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Abstract: This paper proposes an adaptive barrier function terminal sliding mode control method
for partial seizure based on the Pinsky–Rinzel model. A terminal sliding mode control technique
is designed to achieve the convergence of trajectories to the desired value in a finite time, while an
adaptive barrier function is used to ensure that the outputs, which are independent of the disturbance
boundary, converge to the predetermined zero location. The performance of the proposed approach is
checked for the nonlinear two-compartmental Pinsky–Rinzel pyramidal neuron model. The obtained
method of the finite time stability, in the presence of uncertainty and disturbance, is proven by the
Lyapunov theory. The simulation results confirm the effectiveness of the proposed control scheme.
Finite time convergence, robustness, chattering-free dynamics and near-zero error are the advantages
of the proposed technique.

Keywords: Pinsky–Rinzel model; terminal sliding mode control; partial seizure; adaptive barrier
function; uncertainty
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1. Introduction

Epilepsy is one of the most common neurological diseases worldwide, which is
caused by abnormal synchronized discharges from neurons [1–3]. Epilepsy occurs either in
generalized or partial form. This latter is confined to one area of the brain. During epileptic
seizures, the electrical activity of brain cells is characterized by high amplitude and sharp
electrographic waveforms [4,5]. Temporal lobe epilepsy (TLE) is one of the most common
types of epilepsy and resistance to drugs has been observed in about one-third of cases [6–9].
Surgery is often considered to reduce seizures in drug-resistant epilepsy patients; however,
it has some risks such as memory impairment. Other methods that are less risky than
epilepsy surgery include seizure control and deep brain stimulation (DBS) [10,11]. Dynamic
modeling of the brain is needed to control seizures. Various dynamic models of the brain
have been proposed that are models for different neurological diseases such as epilepsy.
Research into the electrical activity of brain cells called neurons has led to the expansion of
mathematical models of the brain [12]. There are several models to describe the activity
of the brain such as the Hodgkin–Huxley model, Cortical brain model, Pinsky–Rinzel,
Izhikevich model and thalamocortical model [13–17]. Various control methods have been
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used to control seizures. In [18], the Kalman filter is used to predict the future trajectories in
the Hodgkin–Huxley (HH) model and by controlling the activity of neurons, it has shown
the ability to control the activity of pathological cells such as seizures. In [19], a robust
observer-based model reference tracking control is provided for the (HH) neurons model to
produce the desired response despite the noise and the unknown initial value. To simplify
the design of the controller for the stochastic and nonlinear system of (HH) neurons, a fuzzy
interpolation method of several linear (HH) systems is used to approach the nonlinear
model so that the problem of robust nonlinear tracking control can be solved by the linear
matrix inequality (LMI) technique. The authors in [20], based on the Krasovskii theorem,
applied an improved washout filter controller to the abnormal repetitive firing pattern
of the Hindmarsh–Rose neuron model, and its stability was proven. In [21], a fractional
proportional–integral–derivative (PID) method was designed to control the abnormal
activity of the brain in epilepsy. The study in [22] adopted an unscented Kalman filter
(UKF) to estimate the variables of the membrane potential of the Pinsky–Rinzel (PR) model
and considered a linear proportion–integration (PI) approach to control firing patterns.
The PR model was presented in 1994, which is mentioned in reference [17], and it has
been used in various research studies to control seizures. The only difference between
them is the type of the proposed controller. In paper [23], an input–output linearization
controller for seizure control is presented based on the PR model, where after turning
the controller, the abnormal activity of neurons is controlled after 2.3 s. In paper [24], the
authors have employed an adaptive feedback control method to control the epileptic spikes
based on the Pinsky–Rinzel mathematical model. These references are just a few examples
to demonstrate the validity of PR mathematical model. It should be noted that this model
has been used in various research studies. Among the available mathematical models
introduced in references [14–17], we choose the PR model because it can simulate seizures
in the CA3 region of the brain where drug-resistant epilepsy occurs. In [25], the authors
investigated a closed-loop control approach to control epilepsy based on the Jansen’s neural
model. The controller consisted of two parts, a (PI) and an active disturbance rejection
control (ADRC). Based on the cortex model of the brain, an optogenetic open loop control
is proposed to suppress the epileptic waves in [26].

Sliding mode control (SMC) is the common method to control systems with uncertainty
and also has a rapid response and is not susceptible to disturbances [27–30]. In [31], ana-
lyzed chaotic brain activity and a sliding mode controller is designed to control epilepsy. In
conventional SMC, during the reaching phase, controlling the system is not robust to pertur-
bation [32,33]. Some of the major drawbacks of conventional SMC are: (1) equilibrium point
convergence is not guaranteed in a finite time and (2) the chattering phenomena. Terminal
sliding mode (TSMC) was developed to guarantee the finite time convergence in single
input–single output (SISO) and multiple input–multiple output (MIMO) systems [34–36].
In [37], a nonsingular integral terminal sliding mode control is designed to solve epilepsy
treatment based on the thalamocortical model. Article [38] proposed a fixed time inte-
gral super twisting sliding mode to suppress epilepsy. In paper [39], the path following
the control of autonomous four-wheeled electric vehicles has been carried out using the
second-order super twisting SMC approach, and it has been able to deal with the chattering
problem suitably. Barrier function is an adaptive approach that can be used in a disturbed
system without the need to know the bands of disturbances [40–42].

This paper proposes an adaptive barrier function TSMC approach to suppress epileptic
waveform, based on the PR model. The main contributions of this paper are as follows:

• It analyzes the chaotic behavior of the PR model output (somatic membrane potential)
using the entropy criterion.

• It designs a TSMC approach which yields finite time converges of the system to the
desired value, whilst ensuring chattering free dynamics.

• An approach that relies on the barrier function, without needing any information
about the boundary of perturbations, to adjust the sliding surface, decrease the error
and further improve the system response.
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The rest of the paper is organized as follows. Section 2 describes the two-compartmental
(PR) model describing the neuron’s behaviors in the CA3 region of the brain. The behavior
of the model is analyzed by entropy criteria in Section 3. The proposed adaptive barrier
function terminal sliding mode controller is developed in Section 4. The simulation results
are presented in Section 5. Finally, the conclusions are provided in Section 6.

2. Two-Compartmental (PR) Model

The proposed model is a nonlinear and dynamic model that describes the neurons’
behaviors in the CA3 region of the brain. This model consists of two parts and is shown in
Figure 1.
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Figure 1. Two-compartmental Pinsky–Rinzel model of CA3 neurons.

A part of this model simulates the dendrite, whereas the other part simulates the axon.
The two parts are separated by a conductor. Soma produces a spike. Dendrite is the other
compartment that produces bursting responses Additionally, in Figure 1 currents entering
and leaving the soma and dendrites are shown. In this model, Vs and Vd represent the
membrane potential of the soma and dendrites, respectively. P represents the amount of
space taken by the soma and Cm is the membrane’s capacity.

The PR nonlinear model can be represented using the following nonlinear system [43,44].

.
Vs = f (x) + u + δx

.
Vd = g(x)

.
m = αm(Vs)−m(αm(Vs) + βm(Vs)) (1)

.
n = αn(Vs)− n(αn(Vs) + βn(Vs))
.
h = αh(Vs)− h(αh(Vs) + βh(Vs))

y = Vs

where x =
[
x1 x2

]T denotes the vector of the system states; u is the control input; and y is
the system output. The nonlinear functions f (x), g(x) and δx are chosen as follows:

f (x) = −INa − Ik − ILeak +
ILink

P
+ Isoma (2)

g(x) = −INaP − IKS − ILeak −
ILink

(1− P)
+ Idendrite (3)

δx = ∆xVs + d (4)

where ∆xVs represents system uncertainties and d denotes the external disturbances. Addi-
tionally, the variable δx is bounded and its boundary is unknown.
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The parameter values used in this paper are provided in [45] and are given in the
Appendix A. The equations describing the currents of soma and dendrites are as follows:

INa = gNam∞
3h (Vs − ENa) (5)

IK = gkn4(Vs − EK) (6)

ILink = gc(Vd −Vs) (7)

INaP = gNaPl∞3(Vd −Vs) (8)

IKS = gKSq(Vd − EK) (9)

ILeak(Vs) = gL(Vs − EL) (10)

ILeak(Vd) = gL(Vd − EL) (11)

The variables q, h, n follow the equations as follows:

dy
dt

= ϕy

(
y∞ (Vs)− y

τy(Vs)

)
(12)

If y = q, n, h, the amount of ϕy is given by ϕh = 3.3, ϕn = 3.3 and ϕq = 1. Time constant
equations are given by:

y∞ =
αy

αy + βy
; τy =

1
αy + βy

(13)

where y = h, n
q∞(Vd) = 1/(1 + exp(−Vd + 35)/6.5) (14)

τq(Vd) =
200

exp(−(Vd + 55)/30) + exp((Vd + 55)/30)
(15)

l∞(Vd) = 1/(1 + exp(−(Vd + 57.7)/7.7)) (16)

m∞ = αm/(αm + βm) (17)

The rate constant equations are given by:

αh(Vs) = 0.07exp(−(Vs + 47)/20) (18)

βh(Vs) = 1/(exp(Vs + 17))+1) (19)

αn(Vs) = −0.01(Vs + 34)/(exp(−0.1(Vs + 34))− 1) (20)

βn(Vs) = 0.125 exp(−(Vs + 44)/80) (21)

αm(Vs) = −0.1(Vs + 31)/(exp(Vs + 31))− 1) (22)

βm(Vs) = 4 exp(−(Vs + 56)/18) (23)

The dynamic model produces different behavior patterns with different parameters.
By selecting various pathological parameters, the applied current to the soma and dendrites
will be different. The behavior of the soma membrane, while the two components are
electrically coupled, in the epilepsy and healthy state is shown in Figure 2. The soma
membrane potential is considered as the output of the system to control. When the seizure
occurs, the electrical balance of the brain is lost and the membrane potential oscillates
with high amplitude. In the healthy state, the range of oscillations of Vs is reduced until
it achieves the steady state. Changing the equilibrium potential (ENa & EK), which also
affects the current, changes the soma potential from the patient’s state to the healthy state.
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Figure 2. Comparison between epilepsy state and healthy state.

It is clear that in the healthy state, periodic signals with high amplitudes are
not observed.

3. Analysis of Entropy

The entropy criterion was introduced by Shannon in [46]. This criterion is a measure of
the regularity or irregularity of the signal. Increasing the regularity in the signal increases
the entropy criterion. Biologically, when the brain is in an epilepsy state, brain signals are
more regular than in a healthy state [47,48]. It can be concluded that the entropy of the
Vs obtained in the healthy state is less than in the epileptic state. Entropy (En) is defined
by the discrete set of probabilities pi. If X is a set of discrete samples, entropy is defined
as follows:

En(X) = −
n

∑
i=1

p(xi)log p(xi) (24)

If xi(i = 1, 2, 3, . . . , n) and n is the number of samples, p(xi) is the probability of
occurrence of xi. As seen in Figure 2, in epilepsy, the Vs signal is oscillating and regular,
but in the healthy state, the Vs waveform does not have regularity and after a short time,
it converges to its final value. Table 1 shows the En of Vs versus the different values of
(ENa and Ek). As the ENa decreases and Ek increases, the signal reaches its healthy state.
In an epileptic state, entropy has its highest value.

Table 1. Entropy for different parameters.

EK × 103 −98 −95 −90 −80 −75 −68 −65 −63 −58 −55

ENa 0.072 0.063 0.055 0.045 0.042 0.038 0.036 0.035 0.032 0.030

En 0.8 0.95 1.3 1.297 1.295 1.293 1.291 1.195 1.191 1.181

For the epilepsy state, ENa = 0.05 and Ek = −0.09 are selected. In Figure 3, En changes
are shown by the variation in ENa. In Figure 4, En changes are shown by the variation
in Ek.
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4. Adaptive Barrier Function Terminal Sliding Mode Control

Figure 5 shows the adaptive barrier function terminal sliding mode controller (ABTSMC)
for controlling epilepsy, based on the PR model.
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Assumption 1. The δx term is a bounded function with an unknown bound δxmax, with the
following condition. The positive upper bound δxmax exists, but is an unknown value by∣∣δx

∣∣ ≤ δxmax (25)

δxmax > 0

The epileptic soma potential (Vs) is assumed to track the healthy desired reference Vsd.
Consider the following nonlinear system with external turbulences:

.
x1 = x2

.
x2 = f (x) + Bu(t) + δx (26)

where x1 and x2 are the states of the system (26) and f (x) is a nonlinear function.
The nonlinear TSMC surface can be expressed as follows [49–51]:

s = x2 + λx1
p/q (27)
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where λ > 0 is a constant and p and q are positive integers which satisfy the
following conditions:

1
2
< p/q < 1 (28)

The following equation is obtained by substituting (26) into the derivative (27).

.
s = f (x) + Bu(t) +

λp
q

x2x
p−q

q
1 + δx (29)

Lemma 1. Given a positive-definite Lyapunov function V(t), the derivative of V(t) must have the
following inequality:

.
V(t) + αV ≤ 0 (30)

where α is a positive parameter.

If the input of the control is expressed as follows:

u = ueq + uN (31)

By using (26) and
.
s = 0, Equation (31) is written as:

u = −B−1
(

f (x) +
λp
q

x2x
p−q

q
1 + ksign(s)

)
(32)

Define a positive-definite Lyapunov function as:

V(t) =
1
2

s2 (33)

Deriving (33) with respect to time and using (29), one obtains:

.
V(t) = s

(
f (x) + Bu(t) +

λp
q

x2x
p−q

q
1 + δx

)
(34)

By substituting the control law (32) in the above equation and considering Assumption 1,
Lemma 1 is proven.

The nonlinear sliding surface (27) converges to the origin in the finite time. By consid-
ering s = 0, we have:

dx1

−λx
p
q
1

= −λdt (35)

Integrating (35) from both sides yields:

0∫
x1(tr)

x
−p
q

1 dx1 =

ts∫
0

−λdt (36)

where tr =
|s(0)|

α

ts =
qx1(tr)

q−p
q

λ(q− p)
(37)
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The performance of the TSMC approach in the presence of external disturbance can
further be improved by using an adaptive barrier function. By employing the barrier
function, the control law can be defined as follows [52,53]:

u = −B−1
(

f (x) +
λp
q

x2x
p−q

q
1 + (k + ϕ̂)sign(s)

)
(38)

where

ϕ̂(t) =
{

ϕa 0 < t < t
ϕpsd t > t (39)

t is defined as the time that trajectories are consolidated to the surroundings of the TSM
sliding surface (27). The adaptation rule by positive semidefinite barrier functions is
provided as: { .

ϕa = µ‖s‖
ϕpsd = ‖s‖

ε−‖s‖
(40)

where µ and ε are positive constants.
Using ϕ̂(t) causes state trajectories to reach the neighborhood ε of the TSM sliding

surface in t. For a time larger than t, ϕ̂(t) is switched to the positive semidefinite part,
which reduces the convergence region. The stability is analyzed in two statuses: one for the
0 < t < t condition and the other for t > t.

Theorem 1. Consider the nonlinear system (26) and the nonlinear TSMC surface (27). The
adaptive control law (38) with the adaptation condition ϕ̂(t) = ϕa from (39) satisfies the finite time
tracking purpose of the states of nonlinear system (26).

Proof. Consider a Lyapunov function that is expressed as follows:

v1 =
1
2
(sTs + ζ−1

(
ϕa − ϕ)2

)
(41)

where ζ and ϕ are two positive constants.
The time derivative of v1 is as follows:

.
v1 = sT .

s + ζ−1(ϕa − ϕ)
.
ϕa) (42)

By placing (29) and
.

ϕa in the above equation, (43) is obtained

.
v1 = sT( f (x) + Bu(t) +

λp
q

x2x
p−q

q
1 + δx) +

(
ζ−1µ(ϕa − ϕ)‖s‖

)
(43)

By substituting the adaptive control law in the above equation, we have:

.
v1 = sT(δx − (ϕ̂ + k)sign(s)) +

(
µζ−1(ϕa − ϕ)‖s‖

)
≤ −k‖s‖+ ‖s‖‖δx‖ − sT ϕasign(s) + µζ−1(ϕa − ϕ)‖s‖
≤ ‖δx‖‖s‖ − ϕa‖s‖+ µζ−1(ϕa − ϕ)‖s‖) + ϕ‖s‖ − ϕ‖s‖

≤ −(ϕ− ‖δx‖)‖s‖ −
(
1− µζ−1)(ϕa − ϕ)‖s‖

(44)

If ϕ− ‖δx‖ > 0 and µζ−1 < 1, Equation (44) can be expressed as:

.
v1 ≤ −

√
2(ϕ− ‖δx‖) ‖s‖√2

−
√

2ζ
(
1− µζ−1)‖s‖ ϕa−ϕ√

2ζ

≤ −min
{√

2(ϕ− ‖δx‖),
√

2ζ
(
1− µζ−1)‖s‖}( ‖s‖√

2
+ ‖ϕa−ϕ‖√

2ζ
) ≤ −ρ1v0.5

1

ρ1 = min
{√

2(ϕ− ‖δx‖),
√

2ζ
(
1− µζ−1)‖s‖} > 0

(45)

�
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Theorem 2. Consider the nonlinear system (26) and nonlinear TSMC surface (27). The adaptive
control law (38) with the adaptation law ϕ̂(t) = ϕpsd from (39) can prove finite time tracking
performance of the states of nonlinear system (26).

Proof. Consider a Lyapunov function as follows:

v2 =
1
2
(sTs +

(
ϕpsd − ϕpsd(0))

2
)

(46)

After differentiating from (46), we have:

.
v2 = sT .

s +
(

ϕpsd − ϕpsd(0)
) .

ϕpsd (47)

By placing (29) and ϕ(0) = 0 in the above equation, (48) is obtain:

.
v2 = sT

(
f (x) + Bu(t) +

λp
q

x2x
p−q

q
1 + δx

)
+ ϕpsd

.
ϕpsd (48)

By substituting the adaptive control law in (48), we have:

.
v2 = sT{δx −

(
ϕpsd + k

)
sign(s)

}
+ ϕpsdε(ε− ‖s‖)−2sign(s)

.
s

≤ −k‖s‖+ ‖δx‖‖s‖ − ϕpsd‖s‖+ ϕpsd ε(ε− ‖s‖)−2sign(s)
{

δx −
(

ϕpsd + k
)
ign(s)

}
≤ −k(‖s‖+ ϕpsdε(ε− ‖s‖)−2)−

(
ϕpsd − ‖δx‖

)
‖s‖ − ε(ε− ‖s‖)−2{ϕpsd − ‖δx‖

}
ϕpsd

(49)

If ϕpsd > ‖δx‖ and ε(ε− ‖s‖)−2 > 0, Equation (49) can be expressed as:

.
v2 ≤ −

√
2
(

ϕpsd − ‖δx‖
)
‖s‖√

2
−
√

2 ε(ε− ‖s‖)−2
{

ϕpsd − ‖δx‖
}

ϕpsd√
2

≤ −
(

ϕpsd − ‖δx‖
)

min{1, ε(ε− ‖s‖)−2}
(
‖s‖√

2
+

ϕpsd√
2

)
≤ −ρ2v0.5

2

ρ2 =
√

2
(

ϕpsd − ‖δx‖
)

min{1, ε(ε− ‖s‖)−2}

(50)

�

5. Simulation Results

In this section, the performance of the adaptive robust controller is analyzed using a
simulation study. To demonstrate the ability of the proposed controller to control seizures,
different patient modes were considered using different pathological parameters. The
proposed approach is compared to the approach in [37], which employs a nonsingular
integral terminal sliding mode (NITSMC). The dynamics of the sliding surfaces for both
approaches are depicted in Figure 6.
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As shown in Figure 8, Vs is the epileptic state after applying the ABTSM controller in
the presence of disturbance and uncertainty, tracking the healthy state well. The proposed
approach performance is compared with the approach proposed in [37]. The tracking error
in the ABTSMC technique is less.
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Figure 8. Tracking the healthy state of soma potential by ABTSM and NITSMC.

Mean square error (MSE), IAE and ISV criteria are examined in Table 2 and confirm
the performance of the proposed method. The error of the proposed method is very small
and close to zero. The error waveform after applying ABTSMC and NITSMC is shown in
Figure 9.

Table 2. Comparison between two control methods.

Controller MSE IAE ISV (u) Chattering
Phenomenon

ABTSMC 0.01475 1.132 2.138 No

Method [37] 0.02095 1.967 3.792 No
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All the obtained results confirm the performance of the proposed approach in the finite
time convergence of the system outputs to the desired states and chattering-free dynamics.

6. Conclusions

This paper proposed a ABTSMC based on the PR model to control epileptic seizures.
The approach can eliminate the uncertainty and external disturbance effects. This approach
achieves three main objectives: (1) TSMC convergence to the reference value occurs in
finite time, (2) chattering-free dynamics and (3) using the adaptive barrier function without
needing any information about the boundary of disturbances decreases the error and further
improves system response. The performance analysis and simulation results confirmed the
effectiveness of this technique to control seizures. In our further work, we suggest using
the hyperbolic tangent and fuzzy with adaptive barrier function higher sliding mode.

Author Contributions: Conceptualization, Z.M., M.T.V. and S.M.; formal analysis, S.M., T.R., Z.M.
and M.T.V.; funding acquisition, T.R.; investigation, S.M., T.R., Z.M. and M.T.V.; methodology,
Z.M. and S.M.; writing—original draft, Z.M., M.T.V. and S.M.; writing—review and editing and
supervision, S.M., T.R., Z.M. and M.T.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by Chiang Mai University.
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Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The parameter values of the PR model are taken from [45] and are given in Table A1.

Table A1. Parameter values for the Pinsky–Rinzel model.

Symbol Quantity Value Unit Symbol Quantity Value Unit

ELa Equilibrium potential −65 mV gc Conductance 1 mS
cm2

ENa Equilibrium potential −55 mV gNaP Conductance 0.12 mS
cm2

EK Equilibrium potential −90 mV gKS Conductance 0.7 mS
cm2

Cm Membrane capacitance 1 µF
cm2 gK Conductance 20 mS

cm2

gL Conductance 0.18 mS
cm2 P Compartment coupling 0.15 _

gNa Conductance 55 mS
cm2

References
1. Li, X.; Yang, H.; Yan, J.; Wang, X.; Yuan, Y.; Li, X. Seizure control by low-intensity ultrasound in mice with temporal lobe epilepsy.

Epilepsy Res. 2019, 154, 1–7. [CrossRef] [PubMed]
2. Magiorkinis, E.; Sidiropoulou, K.; Diamantis, A. Hallmarks in the history of epilepsy: Epilepsy in antiquity. Epilepsy Behav. 2010,

17, 103–108. [CrossRef]
3. Sun, M.; Wang, F.; Min, T.; Zang, T.; Wang, Y. Prediction for high risk clinical symptoms of epilepsy based on deep learning

algorithm. IEEE Access 2018, 6, 77596–77605. [CrossRef]
4. Ge, M.; Guo, J.; Xing, Y.; Feng, Z.; Lu, W.; Ma, X.; Geng, Y.; Zhang, X. Transient reduction in theta power caused by interictal spikes

in human temporal lobe epilepsy. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 4256–4259.

5. Nakahara, S.; Adachi, M.; Ito, H.; Matsumoto, M.; Tajinda, K.; van Erp, T.G. Hippocampal pathophysiology: Commonality shared
by temporal lobe epilepsy and psychiatric disorders. Neurosci. J. 2018, 2018, 4852359. [CrossRef] [PubMed]

http://doi.org/10.1016/j.eplepsyres.2019.04.002
http://www.ncbi.nlm.nih.gov/pubmed/31002886
http://doi.org/10.1016/j.yebeh.2009.10.023
http://doi.org/10.1109/ACCESS.2018.2883562
http://doi.org/10.1155/2018/4852359
http://www.ncbi.nlm.nih.gov/pubmed/29610762


Mathematics 2022, 10, 2940 12 of 13

6. Al-Otaibi, F.; Baeesa, S.S.; Parrent, A.G.; Girvin, J.P.; Steven, D. Surgical techniques for the treatment of temporal lobe epilepsy.
Epilepsy Res. Treat. 2012, 2012, 374848. [CrossRef]

7. Blair, R.D. Temporal lobe epilepsy semiology. Epilepsy Res. Treat. 2012, 2012, 751510. [CrossRef] [PubMed]
8. Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult epilepsy. Lancet 2006, 367, 1087–1100. [CrossRef]
9. Sisodiya, S.; Lin, W.R.; Harding, B.; Squier, M.; Thom, M. Drug resistance in epilepsy: Expression of drug resistance proteins in

common causes of refractory epilepsy. Brain 2002, 125, 22–31. [CrossRef]
10. Bonelli, S.B.; Thompson, P.J.; Yogarajah, M.; Powell, R.H.; Samson, R.S.; McEvoy, A.W.; Symms, M.R.; Koepp, M.J.; Duncan,

J.S. Memory reorganization following anterior temporal lobe resection: A longitudinal functional MRI study. Brain 2013, 136,
1889–1900. [CrossRef] [PubMed]

11. Mansouri, A.; Fallah, A.; Valiante, T.A. Determining surgical candidacy in temporal lobe epilepsy. Epilepsy Res. Treat. 2012,
2012, 706917. [CrossRef] [PubMed]

12. Zangiabadi, N.; Ladino, L.D.; Sina, F.; Orozco-Hernández, J.P.; Carter, A.; Téllez-Zenteno, J.F. Deep brain stimulation and
drug-resistant epilepsy: A review of the literature. Front. Neurol. 2019, 10, 601. [CrossRef]

13. Hodgkin, A.L.; Huxley, A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J.
Physiol. 1952, 116, 449. [CrossRef]

14. Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [CrossRef]
15. Kriegeskorte, N.; Douglas, P.K. Cognitive computational neuroscience. Nat. Neurosci. 2018, 21, 1148–1160. [CrossRef]
16. Liley, D.T.; Cadusch, P.J.; Wright, J.J. A continuum theory of electro-cortical activity. Neurocomputing 1999, 26, 795–800. [CrossRef]
17. Pinsky, P.F.; Rinzel, J. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1994,

1, 39–60. [CrossRef]
18. Suffczynski, P.; Kalitzin, S.; Da Silva, F.L. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal

network. Neuroscience 2004, 126, 467–484. [CrossRef]
19. Ullah, G.; Schiff, S.J. Tracking and control of neuronal Hodgkin-Huxley dynamics. Phys. Rev. E 2009, 79, 040901. [CrossRef]
20. Chen, B.-S.; Li, C.-W. Robust observer-based tracking control of hodgkin-huxley neuron systems under environmental distur-

bances. Neural Comput. 2010, 22, 3143–3178. [CrossRef]
21. Chen, S.; Yang, R. Control of repetitive firing in Hindmarsh-Rose model based on Krasovskii theorem. In Proceedings of the 2016

International Conference on Advanced Robotics and Mechatronics (ICARM), Macau, China, 18–20 August 2016; pp. 405–408.
22. Soltan, A.; Xia, L.; Jackson, A.; Chester, G.; Degenaar, P. Fractional order PID system for suppressing epileptic activities. In

Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018;
pp. 338–341.

23. Deng, B.; Li, G.; Wang, J.; Wei, X.; Su, F. Dynamic control of seizure states with input-output linearization method based on
the Pinsky-Rinzel model. In Proceedings of the 2014 7th International Conference on Biomedical Engineering and Informatics,
Fukuoka, Japan, 26–28 November 2014; pp. 425–430.

24. Sinha, S.; Ditto, W.L. Controlling neuronal spikes. Phys. Rev. E 2001, 63, 056209. [CrossRef]
25. Wei, W.; Wei, X.; Zuo, M.; Yu, T.; Li, Y. Seizure control in a neural mass model by an active disturbance rejection approach. Int. J.

Adv. Robot. Syst. 2019, 16, 1729881419890152. [CrossRef]
26. Selvaraj, P.; Sleigh, J.W.; Freeman, W.J.; Kirsch, H.E.; Szeri, A.J. Open loop optogenetic control of simulated cortical epileptiform

activity. J. Comput. Neurosci. 2014, 36, 515–525. [CrossRef]
27. Edwards, C.; Spurgeon, S. Sliding Mode Control: Theory and Applications; CRC Press: Boca Raton, FL, USA, 1998.
28. Khalil, H.K. Nonlinear Systems Third Edition; Patience Hall: Hoboken, NJ, USA, 2002; Volume 115.
29. Utkin, V.I. Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 1993, 40, 23–36.

[CrossRef]
30. Rojsiraphisal, T.; Mobayen, S.; Asad, J.H.; Vu, M.T.; Chang, A.; Puangmalai, J. Fast terminal sliding control of underactuated

robotic systems based on disturbance observer with experimental validation. Mathematics 2021, 9, 1935. [CrossRef]
31. Mirzaei, A.; Ozgoli, S.; Jajarm, A.E. Chaotic analysis of the human brain cortical model and robust control of epileptic seizures

using sliding mode control. Syst. Sci. Control Eng. Open Access J. 2014, 2, 216–227. [CrossRef]
32. Mobayen, S. Design of LMI-based global sliding mode controller for uncertain nonlinear systems with application to Genesio’s

chaotic system. Complexity 2015, 21, 94–98. [CrossRef]
33. Mobayen, S. An LMI-based robust controller design using global nonlinear sliding surfaces and application to chaotic systems.

Nonlinear Dyn. 2015, 79, 1075–1084. [CrossRef]
34. Wu, Y.; Yu, X.; Man, Z. Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 1998, 34, 281–287.

[CrossRef]
35. Zhihong, M.; Yu, X.H. Terminal sliding mode control of MIMO linear systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl.

1997, 44, 1065–1070. [CrossRef]
36. Puangmalai, J.; Tongkum, J.; Rojsiraphisal, T. Finite-time stability criteria of linear system with non-differentiable time-varying

delay via new integral inequality. Math. Comput. Simul. 2020, 171, 170–186. [CrossRef]
37. Qian, M.; Zhang, Z.; Zhong, G.; Bo, C. A novel nonsingular integral terminal sliding mode control scheme in epilepsy treatment.

Trans. Inst. Meas. Control 2022, 44, 1194–1204. [CrossRef]

http://doi.org/10.1155/2012/374848
http://doi.org/10.1155/2012/751510
http://www.ncbi.nlm.nih.gov/pubmed/22957241
http://doi.org/10.1016/S0140-6736(06)68477-8
http://doi.org/10.1093/brain/awf002
http://doi.org/10.1093/brain/awt105
http://www.ncbi.nlm.nih.gov/pubmed/23715092
http://doi.org/10.1155/2012/706917
http://www.ncbi.nlm.nih.gov/pubmed/22957238
http://doi.org/10.3389/fneur.2019.00601
http://doi.org/10.1113/jphysiol.1952.sp004717
http://doi.org/10.1109/TNN.2003.820440
http://doi.org/10.1038/s41593-018-0210-5
http://doi.org/10.1016/S0925-2312(98)00149-0
http://doi.org/10.1007/BF00962717
http://doi.org/10.1016/j.neuroscience.2004.03.014
http://doi.org/10.1103/PhysRevE.79.040901
http://doi.org/10.1162/NECO_a_00053
http://doi.org/10.1103/PhysRevE.63.056209
http://doi.org/10.1177/1729881419890152
http://doi.org/10.1007/s10827-013-0484-2
http://doi.org/10.1109/41.184818
http://doi.org/10.3390/math9161935
http://doi.org/10.1080/21642583.2014.891448
http://doi.org/10.1002/cplx.21545
http://doi.org/10.1007/s11071-014-1724-3
http://doi.org/10.1016/S0167-6911(98)00036-X
http://doi.org/10.1109/81.641769
http://doi.org/10.1016/j.matcom.2019.06.013
http://doi.org/10.1177/01423312211050720


Mathematics 2022, 10, 2940 13 of 13

38. Rezvani Ardakani, S.; Mohammad-Ali-Nezhad, S.; Ghasemi, R. Epilepsy Control in a Combination of the Cortical and Optogenetic
Models using Fixed Time Integral Super Twisting Sliding Mode Controller. Iran. J. Biomed. Eng. 2019, 13, 273–289.

39. Chen, J.; Shuai, Z.; Zhang, H.; Zhao, W. Path following control of autonomous four-wheel-independent-drive electric vehicles
via second-order sliding mode and nonlinear disturbance observer techniques. IEEE Trans. Ind. Electron. 2020, 68, 2460–2469.
[CrossRef]

40. Alattas, K.A.; Mofid, O.; Alanazi, A.K.; Abo-Dief, H.M.; Bartoszewicz, A.; Bakouri, M.; Mobayen, S. Barrier Function Adaptive
Nonsingular Terminal Sliding Mode Control Approach for Quad-Rotor Unmanned Aerial Vehicles. Sensors 2022, 22, 909.
[CrossRef]

41. Mobayen, S.; Alattas, K.A.; Assawinchaichote, W. Adaptive continuous barrier function terminal sliding mode control technique
for disturbed robotic manipulator. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4403–4412. [CrossRef]

42. Obeid, H.; Fridman, L.M.; Laghrouche, S.; Harmouche, M. Barrier function-based adaptive sliding mode control. Automatica 2018,
93, 540–544. [CrossRef]

43. Kepecs, A.; Wang, X.-J. Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing 2000, 32, 181–187.
[CrossRef]

44. Schwartzkroin, P.A. Role of the hippocampus in epilepsy. Hippocampus 1994, 4, 239–242. [CrossRef]
45. Rahimian, E.; Zabihi, S.; Amiri, M.; Linares-Barranco, B. Digital implementation of the two-compartmental Pinsky–Rinzel

pyramidal neuron model. IEEE Trans. Biomed. Circuits Syst. 2017, 12, 47–57. [CrossRef]
46. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
47. Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect

seizure and epilepsy. IEEE Trans. Biomed. Eng. 2007, 54, 205–211. [CrossRef]
48. Mirzaei, A.; Ayatollahi, A.; Vavadi, H. Statistical analysis of epileptic activities based on histogram and wavelet-spectral entropy.

J. Biomed. Sci. Eng. 2011, 4, 207. [CrossRef]
49. Behnamgol, V.; Vali, A.R. Terminal sliding mode control for nonlinear systems with both matched and unmatched uncertainties.

Iran. J. Electr. Electron. Eng. 2015, 11, 109–117.
50. Feng, Y.; Yu, X.; Man, Z. Non-singular terminal sliding mode control of rigid manipulators. Automatica 2002, 38, 2159–2167.

[CrossRef]
51. Venkataraman, S.; Gulati, S. Control of nonlinear systems using terminal sliding modes. In Proceedings of the 1992 American

Control Conference, Chicago, IL, USA, 24–26 June 1992.
52. Alattas, K.A.; Mofid, O.; El-Sousy, F.F.; Alanazi, A.K.; Awrejcewicz, J.; Mobayen, S. Adaptive Nonsingular Terminal Sliding Mode

Control for Performance Improvement of Perturbed Nonlinear Systems. Mathematics 2022, 10, 1064. [CrossRef]
53. Mofid, O.; Mobayen, S.; Wong, W.-K. Adaptive terminal sliding mode control for attitude and position tracking control of

quadrotor UAVs in the existence of external disturbance. IEEE Access 2020, 9, 3428–3440. [CrossRef]

http://doi.org/10.1109/TIE.2020.2973879
http://doi.org/10.3390/s22030909
http://doi.org/10.1109/TCSI.2021.3101736
http://doi.org/10.1016/j.automatica.2018.03.078
http://doi.org/10.1016/S0925-2312(00)00162-4
http://doi.org/10.1002/hipo.450040302
http://doi.org/10.1109/TBCAS.2017.2753541
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.1109/TBME.2006.886855
http://doi.org/10.4236/jbise.2011.43029
http://doi.org/10.1016/S0005-1098(02)00147-4
http://doi.org/10.3390/math10071064
http://doi.org/10.1109/ACCESS.2020.3047659

	Introduction 
	Two-Compartmental (PR) Model 
	Analysis of Entropy 
	Adaptive Barrier Function Terminal Sliding Mode Control 
	Simulation Results 
	Conclusions 
	Appendix A
	References

