTM model (0.007) was also
lower than those derived for the SVR, RNN, and LSTM models (0.018, 0.010, and 0.008,
respectively). Finally, the DLSTM model had the highest R2 (0.965); the R2 values derived
for the SVR, RNN, and LSTM models were 0.86, 0.924, and 0.942, respectively. Thus, the
DLSTM model had a superior performance for all indicators.
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Table 5. Vessel trajectory prediction errors based on the whole set for different models on six vessels.

MMSI Clustering Criteria SVR RNN LSTM

477147900 1
MAPE 0.14 0.3 0.2
RMSE 0.06 0.09 0.09

R2 0.25 0.07 0.01

215280000 1
MAPE 0.2 0.16 0.34
RMSE 0.09 0.1 0.15

R2 −0.5 −1.36 −3.5

477118100 2
MAPE 0.15 0.16 0.41
RMSE 0.06 0.15 0.2

R2 0.27 −5 −9.7

413484000 2
MAPE 0.18 0.37 0.11
RMSE 0.065 0.15 0.04

R2 0.5 −5 0.19

413697130 3
MAPE 0.11 0.37 0.49
RMSE 0.07 0.14 0.217

R2 −0.6 −24 −46

413705580 3
MAPE 0.12 0.12 0.13
RMSE 0.05 0.1 0.05

R2 −3.6 −3.9 −17.3

Table 6. Vessel trajectory prediction errors for different models for six vessels.

MMSI Clustering Criteria SVR RNN LSTM DLSTM

477147900 1
MAPE 0.036 0.028 0.027 0.022
RMSE 0.022 0.009 0.009 0.008

R2 0.881 0.941 0.950 0.963

215280000 1
MAPE 0.023 0.020 0.016 0.016
RMSE 0.008 0.007 0.007 0.007

R2 0.889 0.935 0.942 0.950

477118100 2
MAPE 0.051 0.047 0.038 0.022
RMSE 0.030 0.018 0.015 0.009

R2 0.857 0.870 0.910 0.986

413484000 2
MAPE 0.023 0.023 0.024 0.013
RMSE 0.012 0.010 0.010 0.006

R2 0.880 0.964 0.964 0.986

413697130 3
MAPE 0.024 0.011 0.021 0.019
RMSE 0.023 0.011 0.008 0.009

R2 0.901 0.944 0.948 0.954

413705580 3
MAPE 0.017 0.011 0.004 0.003
RMSE 0.010 0.004 0.003 0.001

R2 0.752 0.889 0.938 0.952

Average -
MAPE 0.029 0.023 0.022 0.016
RMSE 0.018 0.010 0.008 0.007

R2 0.860 0.924 0.942 0.965

p-value - MAPE 0.006 0.189 0.131 -
RMSE 0.006 0.028 0.066 -

SVR, support vector regression; RNN, recurrent neural network; LSTM, long short-term memory; DLSTM,
DBSCAN-based long short-term memory; Bold face, best value of each row.

The p-value was used to determine whether the difference in performance between the
DLSTM model and the other models was significant. For the SVR model, the p-value was
0.06 for both MAPE and RMSE, indicating that the DLSTM model significantly outperformed
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the SVR model on both metrics. Similarly, for the RNN model, the p-value for RMSE was
0.028, indicating that the DLSTM model also significantly outperformed the RNN model
on this metric. For the LSTM model, the p-value was >0.05 for both metrics, indicating that
the difference in performance between the LSTM and DLSTM models was not significant.
However, the R2 results indicated that the DLSTM model consistently outperformed the
LSTM model. For ship 215280000 in cluster 1, ship 477118100 in cluster 2, and ship
413697130 in cluster 3, the R2 values for the DLSTM model were higher than those for
the LSTM model by 0.8%, 8%, and 8%, respectively. Figure 11 presents the predicted ship
tracks for each model. For 413484000 and 477118100, the R2 value for the DLSTM model
was 0.986; the predicted tracks were almost identical to the observations. The predicted
tracks and indicators observed for the DLSTM model were superior to those observed for
the LSTM model. Accordingly, the DLSTM model demonstrated better performance on
ship trajectory prediction than the SVR, RNN, and LSTM models. Figure 12 presents a
visual comparison of the metrics for each model.

Figure 11. Vessel trajectory predicted result using 4 models. (a) 477147900; (b) 215280000;
(c) 477118100; (d) 413484000; (e) 413697130; (f) 413705580.
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Figure 12. Predicting errors in vessel trajectories. (a) MAPE; (b) RMSE.

DLSTM shows the best model in this study, which performs better for multi-curved
clusters and generally for straight-line clusters. Since DBSCAN is used to calculate the
overall curve of the ship, if the clustering is mostly linear, the feature is less obvious, then
the performance of DLSTM may not be particularly prominent. Adding loss function and
excitation function can improve the performance of the DLSTM model. In addition, using
relu as an excitation function and the normalization and adjusting other parameters can
prevent overfitting. For example, for 21528000, the MAPE for both the DLSTM and LSTM
models was 0.016 because the data features were overly simple, indicating that the models
could not capture the features.

The RNN model was originally used to process time series data, but the superposition
of previous data during input may have caused gradient explosion or gradient disappear-
ance. However, the RNN model exhibited comparable performance to the LSTM model for
simple data. This is due to the fact that the RNN model is simpler than the LSTM model.
Nonetheless, the RNN model exhibited poorer performance than the LSTM model for more
complex tracks. The calculated p-value for RMSE between the RNN and LSTM models was
<0.05, indicating that the LSTM model significantly outperformed the RNN model. The
p-values in Table 6 indicate that the performance of the LSTM model was not significantly
different from that of the DLSTM model; this result is consistent with expectations.

Identifying similar features is a key task in machine learning. Therefore, this study
used the ship COG to assess feature similarity. This method is conducive to eliminating
abnormal tracks, such as tracks presented as radar maps, dot matrix maps, or incomplete
tracks. The data remaining after DBSCAN exhibited similar characteristics, achieving this
goal. The SVR model had the lowest performance among the models in terms of R2; this
result was attributed to the low tolerance of the SVR model for curved tracks. Vessel track
data do not exhibit a trend and may change due to ocean conditions. Therefore, a single
data point may provide reduced model detection ability for turns; this was attributed to
the fact that not all tracks include turns. If the training data set is straight but the test data
set is curved, the evaluation index would be lower, and the tolerance for feature values
would be greater, enabling it to adapt to tracks with greater curvature. The predictions of
the DLSTM model were 2% better than those of the other models, on average; thus, the
DLSTM model was determined to be the best for predictions.

Ship track prediction is an important issue for navigation safety. At present, there are
many prediction methods of different models, such as LSTM, RNN, and Gru. In order to
enhance the accuracy of the prediction model, this study used DBSCAN to group the tracks
and then carried out in-depth learning model training for the tracks in the same group.
The research results showed that the track prediction using DLSTM was more accurate.
Through DBSCAN, the outlier was eliminated, and the tracks with similar characteristics
were combined into a data set, greatly improving the capability of capturing track features
and prediction accuracy of the deep learning model.
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5. Conclusions

In this study, a model combining DBSCAN and LSTM was developed for predicting
vessel trajectories. The model can accurately predict trajectory sequences and be used for
predictions. The data of the trajectory of six vessels were used to evaluate the model’s
performance. The results showed that DLSTM was 27.2% and 12.5% better than LSTM in
MAPE and RMSE, respectively. The proposed model outperformed the SVR, RNN, and
LSTM models, demonstrating its suitability for vessel trajectory prediction tasks. Further-
more, the proposed model can extract significant features and apply them to reduce errors
in vessel track point of prediction tasks. Accordingly, the study findings can help maritime
traffic controllers predict the accurate trajectories of vessels, enable them to take preventive
measures, avoid collisions, and improve the efficiency and safety of maritime traffic.
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