
Citation: Luo, Q.; Rao, Y. Improved

Sliding Algorithm for Generating

No-Fit Polygon in the 2D Irregular

Packing Problem. Mathematics 2022,

10, 2941. https://doi.org/10.3390/

math10162941

Academic Editor: Tihomir

Dovramadjiev

Received: 28 July 2022

Accepted: 10 August 2022

Published: 15 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Improved Sliding Algorithm for Generating No-Fit Polygon in
the 2D Irregular Packing Problem
Qiang Luo and Yunqing Rao *

School of Mechanical Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China
* Correspondence: ryq@hust.edu.cn

Abstract: This paper introduces an efficient and robust sliding algorithm for the creation of no-fit
polygons. The improved algorithm can cope with complex cases and is given an implementation in
detail. The proposed concept of a touching group can simplify the judging process when recognizing
the potential translation vector for an orbital polygon. In addition, the generation of the no-fit
polygon only involves three main steps based on the proposed concept. The proposed algorithm has
a mechanism that searches other start positions to generate a complete no-fit polygon for handling
complex cases. To improve the efficiency, many acceleration strategies have been proposed, such
as point exclusion strategy and point inclusion test. The robust and efficient performance of the
algorithm is tested by well-known benchmark instances and degenerate and complex cases, such as
holes, interlocking concavities and jigsaw-type pieces. Experimental results show that the proposed
algorithm can produce complete no-fit polygons for complex cases, and acceleration strategies can
reduce the creation time of no-fit polygon on benchmark instances by more than sixteen percent
on average.

Keywords: no-fit polygon; irregular packing problem; sliding algorithm; cutting; configuration
space obstacle

MSC: 90; 68; 51

1. Introduction

In the field of cutting and packing problems, there is a kind of problem known as the
two-dimensional (2D) irregular packing problem or the nesting problem. It is commonly en-
countered in many industries and applications, such as metal sheet cutting [1,2], leather [3],
clothing [4], paper [5] and spatial arrangement [6]. Through excellent algorithms to opti-
mize the packing, even a one percent increase in the material utilization rate will save lots
of resource costs for enterprises and generate huge economic benefits for the whole society.
Despite the many practical applications and benefits, the problem has received relatively
little attention in the literature when compared to the regular packing problem [7–9]. One
of the main reasons is that researchers have to deal with the geometry problem, which is
the first obstacle they encounter. This means that satisfying the constraint of having all
irregular pieces without overlapping is much harder than regular pieces.

Direct trigonometry involving line intersection and point inclusion testing is the
classic method to identify the positional relationship between two polygons. However, the
optimization algorithms will become inefficient when it adopts this method, which results
in the slightly poor performance of the algorithms. The alternative used in irregular packing
problems is the no-fit polygon (NFP), which is also used in the field of engineering and
robot motion planning and the aircraft parking stand allocation problem [10]. The no-fit
polygon facilitates the research of irregular packing problems [11–14]. It is an increasingly
popular option since it is more efficient than direct trigonometry, particularly when using
an iterative search. Determining whether polygons overlap, touch, or are separated only

Mathematics 2022, 10, 2941. https://doi.org/10.3390/math10162941 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10162941
https://doi.org/10.3390/math10162941
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10162941
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10162941?type=check_update&version=2

Mathematics 2022, 10, 2941 2 of 18

needs to conduct a simple test to identify whether the reference point is inside the NFP.
Essentially, the no-fit polygon describes the region in which two polygons intersect. The
computational efficiency gained by utilizing this method is very attractive. Hence, it is
important to develop an algorithm for creating NFP for the research of irregular packing
problems. The algorithm can enrich the application in 2D geometrical computer software.

However, there are few published works on algorithms for generating NFP. Note
the fact that developing a robust geometry library is still needed, and this task is very
time-consuming and difficult. Furthermore, it is difficult to develop a robust NFP generator
because of the complexity of irregular piece shapes. Thus, we propose an improved sliding
algorithm for the generation of NFP and give an implementation in detail of our algorithm.
Such an algorithm can become good preparation for applying more strategies to solve
the irregular packing problem. For instance, in the work published by Costa et al. [15], if
the NFP algorithm is efficient, it can directly calculate the new merged piece instead of
approximating by one already computed because of this time-consuming operation. In
other words, the more efficient the algorithm is, the better.

The proposed algorithm only involves two simple geometric stages. The first is
generating the external NFP between two polygons, which includes three main steps:
finding the touching group, determining the translation vector from all touching groups
and computing the translation distance. The second stage is searching on the unvisited
edges to determine whether there is a feasible starting point that can be found. If the
starting point is available, then return to the first stage to generate the NFP.

The contributions of this study are:

• To address the problem of the efficient and robust creation of the no-fit polygon;
• To propose an improved sliding algorithm and provide a detailed implementation;
• To present the concept of touching group, resulting in the number of cases to consider

being reduced by half when determining the feasible translation vector;
• To develop many acceleration strategies to improve the algorithm’s efficiency, such as

the point exclusion strategy, the right side test, and the point inclusion test;
• To assess the performance of the proposed algorithm using the benchmark instances,

degenerate and complex cases;
• To help the further dissemination of using the no-fit polygon within both the industrial

and academic communities.

The remainder of this paper is organized as follows. Section 2 provides an overview
of NFP, including the definition and approaches. The proposed algorithm is exhaustively
introduced in Section 3. The results obtained by our approach are presented and compared
in Section 4. The final section discusses the conclusions.

2. Overview for No-Fit Polygon

In this section, we describe the definition and properties of the NFP in detail and
briefly introduce some approaches that have been used to produce NFP within the previous
literature.

2.1. Definition and Properties

Considering that the position of polygon A is fixed, the no-fit polygon between
polygons A and B is the polygon described by the locus of points, where, if the reference
point of polygon B is placed, then the polygons are in contact. We denote the no-fit polygon
between two polygons A and B by NFPAB. Figure 1a shows an example of a no-fit polygon.
Its properties are as follows. If the reference point of B lies within the NFPAB, A overlaps B,
as B1 shows in Figure 1b. If the reference point of B is on the boundary of the NFPAB, A
touches B without overlap, as B2 shows in Figure 1b. If the reference point of B is outside
the NFPAB, A and B are separated, as B3 shows in Figure 1b.

Mathematics 2022, 10, 2941 3 of 18

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 18

In conclusion, the no-fit polygon describes the region in which two polygons inter-
sect.

(a) (b)

Figure 1. (a) Polygons A, B and construction of NFPAB and (b) The properties of the no-fit polygon.

2.2. Approaches for Generating NFP
Here, the main techniques that have previously been used for the creation of no-fit

polygons in the literature are briefly reviewed; please see the literature [16] for more de-
tails. Note that it is easy to generate a no-fit polygon when both polygons are convex.
Given two convex shapes, A and B, the no-fit polygon is generated by the following steps:
(i) shape A is anticlockwise, and shape B is clockwise (see Figure 2a); (ii) all edges from A
and B are translated to a single point (see Figure 2b); these edges are connected in anti-
clockwise order to yield the no-fit polygon (see Figure 2c).

(a) (b) (c)

Figure 2. Method of generating a no-fit polygon with convex polygons. (a) Polygons A and B; (b)
All edges are moved to a single point; (c) Generation of NFPAB

It is very simple and extremely quick to use a standard sorting algorithm in combi-
nation with edge reordering through translation. However, no-fit polygons cannot be gen-
erated for non-convex shapes when using this method. Thus, other approaches are
needed.

2.2.1. Decomposition and Phi-Function
Given the complexity of obtaining the NFP when a polygon is non-convex, one of the

alternative methods is decomposition. Fast no-fit polygon creation methods can be ap-
plied if a polygon with concavities can be decomposed into convex sub-polygons. Seidal
[17] suggested a fast polygon triangulation algorithm that has an O(nlogn) complexity.
Watson and Tobias [18] proposed decomposing a simple polygon into a set of convex
polygons by cutting between pairs of concave vertices, while Li and Milenkovic [19] de-
composed a polygon into star-shaped polygons. When an irregular polygon has been de-
composed into manageable shapes, the NFPs are generated by passing each sub-polygons
of shape B around each sub-polygons of shape A, and finally combining the NFPs of the
sub-polygons to generate the NFP of the two original polygons.

Figure 1. (a) Polygons A, B and construction of NFPAB and (b) The properties of the no-fit polygon.

In conclusion, the no-fit polygon describes the region in which two polygons intersect.

2.2. Approaches for Generating NFP

Here, the main techniques that have previously been used for the creation of no-fit
polygons in the literature are briefly reviewed; please see the literature [16] for more details.
Note that it is easy to generate a no-fit polygon when both polygons are convex. Given two
convex shapes, A and B, the no-fit polygon is generated by the following steps: (i) shape
A is anticlockwise, and shape B is clockwise (see Figure 2a); (ii) all edges from A and B
are translated to a single point (see Figure 2b); these edges are connected in anticlockwise
order to yield the no-fit polygon (see Figure 2c).

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 18

In conclusion, the no-fit polygon describes the region in which two polygons inter-
sect.

(a) (b)

Figure 1. (a) Polygons A, B and construction of NFPAB and (b) The properties of the no-fit polygon.

2.2. Approaches for Generating NFP
Here, the main techniques that have previously been used for the creation of no-fit

polygons in the literature are briefly reviewed; please see the literature [16] for more de-
tails. Note that it is easy to generate a no-fit polygon when both polygons are convex.
Given two convex shapes, A and B, the no-fit polygon is generated by the following steps:
(i) shape A is anticlockwise, and shape B is clockwise (see Figure 2a); (ii) all edges from A
and B are translated to a single point (see Figure 2b); these edges are connected in anti-
clockwise order to yield the no-fit polygon (see Figure 2c).

(a) (b) (c)

Figure 2. Method of generating a no-fit polygon with convex polygons. (a) Polygons A and B; (b)
All edges are moved to a single point; (c) Generation of NFPAB

It is very simple and extremely quick to use a standard sorting algorithm in combi-
nation with edge reordering through translation. However, no-fit polygons cannot be gen-
erated for non-convex shapes when using this method. Thus, other approaches are
needed.

2.2.1. Decomposition and Phi-Function
Given the complexity of obtaining the NFP when a polygon is non-convex, one of the

alternative methods is decomposition. Fast no-fit polygon creation methods can be ap-
plied if a polygon with concavities can be decomposed into convex sub-polygons. Seidal
[17] suggested a fast polygon triangulation algorithm that has an O(nlogn) complexity.
Watson and Tobias [18] proposed decomposing a simple polygon into a set of convex
polygons by cutting between pairs of concave vertices, while Li and Milenkovic [19] de-
composed a polygon into star-shaped polygons. When an irregular polygon has been de-
composed into manageable shapes, the NFPs are generated by passing each sub-polygons
of shape B around each sub-polygons of shape A, and finally combining the NFPs of the
sub-polygons to generate the NFP of the two original polygons.

Figure 2. Method of generating a no-fit polygon with convex polygons. (a) Polygons A and B; (b) All
edges are moved to a single point; (c) Generation of NFPAB.

It is very simple and extremely quick to use a standard sorting algorithm in com-
bination with edge reordering through translation. However, no-fit polygons cannot
be generated for non-convex shapes when using this method. Thus, other approaches
are needed.

2.2.1. Decomposition and Phi-Function

Given the complexity of obtaining the NFP when a polygon is non-convex, one of the
alternative methods is decomposition. Fast no-fit polygon creation methods can be applied
if a polygon with concavities can be decomposed into convex sub-polygons. Seidal [17]
suggested a fast polygon triangulation algorithm that has an O(nlogn) complexity. Watson
and Tobias [18] proposed decomposing a simple polygon into a set of convex polygons
by cutting between pairs of concave vertices, while Li and Milenkovic [19] decomposed
a polygon into star-shaped polygons. When an irregular polygon has been decomposed
into manageable shapes, the NFPs are generated by passing each sub-polygons of shape B
around each sub-polygons of shape A, and finally combining the NFPs of the sub-polygons
to generate the NFP of the two original polygons.

Mathematics 2022, 10, 2941 4 of 18

Although the decomposition method can tackle non-convex polygons, it also creates
two further issues: efficient decomposition and robust recombination of the sub-NFPs.
Agarwal et al. [20] conducted an extensive investigation into different decomposition and
recombination operations with respect to constructing Minkowski sums of non-convex
polygons. There are further challenges in the recombination operations. If edges from two
sub-NFPs coincide or cross in and out of each other, careful analysis must be performed
to identify whether these edges are part of the boundary of the NFP. Particular difficulty
occurs if the original shapes contain holes, as it is unclear whether intersecting no-fit
polygon subsections define holes or regions that can be discarded.

The Phi-function was conceived and applied by Stoyan et al. [21,22]. It is a series of
mathematical expressions that represent the positional relationships of two objects. Specif-
ically, if the value of the phi-function is greater than zero, then the objects are separated;
equal to zero, then their boundaries touch; and less than zero, then they overlap, and the
value should represent the Euclidean distance between the two objects. Stoyan et al. [21]
analytically construct phi-functions for all primary objects (rectangles, circles and other con-
vex polygons) and define mathematical intersection relationships for non-convex polygons
through the union, intersection and complement of primary objects. Later, the authors [22]
further develop phi-functions for all 2D objects that are formed by linear segments and
circular arcs. This approach appears to have great potential for contributing to the field of
nesting problems. However, the lack of an algorithmic process of obtaining the phi-function
becomes a barrier to a wider adoption of this approach.

2.2.2. Minkowski Sums and Sliding Algorithm

The concept of Minkowski sums is as follows: given two arbitrary point sets, A and B,
the Minkowski sum of A and B is defined by the following: A ⊕ B = {a + b: a ∈ A, b ∈ B}. To
produce no-fit polygons, we must use the Minkowski difference, A ⊕ −B. In addition, it
requires a non-mathematical implementation of this methodology.

Ghosh developed a set of boundary addition theorems for both the convex case and
non-convex case. See Ghosh [23] for a detailed explanation of these theorems. Later,
Bennell et al. [24] proposed an approach that extracts key elements of Ghosh’s method and
develops a set of algorithmic steps that produce the NFP. However, their approach cannot
deal with internal holes, as it is difficult to detect which of the internal no-fit polygon edges
can be discarded and which form the internal no-fit regions. Therefore, Bennell et al. [25]
presented some modifications to provide a more robust approach. Dean [26] also presented
an extension of Ghosh’s NFP algorithm.

The Minkowski sums methodology is an effective approach to produce the NFP of two
polygons. However, many exceptional cases need to be considered, making this method
slightly complex and hard to understand.

The first discussion and implementation of a sliding algorithm is detailed in Ma-
hadevan’s Ph.D. thesis [27]. The key points of Mahadevan’s approach include three main
steps: calculation of touching vertices and edges, determination of the translation vector
and calculation of the translation length. Later, Whitwell et al. [28] proposed some im-
provements for Mahadevan’s approach, and the robustness of the previous algorithm was
enhanced. Based on the previously published literature, we propose a more efficient and
robust sliding algorithm for the generation of NFP. All known degenerate cases can be
successfully addressed, and many benchmark instances are tested. In addition, inspired by
the interaction of the two polygons and the definition of the no-fit polygon, Liu et al. [29]
proposed a different approach for no-fit polygon calculation.

3. Improved Sliding Algorithm

The sliding algorithm derives from the definition of a no-fit polygon, which is the trac-
ing movement. The core of this methodology is selecting the correct direction of translation
according to the touching case of two polygons and then calculating the translation distance.
This is an iterative procedure, and each iteration will create an edge of the no-fit polygon.

Mathematics 2022, 10, 2941 5 of 18

3.1. The Concept of Touching Group

In this paper, we assume that A is the fixed polygon, B is the orbital polygon and both
polygons are anti-clockwise. Based on the observation, there are three possibilities of a
touching case: (a) polygons A and B touch at a vertex, (b) a vertex of polygon A touches the
middle of the edge of polygon B or (c) a vertex of polygon B touches the middle of the edge
of polygon A. These cases are depicted in Figure 3.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 18

3. Improved Sliding Algorithm
The sliding algorithm derives from the definition of a no-fit polygon, which is the

tracing movement. The core of this methodology is selecting the correct direction of trans-
lation according to the touching case of two polygons and then calculating the translation
distance. This is an iterative procedure, and each iteration will create an edge of the no-fit
polygon.

3.1. The Concept of Touching Group
In this paper, we assume that A is the fixed polygon, B is the orbital polygon and

both polygons are anti-clockwise. Based on the observation, there are three possibilities of
a touching case: (a) polygons A and B touch at a vertex, (b) a vertex of polygon A touches
the middle of the edge of polygon B or (c) a vertex of polygon B touches the middle of the
edge of polygon A. These cases are depicted in Figure 3.

(a) (b) (c)

Figure 3. Three touching cases of two polygons. (a) First touching case; (b) Second touching case; (c)
Third touching case.

Each case results in one type of touching group (see Figure 4). It consists of three or four
oriented edges from polygons A and B. The adjacent edges that form the vertex of the polygon
will be recorded, and the oriented edge touched in the middle by a vertex from another poly-
gon is also recorded. Thus, the touching group has four edges (d, c, e, f), three edges (d, c, f) and
three edges (f, g, d) in case (a), case (b) and case (c), respectively. It is very easy to recognize the
potential translation vector for each touching group when using this concept of a touching
group, resulting in simplification of the judging process compared with Whitwell’s method.
For instance, we can easily identify the oriented edge d as the translation vector for polygon B
in Figure 4c.

(a) (b) (c)

Figure 4. Three types of touching groups. (a) First type of touching group; (b) Second type of touching
group; (c) Third type of touching group.

3.2. Creation of No-Fit Polygon
The process of creating NFP in the improved sliding algorithm can be broken down into

the three subparts, which will be discussed in turn: finding touching groups, determining the
translation vector from all touching groups and computing the translation distance.

Figure 3. Three touching cases of two polygons. (a) First touching case; (b) Second touching case;
(c) Third touching case.

Each case results in one type of touching group (see Figure 4). It consists of three or
four oriented edges from polygons A and B. The adjacent edges that form the vertex of the
polygon will be recorded, and the oriented edge touched in the middle by a vertex from
another polygon is also recorded. Thus, the touching group has four edges (d, c, e, f), three
edges (d, c, f) and three edges (f, g, d) in case (a), case (b) and case (c), respectively. It is very
easy to recognize the potential translation vector for each touching group when using this
concept of a touching group, resulting in simplification of the judging process compared
with Whitwell’s method. For instance, we can easily identify the oriented edge d as the
translation vector for polygon B in Figure 4c.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 18

3. Improved Sliding Algorithm
The sliding algorithm derives from the definition of a no-fit polygon, which is the

tracing movement. The core of this methodology is selecting the correct direction of trans-
lation according to the touching case of two polygons and then calculating the translation
distance. This is an iterative procedure, and each iteration will create an edge of the no-fit
polygon.

3.1. The Concept of Touching Group
In this paper, we assume that A is the fixed polygon, B is the orbital polygon and

both polygons are anti-clockwise. Based on the observation, there are three possibilities of
a touching case: (a) polygons A and B touch at a vertex, (b) a vertex of polygon A touches
the middle of the edge of polygon B or (c) a vertex of polygon B touches the middle of the
edge of polygon A. These cases are depicted in Figure 3.

(a) (b) (c)

Figure 3. Three touching cases of two polygons. (a) First touching case; (b) Second touching case; (c)
Third touching case.

Each case results in one type of touching group (see Figure 4). It consists of three or four
oriented edges from polygons A and B. The adjacent edges that form the vertex of the polygon
will be recorded, and the oriented edge touched in the middle by a vertex from another poly-
gon is also recorded. Thus, the touching group has four edges (d, c, e, f), three edges (d, c, f) and
three edges (f, g, d) in case (a), case (b) and case (c), respectively. It is very easy to recognize the
potential translation vector for each touching group when using this concept of a touching
group, resulting in simplification of the judging process compared with Whitwell’s method.
For instance, we can easily identify the oriented edge d as the translation vector for polygon B
in Figure 4c.

(a) (b) (c)

Figure 4. Three types of touching groups. (a) First type of touching group; (b) Second type of touching
group; (c) Third type of touching group.

3.2. Creation of No-Fit Polygon
The process of creating NFP in the improved sliding algorithm can be broken down into

the three subparts, which will be discussed in turn: finding touching groups, determining the
translation vector from all touching groups and computing the translation distance.

Figure 4. Three types of touching groups. (a) First type of touching group; (b) Second type of
touching group; (c) Third type of touching group.

3.2. Creation of No-Fit Polygon

The process of creating NFP in the improved sliding algorithm can be broken down
into the three subparts, which will be discussed in turn: finding touching groups, deter-
mining the translation vector from all touching groups and computing the translation
distance.

3.2.1. Find the Touching Group

The creation of a no-fit polygon starts with the operation of finding the touching group
between two polygons. The ability to correctly find touching edges is vital to the sliding
approach because the remaining two subparts are based on this. This is achieved by testing
each edge of fixed polygon A against each edge of orbital polygon B. Note that it only needs
to test whether the starting point of the edge touches the starting point or the middle of the
edge from another polygon. For example, in Figure 3a, the starting point of edge d touches

Mathematics 2022, 10, 2941 6 of 18

the starting point of edge f. In Figure 3b, the starting point of edge d touches in the middle
of edge f. The touching groups found in this step will be stored in a list, referred to here as
the T list.

3.2.2. Determine Translation Vector

(i) Recognize the potential translation vector

The first step is to recognize the potential translation vector from each touching group
in the T list. For the first type of touching group, as shown in Figure 4a, only the edge
pair in which the starting point coincides is considered. If the ending point of edge f from
the orbital polygon is on the left side of another edge d from the fixed polygon, edge f is
the potential translation vector. Otherwise, edge d is the potential translation vector. As
shown in Figure 5a, the ending point of edge f is on the left side of edge d, so the potential
translation vector is edge f. As shown in Figure 5b, the potential translation vector is edge
d because the ending point of edge g is on the right side of edge d or these two edges are
parallel. Note that the oriented edge needs to be reversed if it derives from the orbital
polygon. For example, edge f should reverse in Figure 5a. For the second and third types
of touching groups, the potential translation vector is the edge where the vertex touches
(see Figure 4b,c, edges f and d).

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 18

3.2.1. Find the Touching Group
The creation of a no-fit polygon starts with the operation of finding the touching

group between two polygons. The ability to correctly find touching edges is vital to the
sliding approach because the remaining two subparts are based on this. This is achieved
by testing each edge of fixed polygon A against each edge of orbital polygon B. Note that
it only needs to test whether the starting point of the edge touches the starting point or
the middle of the edge from another polygon. For example, in Figure 3a, the starting point
of edge d touches the starting point of edge f. In Figure 3b, the starting point of edge d
touches in the middle of edge f. The touching groups found in this step will be stored in a
list, referred to here as the T list.

3.2.2. Determine Translation Vector

(i) Recognize the potential translation vector

The first step is to recognize the potential translation vector from each touching
group in the T list. For the first type of touching group, as shown in Figure 4a, only the
edge pair in which the starting point coincides is considered. If the ending point of edge f
from the orbital polygon is on the left side of another edge d from the fixed polygon, edge
f is the potential translation vector. Otherwise, edge d is the potential translation vector.
As shown in Figure 5a, the ending point of edge f is on the left side of edge d, so the
potential translation vector is edge f. As shown in Figure 5b, the potential translation vec-
tor is edge d because the ending point of edge g is on the right side of edge d or these two
edges are parallel. Note that the oriented edge needs to be reversed if it derives from the
orbital polygon. For example, edge f should reverse in Figure 5a. For the second and third
types of touching groups, the potential translation vector is the edge where the vertex
touches (see Figure 4b,c, edges f and d).

(a) (b)

Figure 5. Method of recognizing the potential translation vector; (a) Derived from edge f; (b) Derived
from edge d.

(ii) Determine the feasible translation vector

Each touching group in the T list produces a potential translation vector, but not all
of them are feasible. In other words, the orbital polygon translating along the vector may
intersect with the fixed polygon. For instance, assuming that the touching case of two pol-
ygons is as shown in Figure 6, there are two touching groups, and we can identify that the
potential translation vectors are edges e and d. If we translate polygon B along vector d,
this would result in an intersection between edges i and e or g and e. Thus, vector d is
infeasible, while vector e is feasible.

Figure 5. Method of recognizing the potential translation vector; (a) Derived from edge f ; (b) Derived
from edge d.

(ii) Determine the feasible translation vector

Each touching group in the T list produces a potential translation vector, but not all
of them are feasible. In other words, the orbital polygon translating along the vector may
intersect with the fixed polygon. For instance, assuming that the touching case of two
polygons is as shown in Figure 6, there are two touching groups, and we can identify that
the potential translation vectors are edges e and d. If we translate polygon B along vector
d, this would result in an intersection between edges i and e or g and e. Thus, vector d is
infeasible, while vector e is feasible.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 18

Figure 6. Method of identifying the feasible translation vector.

Hence, we propose a test to determine whether the potential translation vector is fea-
sible. First, we calculate the angular direction at the touch point for which the edge of the
orbital polygon can move without intersecting with the edge of the fixed polygon. Then,
we identify whether the potential translation vector from other touching groups is within
the angular direction. Note that a potential translation vector is feasible only if it is within
the angular direction of all other touching groups. Based on the observation, the feasibility
test only considers four types, as shown in Figure 7.

(a) (b) (c) (d)

Figure 7. The feasible boundary for all types of touching groups. (a) The second type; (b) The third
type; (c) The first type; (d) The first type.

For the second and third types of touching groups shown in Figure 7a,b, the angular
direction (given by the circular arcs) is easy to calculate, and we only need to test the
potential translation vector v on the right side of (or parallel to) the potential translation
vector produced by this touching group. Obviously, the vector v is feasible for this touch-
ing group, as shown in Figure 7a, and not for the touching group, as shown in Figure 7b.

For the first type of touching group, i.e., touching at a vertex, it needs to determine
the boundaries before calculating the angular direction. As shown in Figure 7c, if edge g′
(produced by reversing edge g) is on the right side of edge d, the boundary is g′. Otherwise,
the boundary is edge d. In the same way, we can recognize that the second boundary is
edge c. Thus, the angular direction is produced by edges c and g′. In Figure 7d, the bound-
ary edges are edges a1 and a2. Note that the potential translation vector is feasible for this
touching group if it is on the right side of (or parallel to) one of the boundary edges for
the case of Figure 7c, while it is feasible for this touching group only if it is on the right
side of both boundary edges for the case of Figure 7d.

(iii) Select a feasible translation vector

According to the observation, there is only one feasible translation vector in most
cases in the process of creating a no-fit polygon. However, when degenerate cases such as
holes, interlocking concavities and jigsaw-type pieces occur, many feasible translation
vectors exist. A good method is needed to select a vector for producing the correct NFP.
The method chooses the edge that is nearest (in edge order of fixed polygon) to the previ-
ous move. As shown in Figure 8b, the edge order of the previous move is 2 in this

Figure 6. Method of identifying the feasible translation vector.

Hence, we propose a test to determine whether the potential translation vector is
feasible. First, we calculate the angular direction at the touch point for which the edge

Mathematics 2022, 10, 2941 7 of 18

of the orbital polygon can move without intersecting with the edge of the fixed polygon.
Then, we identify whether the potential translation vector from other touching groups is
within the angular direction. Note that a potential translation vector is feasible only if it is
within the angular direction of all other touching groups. Based on the observation, the
feasibility test only considers four types, as shown in Figure 7.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 18

Figure 6. Method of identifying the feasible translation vector.

Hence, we propose a test to determine whether the potential translation vector is fea-
sible. First, we calculate the angular direction at the touch point for which the edge of the
orbital polygon can move without intersecting with the edge of the fixed polygon. Then,
we identify whether the potential translation vector from other touching groups is within
the angular direction. Note that a potential translation vector is feasible only if it is within
the angular direction of all other touching groups. Based on the observation, the feasibility
test only considers four types, as shown in Figure 7.

(a) (b) (c) (d)

Figure 7. The feasible boundary for all types of touching groups. (a) The second type; (b) The third
type; (c) The first type; (d) The first type.

For the second and third types of touching groups shown in Figure 7a,b, the angular
direction (given by the circular arcs) is easy to calculate, and we only need to test the
potential translation vector v on the right side of (or parallel to) the potential translation
vector produced by this touching group. Obviously, the vector v is feasible for this touch-
ing group, as shown in Figure 7a, and not for the touching group, as shown in Figure 7b.

For the first type of touching group, i.e., touching at a vertex, it needs to determine
the boundaries before calculating the angular direction. As shown in Figure 7c, if edge g′
(produced by reversing edge g) is on the right side of edge d, the boundary is g′. Otherwise,
the boundary is edge d. In the same way, we can recognize that the second boundary is
edge c. Thus, the angular direction is produced by edges c and g′. In Figure 7d, the bound-
ary edges are edges a1 and a2. Note that the potential translation vector is feasible for this
touching group if it is on the right side of (or parallel to) one of the boundary edges for
the case of Figure 7c, while it is feasible for this touching group only if it is on the right
side of both boundary edges for the case of Figure 7d.

(iii) Select a feasible translation vector

According to the observation, there is only one feasible translation vector in most
cases in the process of creating a no-fit polygon. However, when degenerate cases such as
holes, interlocking concavities and jigsaw-type pieces occur, many feasible translation
vectors exist. A good method is needed to select a vector for producing the correct NFP.
The method chooses the edge that is nearest (in edge order of fixed polygon) to the previ-
ous move. As shown in Figure 8b, the edge order of the previous move is 2 in this

Figure 7. The feasible boundary for all types of touching groups. (a) The second type; (b) The third
type; (c) The first type; (d) The first type.

For the second and third types of touching groups shown in Figure 7a,b, the angular
direction (given by the circular arcs) is easy to calculate, and we only need to test the
potential translation vector v on the right side of (or parallel to) the potential translation
vector produced by this touching group. Obviously, the vector v is feasible for this touching
group, as shown in Figure 7a, and not for the touching group, as shown in Figure 7b.

For the first type of touching group, i.e., touching at a vertex, it needs to determine
the boundaries before calculating the angular direction. As shown in Figure 7c, if edge g′

(produced by reversing edge g) is on the right side of edge d, the boundary is g′. Otherwise,
the boundary is edge d. In the same way, we can recognize that the second boundary
is edge c. Thus, the angular direction is produced by edges c and g′. In Figure 7d, the
boundary edges are edges a1 and a2. Note that the potential translation vector is feasible
for this touching group if it is on the right side of (or parallel to) one of the boundary edges
for the case of Figure 7c, while it is feasible for this touching group only if it is on the right
side of both boundary edges for the case of Figure 7d.

(iii) Select a feasible translation vector

According to the observation, there is only one feasible translation vector in most
cases in the process of creating a no-fit polygon. However, when degenerate cases such
as holes, interlocking concavities and jigsaw-type pieces occur, many feasible translation
vectors exist. A good method is needed to select a vector for producing the correct NFP. The
method chooses the edge that is nearest (in edge order of fixed polygon) to the previous
move. As shown in Figure 8b, the edge order of the previous move is 2 in this situation,
and the nearest translation vector is edge a3, so the orbital polygon translates along the
vector a3.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 18

situation, and the nearest translation vector is edge a3, so the orbital polygon translates
along the vector a3.

(a) (b)

Figure 8. Examples of two polygons involving fitting passageways. (a) An example from litera-
ture; (b) An example from “Jakobs1” benchmark instance

In conclusion, there are three subparts of this step: finding the potential translation
vector from the touching group, judging whether it is feasible and selecting a suitable
vector if there are more than one. The Pseudo code of this step is shown in Algorithm 1.

Algorithm 1: Determine Translation Vector.
Input: T list // T list,;
Input: t1; // last touching group;
Output: t2; // the selected touching group
t = the number of touching groups in T;
for each touching group in T do
Get the potential translation vector of Ti;
Calculate angular direction of Ti;
end for
if t is equal to 1
t2 = T0;
return;
i = 0;
for i < t do
for j < t do
if j is not equal to i
// do feasible test
Get the potential vector vi in Ti;
if vi is not suitable for Tj
Flag vi is infeasible;
break;
j = j+1;
end for
i = i +1;
end for
if only one feasible translation vector in T
t2 = feasible translation vector in T;
return;
t2 = Select a feasible vector from T based on t1;
return;

Figure 8. Examples of two polygons involving fitting passageways. (a) An example from literature;
(b) An example from “Jakobs1” benchmark instance.

Mathematics 2022, 10, 2941 8 of 18

In conclusion, there are three subparts of this step: finding the potential translation
vector from the touching group, judging whether it is feasible and selecting a suitable
vector if there are more than one. The Pseudo code of this step is shown in Algorithm 1.

Algorithm 1: Determine Translation Vector.

Input: T list // T list,;
Input: t1; // last touching group;
Output: t2; // the selected touching group
t = the number of touching groups in T;
for each touching group in T do
Get the potential translation vector of Ti;
Calculate angular direction of Ti;
end for
if t is equal to 1
t2 = T0;
return;
i = 0;
for i < t do
for j < t do
if j is not equal to i
// do feasible test
Get the potential vector vi in Ti;
if vi is not suitable for Tj
Flag vi is infeasible;
break;
j = j + 1;
end for
i = i + 1;
end for
if only one feasible translation vector in T
t2 = feasible translation vector in T;
return;
t2 = Select a feasible vector from T based on t1;
return;

3.2.3. Compute Translation Distance

The translation vector only provides the direction of movement of the orbital polygon
because the translation distance is not always the full length of the vector from the touching
group. As shown in Figure 9a, when polygons A and B touch at a vertex, there is only one
touching group, and the translation vector is oriented edge d. Polygon B will intersect with
polygon A if applying the entire translation vector d, as shown in Figure 9b. Therefore, we
compute the feasible translation distance to avoid overlap. The task is trivial to the human
eye. The maximal translation distance is the vector v, as shown in Figure 9c. However, for
the computer, there needs to be a set of algorithmic steps.

(i) Computation method

The method projects the translation vector at each of the vertices of polygon B and tests
it for intersection with all edges of polygon A, as shown in Figure 10a. The projection is also
executed in the opposite direction for the vertices of polygon A, as shown in Figure 10b.
Once the vertex of polygon B that will cross into polygon A is found and the length of the
new translation vector is smaller than the current translation vector, the current translation
vector is replaced by the new one. This method ensures that the correct non-intersecting
translation is found.

Mathematics 2022, 10, 2941 9 of 18

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 18

3.2.3. Compute Translation Distance
The translation vector only provides the direction of movement of the orbital poly-

gon because the translation distance is not always the full length of the vector from the
touching group. As shown in Figure 9a, when polygons A and B touch at a vertex, there
is only one touching group, and the translation vector is oriented edge d. Polygon B will
intersect with polygon A if applying the entire translation vector d, as shown in Figure 9b.
Therefore, we compute the feasible translation distance to avoid overlap. The task is trivial
to the human eye. The maximal translation distance is the vector v, as shown in Figure 9c.
However, for the computer, there needs to be a set of algorithmic steps.

(a) (b) (c)

Figure 9. Illustration of shortening a translation vector to avoid overlap. (a) The translation vector
is edge d; (b) Overlap between A and B; (c) The translation distance is the length of vector v.

(i) Computation method

The method projects the translation vector at each of the vertices of polygon B and
tests it for intersection with all edges of polygon A, as shown in Figure 10a. The projection
is also executed in the opposite direction for the vertices of polygon A, as shown in Figure
10b. Once the vertex of polygon B that will cross into polygon A is found and the length
of the new translation vector is smaller than the current translation vector, the current
translation vector is replaced by the new one. This method ensures that the correct non-
intersecting translation is found.

(a) (b) (c) (d)

Figure 10. Illustration of shortening the translation vector and the “point exclusion” strategy. (a)
Projection of the vertices of polygon B; (b) Projection of the vertices of polygon A; (c) Boundary of
polygon A; (d) Boundary of polygon B.

(ii) Acceleration strategy

This is the most time-consuming operation for the sliding algorithm, and the time
complexity is O(mn) in theory, where m and n are the numbers of vertices of polygons A
and B, respectively. This paper proposes a point exclusion strategy to accelerate this op-
eration. The strategy identifies the vertex that will not cross into the polygon when trans-
lating along the selected vector, and then does not test these vertices. It can take less time
than we thought if many ineffective tests are excluded.

Figure 9. Illustration of shortening a translation vector to avoid overlap. (a) The translation vector is
edge d; (b) Overlap between A and B; (c) The translation distance is the length of vector v.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 18

3.2.3. Compute Translation Distance
The translation vector only provides the direction of movement of the orbital poly-

gon because the translation distance is not always the full length of the vector from the
touching group. As shown in Figure 9a, when polygons A and B touch at a vertex, there
is only one touching group, and the translation vector is oriented edge d. Polygon B will
intersect with polygon A if applying the entire translation vector d, as shown in Figure 9b.
Therefore, we compute the feasible translation distance to avoid overlap. The task is trivial
to the human eye. The maximal translation distance is the vector v, as shown in Figure 9c.
However, for the computer, there needs to be a set of algorithmic steps.

(a) (b) (c)

Figure 9. Illustration of shortening a translation vector to avoid overlap. (a) The translation vector
is edge d; (b) Overlap between A and B; (c) The translation distance is the length of vector v.

(i) Computation method

The method projects the translation vector at each of the vertices of polygon B and
tests it for intersection with all edges of polygon A, as shown in Figure 10a. The projection
is also executed in the opposite direction for the vertices of polygon A, as shown in Figure
10b. Once the vertex of polygon B that will cross into polygon A is found and the length
of the new translation vector is smaller than the current translation vector, the current
translation vector is replaced by the new one. This method ensures that the correct non-
intersecting translation is found.

(a) (b) (c) (d)

Figure 10. Illustration of shortening the translation vector and the “point exclusion” strategy. (a)
Projection of the vertices of polygon B; (b) Projection of the vertices of polygon A; (c) Boundary of
polygon A; (d) Boundary of polygon B.

(ii) Acceleration strategy

This is the most time-consuming operation for the sliding algorithm, and the time
complexity is O(mn) in theory, where m and n are the numbers of vertices of polygons A
and B, respectively. This paper proposes a point exclusion strategy to accelerate this op-
eration. The strategy identifies the vertex that will not cross into the polygon when trans-
lating along the selected vector, and then does not test these vertices. It can take less time
than we thought if many ineffective tests are excluded.

Figure 10. Illustration of shortening the translation vector and the “point exclusion” strategy.
(a) Projection of the vertices of polygon B; (b) Projection of the vertices of polygon A; (c) Boundary of
polygon A; (d) Boundary of polygon B.

(ii) Acceleration strategy

This is the most time-consuming operation for the sliding algorithm, and the time
complexity is O(mn) in theory, where m and n are the numbers of vertices of polygons
A and B, respectively. This paper proposes a point exclusion strategy to accelerate this
operation. The strategy identifies the vertex that will not cross into the polygon when
translating along the selected vector, and then does not test these vertices. It can take less
time than we thought if many ineffective tests are excluded.

First, we calculate the upper boundary and lower boundary of the fixed polygon and
orbital polygon based on the translation vector. Then, a simple test for the vertex of the
polygon is performed before testing it for intersection with all edges of another polygon.
Specifically, if the vertex is out of the range of the boundary, there is no need to test it
for intersection with other polygon edges. Figure 10c,d show in detail an example of this
strategy. In Figure 10c, three vertices of polygon A are out of the range of the boundary, and
the two endpoints of edge d can also be excluded. Theoretically, the operation of projecting
and intersection test needs to be executed 6 × 3 times, while practically, it only needs
1 × 3 times by using the point exclusion strategy. The effect of reducing the computation
time is significant and will be further verified in Section 4. The Pseudo code of this step is
shown in Algorithm 2.

Up to now, the direction and distance of translation have been determined, and the
final step is to translate polygon B by the shortened translation vector. Then, we perform a
test to detect if the reference point of polygon B has returned to its initial starting position.
If not, the process of creating a no-fit polygon is restarted from the finding touching group.

Mathematics 2022, 10, 2941 10 of 18

Algorithm 2: Compute translation distance.

Input: PA, PB //two polygons; t2 // the selected touching group
Get the translation vector v in t2;
Initialize ub, lb; // the upper and lower bound
Get the boundary ub and lb about PA based on v;
i = 0;
for each vertex point pa of PA do
if pa is not in ub and lb bound
continue; // point exclusion test
for each edge e of PB do
Calculate the cross point pc of the pa along v with edge e;
if pc exists // intersection happened
Get distance d between pc and pa;
if d less than the current length of v;
The starting point of v = pc;
The ending point of v = pa;
end for
end for
Get the boundary ub and lb about PB based on v;
i = 0;
for each vertex point pb of PB do
if pb is not in ub and lb bound do
continue; // point exclusion test
for each edge e of PA do
Calculate the cross point pc of the pb along v with edge e;
if pc exists // intersection happened
Get distance d between pc and pb;
if d less than the current length of v;
The starting point of v = pb;The ending point of v = pc;
end for
end for

3.3. Searching Oher Start Positions

The creation of NFP in the sliding algorithm starts with selecting a touching but
non-intersecting position for two polygons. This is an easy task, and usually, the largest
y-coordinate of orbital polygon B is placed touching the smallest y-coordinate of fixed
polygon A. Then, the three steps described in Section 3.1 are iteratively performed to create
the no-fit polygon. An example is shown in Figure 11b. However, the produced no-fit
polygon may be incomplete if only these steps are performed. As shown in Figure 11b,
polygon A has concavity, and its entrance is so narrow that polygon B is not able to slide
into the concavity. Thus, another method is needed to determine this possibility.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18

coordinate of orbital polygon B is placed touching the smallest y-coordinate of fixed pol-
ygon A. Then, the three steps described in Section 3.1 are iteratively performed to create
the no-fit polygon. An example is shown in Figure 11b. However, the produced no-fit
polygon may be incomplete if only these steps are performed. As shown in Figure 11b,
polygon A has concavity, and its entrance is so narrow that polygon B is not able to slide
into the concavity. Thus, another method is needed to determine this possibility.

(a) (b) (c)

Figure 11. An example of interlocking concavities: (a) Polygons A and B; (b) NFP produced by first
stage; (c) complete NFP.

3.3.1. Method of Searching Feasible Starting Position
If the position of orbital polygon B shown in Figure 11c can be found, then the crea-

tion of a no-fit polygon can start with this position. Whitwell et al. [28] proposed an ap-
proach to identify such possibilities. The basic principle is that if an edge of a fixed poly-
gon has not been traversed when creating a no-fit polygon, then these edges will be
searched for feasible start positions. Specifically, given an edge u of fixed polygon A, the
first step is to translate polygon B such that the first vertex of it is aligned to the start point
of u; then, performing an overlap test [30], if the polygons do not intersect in this position
then this is a feasible start position; if they intersect, then performing a sliding operation
including calculating the translation distance and translating polygon B along edge u, this
operation is similar to the steps described in Section 3.2.3. After sliding, the overlap test is
executed again. This is an iterative process until a non-intersecting position is found or
the end of edge u is reached. If the first vertex of polygon B cannot find a feasible starting
point, then try the rest of its vertices. Note that the edge of the fixed polygon is flagged as
“visited” whether the feasible start position is found or not. The Pseudo code of searching
for other starting points is shown in Algorithm 3.

Algorithm 3: Search other Start Point.
Input: PA, PB //two polygons,
Input: Ptnfp; // the starting point of new NFP
Initialize V = ∅;// the list of storing all translation vectors
for each edge 𝑒 of PA do
if 𝑒 is visited do
continue;
Set 𝑒 is visited;
for each edge 𝑒 of PA
Move PB by making starting point of 𝑒 and 𝑒 coincidence;
if both 𝑒ିଵ and 𝑒 are not on the right side of 𝑒 do
continue; // “right side” test
V = ∅;// clear stored vectors
If the result of getting translation vectors (PA, PB, 𝑒) is false do
continue; // Algorithm 4
while the starting point of 𝑒 does not on the ending point of 𝑒 do
if PA does not overlap with PB at this position

Figure 11. An example of interlocking concavities: (a) Polygons A and B; (b) NFP produced by first
stage; (c) complete NFP.

Mathematics 2022, 10, 2941 11 of 18

3.3.1. Method of Searching Feasible Starting Position

If the position of orbital polygon B shown in Figure 11c can be found, then the creation
of a no-fit polygon can start with this position. Whitwell et al. [28] proposed an approach
to identify such possibilities. The basic principle is that if an edge of a fixed polygon has
not been traversed when creating a no-fit polygon, then these edges will be searched for
feasible start positions. Specifically, given an edge u of fixed polygon A, the first step is to
translate polygon B such that the first vertex of it is aligned to the start point of u; then,
performing an overlap test [30], if the polygons do not intersect in this position then this
is a feasible start position; if they intersect, then performing a sliding operation including
calculating the translation distance and translating polygon B along edge u, this operation
is similar to the steps described in Section 3.2.3. After sliding, the overlap test is executed
again. This is an iterative process until a non-intersecting position is found or the end of
edge u is reached. If the first vertex of polygon B cannot find a feasible starting point, then
try the rest of its vertices. Note that the edge of the fixed polygon is flagged as “visited”
whether the feasible start position is found or not. The Pseudo code of searching for other
starting points is shown in Algorithm 3.

Algorithm 3: Search other Start Point.

Input: PA, PB //two polygons,
Input: Ptnfp; // the starting point of new NFP
Initialize V = ∅; // the list of storing all translation vectors
for each edge en of PA do
if en is visited do
continue;
Set en is visited;
for each edge em of PA
Move PB by making starting point of en and em coincidence;
if both em−1 and em are not on the right side of en do
continue; // “right side” test
V = ∅; // clear stored vectors
If the result of getting translation vectors (PA, PB, en) is false do
continue; // Algorithm 4
while the starting point of em does not on the ending point of en do
if PA does not overlap with PB at this position
Ptnfp = PBrf; // the reference point PBrf of PB
return true;
Shorten all vectors in V and get the translation vector v;
Translate PB by vector v;
end while
end for
end for
return false;

3.3.2. Acceleration Strategies

The method can fully search for feasible starting positions, but it is time-consuming
due to three main aspects. First, for an unvisited edge of a fixed polygon, all vertices of
the orbital polygon need to be tested. Second, the test contains the operation of computing
translation distance, which takes a lot of time in the sliding algorithm. Third, the overlap
test is also time-consuming and must be performed after each translation. Hence, some
strategies are applied to improve the efficiency of this method.

The first acceleration strategy is to examine whether the two connected edges of
polygon B are both on the right of or parallel to edge u of polygon A [28], called the
“right side” test. The D-function [31] is used to recognize the relative position of a point
with respect to an oriented edge. If either of the edges are left of u, then overlapping
between polygons A and B occur and never yield a feasible starting position when sliding
along vector u. Hence, we can abandon this vertex and test the next one, which results

Mathematics 2022, 10, 2941 12 of 18

in reducing the number of operations of computing translation distance and overlap test,
thereby improving efficiency. Figure 12a,b show examples of this strategy. In Figure 12a,
edge b2 is on the left side of edge a4, which dissatisfies the requirement. However, in
Figure 12b, both edges b2 and b3 are on the right side of edge a4.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 18

Ptnfp = PBrf;; // the reference point PBrf of PB
return true;
Shorten all vectors in V and get the translation vector v;
Translate PB by vector v;
end while
end for
end for
return false;

3.3.2. Acceleration Strategies
The method can fully search for feasible starting positions, but it is time-consuming

due to three main aspects. First, for an unvisited edge of a fixed polygon, all vertices of
the orbital polygon need to be tested. Second, the test contains the operation of computing
translation distance, which takes a lot of time in the sliding algorithm. Third, the overlap
test is also time-consuming and must be performed after each translation. Hence, some
strategies are applied to improve the efficiency of this method.

The first acceleration strategy is to examine whether the two connected edges of pol-
ygon B are both on the right of or parallel to edge u of polygon A [28], called the “right
side” test. The D-function [31] is used to recognize the relative position of a point with
respect to an oriented edge. If either of the edges are left of u, then overlapping between
polygons A and B occur and never yield a feasible starting position when sliding along
vector u. Hence, we can abandon this vertex and test the next one, which results in reduc-
ing the number of operations of computing translation distance and overlap test, thereby
improving efficiency. Figure 12a,b show examples of this strategy. In Figure 12a, edge b2
is on the left side of edge a4, which dissatisfies the requirement. However, in Figure 12b,
both edges b2 and b3 are on the right side of edge a4.

(a) (b) (c)

(d) (e) (f)

Figure 12. Improvements on searching start position and the generation process. (a) Failure to
right side test; (b) Right sided test is passed; (c) Illustration of point inclusion strategy; (d) Illustra-
tion of point exclusion strategy; (e) Translation along edge a4; (f) The feasible start position.

The second strategy is a “point inclusion”. In the operation of computing the trans-
lation distance, if the minimal distance corresponding to a certain vertex of polygon B is
larger than or equal to the length of edge u and this vertex is inside of polygon A, then

Figure 12. Improvements on searching start position and the generation process. (a) Failure to right
side test; (b) Right sided test is passed; (c) Illustration of point inclusion strategy; (d) Illustration of
point exclusion strategy; (e) Translation along edge a4; (f) The feasible start position.

The second strategy is a “point inclusion”. In the operation of computing the trans-
lation distance, if the minimal distance corresponding to a certain vertex of polygon B is
larger than or equal to the length of edge u and this vertex is inside of polygon A, then this
vertex of polygon B is abandoned because the two polygons always overlap when sliding
along edge u. This is the same for the vertex of polygon A. As shown in Figure 12c, when
projecting translation vector a5 at vertex P1 and only intersecting with a9, the translation
distance is obviously larger than the length of a5 and P1 is inside polygon A, so the vertex
can be abandoned, and there is no need to take a sliding operation.

The third acceleration strategy is the improved “point exclusion” strategy. The im-
provement is keeping all translation vectors in the operation of computing translation
distance instead of adopting a replacement strategy. This method avoids recalculating
after translating polygon B and only needs to shorten all stored vectors. See an example
shown in Figure 12d. There is only one vertex of polygon A (the starting point of a7)
that needs to be calculated when applying the point exclusion strategy. This vertex will
intersect with edges b1 and b4, resulting in two translation vectors being stored. After
iteratively performing the overlap test and sliding operation, the feasible start position is
found, as shown in Figure 12f. The Pseudo code of the improved operation of computing
the translation distance is shown in Algorithm 4.

Mathematics 2022, 10, 2941 13 of 18

Algorithm 4: Get translation vectors.

Input: PA, PB; // two polygons
Input: v; // the oriented edge of PA
Output: V; //the list of storing all vectors
Initialize ub, lb; // the upper and lower bound
Initialize Vt = ∅; // temporarily store the translation vectors
Get the boundary ub and lb about PA based on v;
for each vertex point pa of PA do
if pa is not in ub and lb bound do
continue; // point exclusion test
for each edge e of PB do
Calculate the cross point pc of the pa along v with edge e;;
if pc exists do
Add new vector u = pa − pc to Vt;
end for
if Vt is not empty do
if does not pass the point inclusion test do
return false;
else
Add all vectors in Vt to V;
Vt = ∅;
end for
Get the boundary ub and lb about PB based on v;
for each vertex point pb of PB do
if pb is not in ub and lb bound do
continue; // point exclusion test
for each edge e of PA do
Calculate the cross point pc of the pb along v with edge e;
if pc exists
Add new vector u = pc − pa to Vt;
end for
if Vt is not empty do
if does not pass the point inclusion test do
return false;
else
Add all vectors in Vt to V;
Vt = ∅;
end for
return true;

3.3.3. The ISA Algorithm

According to the detailed description of our proposed algorithm in Sections 3.1, 3.2
and 3.3.1, the Pseudo code of the ISA algorithm is described by Algorithm 5.

Algorithm 5: Sliding Algorithm.

Input: PA, PB //two polygons
Initialize T = ∅; //T list for storing touching groups
Initialize two touching groups t1, t2;
Initialize creation = true; NFPs = ∅;
PtA(ymin) = the point of minimum y-coordinate of PA;
PtB(ymax) = the point of maximum y-coordinate of PB;
Move PB to make PtB(ymax) touch the PtA(ymin);
Ptnfp = the reference point PBrf of PB; //the starting point of NFP
while the creation is true do
Clear the T list;
Find touching groups (PA, PB, T);
// Algorithm 1

Mathematics 2022, 10, 2941 14 of 18

Algorithm 5: Cont.

Determine translation vector (T, t1, t2);
// Algorithm 2
Compute translation distance (PA, PB, t2);
Flag the edge of PA in T2 is visited;
t1 = t2;
Initialize a new edge e1;
The starting point of e1 = PBrf;
Move PB using the translation vector stored in t2.
The ending point of e1 = PBrf;
Produce new edge e1 of the no-fit polygon nfp;
if Ptnfp is equal to PBrf //Get an NFP
Add the current no-fit polygon nfp to NFPs;
bool over = false;
while over is false do
if search other start point (PA, PB, Ptnfp) //Algorithm 3
// Feasible start position may be the vertex of
// created NFP in rare cases
if the starting point is the vertexes of NFPs
continue;
if (the position of PA and PB is Jigsaw case)
Add the current no-fit polygon nfp to NFPs;
continue;
over = true; //Find a feasible start point.
else
creation = false;
over = true;
end while
end if
end while
return NFPs;

4. Computational Experiments

To evaluate the robustness of the improved sliding algorithm, many special and
complex instances provided by published literature [24,25,28] are used to test the ISA. These
instances involve characteristics such as a large number of edges, interlocking positions,
exact sliding, jigsaw-type fits and concavities, and the results are shown in Figure 13.

To further test the robustness and efficiency of ISA, we also use it to generate the
NFP for all polygons from the benchmark datasets. Each dataset contains many simple
polygons and is used as a common test set in the cutting and packing community. The
computation times for benchmark datasets are provided in Table 1. The procedure of the
proposed algorithm was coded in Visual Studio C++, and the instances were run on a PC
with 8 GB, Core i7 1.8 GHz processer.

Table 1. No-fit polygon creation times for 19 datasets from the literature.

Dataset E N R L O
Whitwell [28] ISA ISA-PES ISA-PIT

T P T P T In. (%) T In. (%)

Albano180 7.25 8 180 16 256 0.32 800 0.006 42,667 0.008 33.3 0.007 16.7
Albano90 7.25 8 90 32 1024 0.71 1442 0.026 40,000 0.032 24.2 0.028 8.6
Dagli 6.2 10 90 40 1600 0.93 1720 0.032 50,314 0.038 18.2 0.031 −1.9
Dighe1 3.75 16 90 64 4096 1.28 3200 0.021 196,923 0.022 7.7 0.220 5.8
Dighe2 4.7 10 90 40 1600 0.62 2581 0.012 129,032 0.014 14.5 0.014 9.7
Fu 3.58 12 90 48 2304 0.52 4431 0.012 185,806 0.014 16.1 0.014 16.1
Jakobs1 6 25 90 100 10,000 5.57 1795 0.210 47,574 0.237 12.7 0.201 −4.4
Jakobs2 5.36 25 90 100 10,000 5.07 1972 0.233 42,845 0.253 8.6 0.169 −27.5

Mathematics 2022, 10, 2941 15 of 18

Table 1. Cont.

Dataset E N R L O
Whitwell [28] ISA ISA-PES ISA-PIT

T P T P T In. (%) T In. (%)

Mao 9.22 9 90 36 1296 1.41 919 0.052 25,116 0.070 35.7 0.055 7.4
Marques 7.13 8 90 32 1024 0.79 1296 0.026 39,084 0.031 19.1 0.027 2.3
Poly2b 4.93 30 90 120 14,400 7.54 1910 0.153 93,872 0.172 12.0 0.141 −8.1
Poly3b 4.93 45 90 180 32,400 27.14 1194 0.320 101,313 0.361 12.8 0.325 1.6
Poly4b 4.93 60 90 240 57,600 68.45 841 0.575 100,174 0.617 7.3 0.567 −1.3
Poly5b 4.84 75 90 300 90,000 141.9 634 0.836 107,707 0.999 19.5 0.820 −1.9
Shapes0 8.75 4 0 4 16 0.11 145 0.001 16,000 0.001 0.0 0.001 0.0
Shapes1 8.75 4 180 8 64 0.19 337 0.004 15,238 0.006 33.3 0.004 0.0
Shirts 6.63 8 180 16 256 0.33 776 0.006 41,290 0.008 32.3 0.006 0.0
Swim 21.9 10 180 20 400 6.08 66 0.107 3745 0.180 68.5 0.136 27.5
Trousers 5.06 17 180 34 1156 0.73 1584 0.012 96,333 0.015 23.3 0.013 11.7

The meaning of the letter in the header of Table: E: Average number of edges; N: Number of different shapes; R:
Rotational constraints; L: Logical total number of shapes; O: Total number of NFPs; T: Total creation time(seconds);
P: NFPs per second.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 18

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13. NFPs of degenerate cases and complex instances from published literature. (a) NFP
with holes; (b) An example of exact sliding; (c) The jigsaw-type; (d)NFP with holes; (e) An exam-
ple from “swim” instance; (f) Polygon with narrow entrance; (g) An example from “swim” in-
stance; (h) An example from literature; (i) Instance from literature; (j) Instance f from literature; (k)
Instance from literature; (l) Instance from literature

To further test the robustness and efficiency of ISA, we also use it to generate the NFP
for all polygons from the benchmark datasets. Each dataset contains many simple poly-
gons and is used as a common test set in the cutting and packing community. The com-
putation times for benchmark datasets are provided in Table 1. The procedure of the pro-
posed algorithm was coded in Visual Studio C++, and the instances were run on a PC with
8 GB, Core i7 1.8 GHz processer.

Table 1. No-fit polygon creation times for 19 datasets from the literature.

Dataset E N R L O
Whitwell [28] ISA ISA-PES ISA-PIT
T P T P T In. (%) T In. (%)

Albano180 7.25 8 180 16 256 0.32 800 0.006 42,667 0.008 33.3 0.007 16.7
Albano90 7.25 8 90 32 1024 0.71 1442 0.026 40,000 0.032 24.2 0.028 8.6
Dagli 6.2 10 90 40 1600 0.93 1720 0.032 50,314 0.038 18.2 0.031 −1.9
Dighe1 3.75 16 90 64 4096 1.28 3200 0.021 196,923 0.022 7.7 0.220 5.8
Dighe2 4.7 10 90 40 1600 0.62 2581 0.012 129,032 0.014 14.5 0.014 9.7
Fu 3.58 12 90 48 2304 0.52 4431 0.012 185,806 0.014 16.1 0.014 16.1
Jakobs1 6 25 90 100 10,000 5.57 1795 0.210 47,574 0.237 12.7 0.201 −4.4
Jakobs2 5.36 25 90 100 10,000 5.07 1972 0.233 42,845 0.253 8.6 0.169 −27.5
Mao 9.22 9 90 36 1296 1.41 919 0.052 25,116 0.070 35.7 0.055 7.4
Marques 7.13 8 90 32 1024 0.79 1296 0.026 39,084 0.031 19.1 0.027 2.3
Poly2b 4.93 30 90 120 14,400 7.54 1910 0.153 93,872 0.172 12.0 0.141 −8.1
Poly3b 4.93 45 90 180 32,400 27.14 1194 0.320 101,313 0.361 12.8 0.325 1.6
Poly4b 4.93 60 90 240 57,600 68.45 841 0.575 100,174 0.617 7.3 0.567 −1.3
Poly5b 4.84 75 90 300 90,000 141.9 634 0.836 107,707 0.999 19.5 0.820 −1.9
Shapes0 8.75 4 0 4 16 0.11 145 0.001 16,000 0.001 0.0 0.001 0.0
Shapes1 8.75 4 180 8 64 0.19 337 0.004 15,238 0.006 33.3 0.004 0.0

Figure 13. NFPs of degenerate cases and complex instances from published literature. (a) NFP with
holes; (b) An example of exact sliding; (c) The jigsaw-type; (d)NFP with holes; (e) An example from
“swim” instance; (f) Polygon with narrow entrance; (g) An example from “swim” instance; (h) An
example from literature; (i) Instance from literature; (j) Instance f from literature; (k) Instance from
literature; (l) Instance from literature.

4.1. Robustness Performance of ISA

It is difficult to create no-fit polygons involving holes. However, the no-fit polygon can
be generated easily and completely using the operation of searching other start positions.
In Figure 13, the no-fit polygon contains holes for Figure 13a,d,f,i–k; in particular, there are
multiple holes for a, d, j and k. Furthermore, the fixed polygon has concavities within the
concavities in Figure 13j,k. There also exist cases involving sliding through exactly fitting

Mathematics 2022, 10, 2941 16 of 18

“passageways” that are hard to handle. Figure 13b shows such a case, and another example
of this case is previously discussed in Figure 8.

Figure 13c shows the problem case involving jigsaw pieces that fit together with no
movement. Thus, the no-fit polygon is a singular feasible point rather than an internal
loop. After obtaining a feasible start position, our algorithm will perform a simple test
to determine whether there is a feasible translation vector to identify this case. Most of
the previous approaches including the Minkowski sun and convex decomposition, have
difficulty handling this case [28]. The no-fit polygons shown in Figure 13e,g are from the
“Swim” benchmark datasets.

4.2. Efficiency Performance of ISA

Table 1 shows the creation times for benchmark datasets by the improved sliding
algorithm (ISA). To evaluate the effect of the point exclusion strategy (PES) and the point
inclusion test (PIT) on the algorithm’s efficiency, we also test the creation time of the no-fit
polygon for the ISA without the PES and PIT. The meaning of the capital letters in the
header of Table 1 is illustrated by notes below the table. The column of “In.” represents the
percent of increased time when compared to the ISA.

All experiments evaluating the performance of Whitwell’s approach were conducted
on a Pentium 42 GHz processor with 256 MB RAM. The experimental results in Table 1 show
that the ISA creates no-fit polygons quicker than Whitwell’s approach for all of the datasets,
especially for the poly5b, poly4b, Jakobs1, Jakobs2 and swim datasets. Although this
comparison is unfair due to the difference in hardware, it shows that the method proposed
in this paper is able to quickly generate no-fit polygons and that all the improvements
contribute to the computing efficiency. The strategy of PIT is effective in terms of improving
efficiency for many datasets, especially for the swim dataset, for which the average number
of edges is larger than others. However, there is a possibility that the creation time will
increase because it takes time to perform the test.

Computational results show that the proposed PES can largely increase computational
efficiency, and the more edges the polygon has, the better. This is further verified by the
instance named Arc1, in which all edges of the polygons are arcs. The results are shown in
Table 2. The arcs are discretized with different precisions, resulting in different numbers of
edges. The creation time is reduced by 20 percent when the average number of edges is
76.0. It is able to be reduced by 51.2 percent when the average number of edges is 652.0.

Table 2. The creation time for the Arc1 instance.

Discrete Angle
(Degree) Average Number of Edges

Time (Millisecond)
Reducing Time (%)

ISA ISA-PES

2 652.0 1280 2621 51.2
6 219.5 53 97.2 45.5
10 135.0 15 23.4 35.9
14 97.0 6 9 33.3
18 76.0 4 5 20.0

5. Conclusions and Future Works

In this paper, an efficient and robust sliding algorithm for generating a no-fit polygon
is proposed. Creating a no-fit polygon only contains three steps based on the proposed
concept of touching group, i.e., finding the touching group, determining the translation
vector and computing the translation distance. The first feasible start position is easy to
identify, but other starting positions are likely to exist when the polygon is non-convex.
Hence, the searching other start positions procedure is adopted to produce a complete no-fit
polygons. Many strategies are proposed to improve the algorithm’s efficiency. Experimental
results show that the algorithm is highly efficient for the creation of a no-fit polygon. The
calculation time in benchmark instances is increased by 21.0% and 3.20% on average if

Mathematics 2022, 10, 2941 17 of 18

there is no PES and PIT, respectively. The proposed algorithm is a computational geometric
algorithm used for generating no-fit polygons of 2D graphics. It cannot handle curves,
so the discretization operation is needed. In other words, the input graphic is a simple
polygon without self-intersecting edges. To the best of our knowledge, the algorithm has
many applications, such as irregular packing problems, engineering and robot motion
planning and the aircraft parking stand allocation problem.

Future works need to further investigate how to reduce the time of the second phase,
i.e., searching other feasible start positions to generate a complete NFP, and propose
strategies to further improve the efficiency.

Author Contributions: Q.L.: conceptualization, methodology, validation, formal analysis, writing—
original draft, writing—review and editing; Y.R.: supervision, project administration, writing—review
and editing, funding. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the National Natural Science Foundation of China (Grant no.
51975231) and Fundamental Research Funds for the Central Universities (Grant no. 2019kfyXKJC043).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the referees for their constructive comments
that improved the presentation as well as the content of the paper.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Elkeran, A. A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering. Eur. J. Oper. Res.

2013, 231, 757–769. [CrossRef]
2. Rao, Y.; Wang, P.; Luo, Q. Hybridizing beam search with tabu search for the irregular packing problem. Math. Probl. Eng. 2021,

2021, 5054916. [CrossRef]
3. Alves, C.; Brás, P.; de Carvalho, J.V.; Pinto, T. New constructive algorithms for leather nesting in the automotive industry. Comput.

Oper. Res. 2012, 39, 1487–1505. [CrossRef]
4. Hu, X.; Li, J.; Cui, J. Greedy adaptive search: A new approach for large-scale irregular packing problems in the fabric industry.

IEEE Access 2020, 8, 91476–91487. [CrossRef]
5. Labrada-Nueva, Y.; Cruz-Rosales, M.H.; Rendón-Mancha, J.M.; Rivera-López, R.; Eraña-Díaz, M.L.; Cruz-Chávez, M.A. Overlap

detection in 2D amorphous shapes for paper optimization in digital printing presses. Mathematics 2021, 9, 1033. [CrossRef]
6. Luo, Q.; Rao, Y.; Peng, D. GA and GWO algorithm for the special bin packing problem encountered in field of aircraft arrangement.

Appl. Soft Comput. 2022, 114, 108060. [CrossRef]
7. Gonçalves, J.F.; Wäscher, G. A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional

cutting problem with defects. Eur. J. Oper. Res. 2020, 286, 867–882. [CrossRef]
8. Chen, K.; Zhuang, J.; Zhong, S.; Zheng, S. Optimization Method for Guillotine Packing of Rectangular Items within an Irregular

and Defective Slate. Mathematics 2020, 8, 1914. [CrossRef]
9. Romanova, T.; Pankratov, O.; Litvinchev, I.; Stetsyuk, P.; Lykhovyd, O.; Marmolejo-Saucedo, J.A.; Vasant, P. Balanced Circular

Packing Problems with Distance Constraints. Computation 2022, 10, 113. [CrossRef]
10. Qin, Y.; Chan, F.T.S.; Chung, S.H.; Qu, T.; Niu, B. Aircraft parking stand allocation problem with safety consideration for

independent hangar maintenance service providers. Comput. Oper. Res. 2018, 91, 225–236. [CrossRef]
11. Martinez-Sykora, A.; Alvarez-Valdes, R.; Bennell, J.; Ruiz, R.; Tamarit, J. Matheuristics for the irregular bin packing problem with

free rotations. Eur. J. Oper. Res. 2017, 258, 440–455. [CrossRef]
12. Júnior, B.A.; Pinheiro, P.R.; Coelho, P.V. A parallel biased random-key genetic algorithm with multiple populations applied to

irregular strip packing problems. Math. Probl. Eng. 2017, 2017, 1670709.
13. Pinheiro, P.R.; Amaro, B., Jr.; Saraiva, R.D. A random-key genetic algorithm for solving the nesting problem. Int. J. Comput. Integr.

Manuf. 2016, 29, 1159–1165. [CrossRef]
14. Cherri, L.H.; Mundim, L.R.; Andretta, M.; Toledo, F.M.; Oliveira, J.F.; Carravilla, M.A. Robust mixed-integer linear programming

models for the irregular strip packing problem. Eur. J. Oper. Res. 2016, 253, 570–583. [CrossRef]
15. Costa, M.T.; Gomes, A.M.; Oliveira, J.F. Heuristic approaches to large-scale periodic packing of irregular shapes on a rectangular

sheet. Eur. J. Oper. Res. 2009, 192, 29–40. [CrossRef]
16. Bennell, J.A.; Oliveira, J.F. The geometry of nesting problems: A tutorial. Eur. J. Oper. Res. 2008, 184, 397–415. [CrossRef]

http://doi.org/10.1016/j.ejor.2013.06.020
http://doi.org/10.1155/2021/5054916
http://doi.org/10.1016/j.cor.2011.08.021
http://doi.org/10.1109/ACCESS.2020.2994635
http://doi.org/10.3390/math9091033
http://doi.org/10.1016/j.asoc.2021.108060
http://doi.org/10.1016/j.ejor.2020.04.028
http://doi.org/10.3390/math8111914
http://doi.org/10.3390/computation10070113
http://doi.org/10.1016/j.cor.2017.10.001
http://doi.org/10.1016/j.ejor.2016.09.043
http://doi.org/10.1080/0951192X.2015.1036522
http://doi.org/10.1016/j.ejor.2016.03.009
http://doi.org/10.1016/j.ejor.2007.09.012
http://doi.org/10.1016/j.ejor.2006.11.038

Mathematics 2022, 10, 2941 18 of 18

17. Seidel, R. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating
polygons. Comput. Geom. Theory Appl. 1991, 1, 51–64. [CrossRef]

18. Watson, P.D.; Tobias, A.M. An Efficient Algorithm for the Regular W 1 Packing of Polygons in the Infinite Plane. J. Oper. Res. Soc.
1999, 50, 1054. [CrossRef]

19. Li, Z.; Milenkovic, V. Compaction and separation algorithms for non-convex polygons and their applications. Eur. J. Oper. Res.
1995, 84, 539–561. [CrossRef]

20. Agarwal, P.K.; Flato, E.; Halperin, D. Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. 2002,
21, 39–61. [CrossRef]

21. Stoyan, Y.; Scheithauer, G.; Gil, N.; Romanova, T. Φ-functions for complex 2D-objects. Q. J. Belg. Fr. Ital. Oper. Res. Soc. 2004, 2,
69–84.

22. Chernov, N.; Stoyan, Y.; Romanova, T.; Pankratov, A. Phi-Functions for 2D Objects Formed by Line Segments and Circular Arcs.
Adv. Oper. Res. 2012, 2012, 346358. [CrossRef] [PubMed]

23. Ghosh, P.K. An algebra of polygons through the notion of negative shapes. CVGIP Image Underst. 1991, 54, 119–144. [CrossRef]
24. Bennell, J.; Dowsland, K.; Dowsland, W. The irregular cutting-stock problem—A new procedure for deriving the no-fit polygon.

Comput. Oper. Res. 2001, 28, 271–287. [CrossRef]
25. Bennell, J. A comprehensive and robust procedure for obtaining the nofit polygon using Minkowski sums. Comput. OR 2008, 35,

267–281. [CrossRef]
26. Dean, H.T.; Tu, Y.; Raffensperger, J.F. An improved method for calculating the no-fit polygon. Comput. Oper. Res. 2006, 33,

1521–1539. [CrossRef]
27. Mahadevan, A. Optimisation in Computer Aided Pattern Packing. Ph.D. Thesis, North Carolina State University, Raleigh, NC,

USA, 1984.
28. Burke, E.; Hellier, R.; Kendall, G.; Whitwell, G. Complete and robust no-fit polygon generation for the irregular stock cutting

problem. Eur. J. Oper. Res. 2007, 179, 27–49. [CrossRef]
29. Huyao, L.; Yuanjun, H.; Bennell, A.J. The irregular nesting problem: A new approach for nofit polygon calculation. J. Oper. Res.

Soc. 2007, 58, 1235–1245. [CrossRef]
30. Ferreira, J.C.; Alves, J.C.; Albuquerque, C.; Oliveira, J.F.; Ferreira, J.S.; Matos, J.S. A flexible custom computing machine for nesting

problems. In Proceedings of the XIII DCIS, Madrid, Spain, 17 November 1998; pp. 348–354.
31. Konopasek, M. Mathematical treatments of some apparel marking and cutting problems. US Dep. Commer. Rep. 1981, 99, 90857-10.

http://doi.org/10.1016/0925-7721(91)90012-4
http://doi.org/10.2307/3009930
http://doi.org/10.1016/0377-2217(95)00021-H
http://doi.org/10.1016/S0925-7721(01)00041-4
http://doi.org/10.1155/2012/346358
http://www.ncbi.nlm.nih.gov/pubmed/35140523
http://doi.org/10.1016/1049-9660(91)90078-4
http://doi.org/10.1016/S0305-0548(00)00021-6
http://doi.org/10.1016/j.cor.2006.02.026
http://doi.org/10.1016/j.cor.2004.11.005
http://doi.org/10.1016/j.ejor.2006.03.011
http://doi.org/10.1057/palgrave.jors.2602255

	Introduction
	Overview for No-Fit Polygon
	Definition and Properties
	Approaches for Generating NFP
	Decomposition and Phi-Function
	Minkowski Sums and Sliding Algorithm

	Improved Sliding Algorithm
	The Concept of Touching Group
	Creation of No-Fit Polygon
	Find the Touching Group
	Determine Translation Vector
	Compute Translation Distance

	Searching Oher Start Positions
	Method of Searching Feasible Starting Position
	Acceleration Strategies
	The ISA Algorithm

	Computational Experiments
	Robustness Performance of ISA
	Efficiency Performance of ISA

	Conclusions and Future Works
	References

