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Abstract: One of the main obstacles in rice cultivation is the tungro virus disease caused by Rice
tungro spherical virus (RTSV) and Rice tungro bacilliform virus (RTBV). These viruses are transmitted
by green leafhopper (Nephotettix virescens) vector, semi-persistently after sucking infected plants.
Subsequently, the vectors migrate and suck susceptible plants, but they can be controlled chemically
and biologically. Mathematical modeling is one of the tools that can be used to analyze the spread
of disease in plants. A literature review was conducted regarding the mathematical model of the
spread of tungro virus disease in rice plants with the data sourced from scholarly references available
in the dimension database, Google Scholar, and Scopus in 2012–2021. The steps followed include
conducting a literature analysis and examining the mathematical model of the transmission of tungro
virus disease in rice plants to identify gaps for future research. The results show that since 2016, few
studies have analyzed mathematical models of the spread of tungro virus disease in rice plants. This
is evident from the data search results, which show that only four articles were acquired through the
option of duplication and visualization using VOSviewer software.

Keywords: mathematical model; dynamical analysis; optimal control; plant disease; tungro

MSC: 92D30

1. Introduction

Rice (Oryza sativa L.) is one of the food crops that has a crucial position in the economy
of Indonesia. It can provide jobs, increase income, and reduce poverty, in addition to
playing a crucial role in enhancing food security. However, the challenges experienced
by the agricultural sector are very complex, including fluctuating production with very
low productivity.

The low productivity is caused by various factors, such as the problem of pests and
plant diseases [1,2]. These problems can be caused by bacteria, viruses, fungi, protozoa, and
insect pathogens, spread through wind, water, soil, and other disease-carrying vectors [3].

Farmers often encounter Tungro virus disease when cultivating rice. The disease
is caused by Rice tungro spherical virus (RTSV) and Rice tungro baciilliform virus (RTBV).
Both viruses can be spread through a green leafhopper (Nephotettix virescens) vector semi-
persistently after sucking infected plants. They migrate and suck susceptible plants without
going through a latency period in the vector body [4–7]. Symptoms can be seen from
changes in leaf color, especially on young leaves, which appear yellow-orange starting
from the tips, then they become slightly curled, the number of tillers is reduced, and plant
growth is stunted. These symptoms usually appear 6–15 days after infection [8–11].
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Mathematical modeling is one of the tools used to analyze the spread of disease in
plants. Several previous findings have developed many models for the spread of plant
diseases. This includes, previous findings have developed many models for the spread of
plant diseases, including the among them modeling of vector-borne diseases with direct
transmission [12] and one-time delay [13]. In addition, optimal control was sought from
the application of roguing, replanting, curative, and preventive treatments [14], as well as
the use of botanical fungicides to reduce the number of infected hosts [15,16].

Other mathematical models, such as the spread of fungal diseases, have been car-
ried out by Castle and Giligan [17], who modeled the spread of fungal diseases causing
fungicide-dependent spoilage, protection, and infection rates. Meanwhile, Kumar un-
derstood the role of fungicide application in fungal diseases with the help of fractional
derivatives consisting of memory effect [18].

Anggriani also created a vector-borne model of rice tungro disease by applying in-
secticide to infected plants [19]. It was then redeveloped by analyzing the effect of using
predators to reduce the number of infected plants [20]. Meanwhile, Blas et al. [21] and Blas
and David [22] created a model of tungro disease in rice plants by considering the type and
characteristics of the virus.

Other research on plant disease models has been conducted, namely a mathematical
model of yellow virus diseases in chili that considers the growth phase and the applica-
tion of entomopathogenic fungus, Verticillium lecanii (V. lecanii), to control vectors of the
diseases [23] and then looked for control of the usage of V. lecanii as a factor in determining
the dose to be applied [24].

From the previous description, mathematical modeling is essential in controlling the
spread of various plant diseases, especially tungro virus in rice plants. However, there are
variations between the different models that have been developed previously. This is due
to the different assumptions regarding to show the uniqueness of the models. Therefore,
reviewing the literature on the mathematical model of the spread of tungro disease proves
to be an interesting topic to discuss. The literature review is expected to identify gaps for
the development of models and research methods regarding the spread of tungro virus
disease in rice plants.

2. Methods
2.1. Data Search Strategy

The literature review focuses on mathematical modeling of the spread of tungro virus
disease in rice plants. The data are sourced from scholarly references in the dimension
database, Google Scholar, and Scopus in 2012–2021. The keywords used in searching can
be seen in Table 1.

Table 1. Search results through the database.

Keyword
Amount of Data From

Dimension Google Scholar Scopus

(“Stability analysis” OR “Mathematical model” OR “Mathematical
modelling” OR “Dynamical Analysis” OR “Dynamical System” OR

“Optimal Control”)
1,586,304 18,000 723,128

(“Stability analysis” OR “Mathematical model” OR “Mathematical
modelling” OR “Dynamical Analysis” OR “Dynamical System” OR

“Optimal Control”) AND (“Plant disease”)
3885 3750 34,717

(“Stability analysis” OR “Mathematical model” OR “Mathematical
modelling” OR “Dynamical Analysis” OR “Dynamical System” OR

“Optimal Control”) AND (“Plant disease”) AND (“Tungro”)
38 43 105

(“Stability analysis” OR “Mathematical model” OR “Mathematical
modelling” OR “Dynamical Analysis” OR “Dynamical System”) AND

(“Optimal Control”) AND (“Plant disease”) AND (“Tungro”)
14 16 5
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2.2. Selection of Relevant Articles

From the results of Table 1, it can be seen that when using the keywords “(“Stability
analysis” OR “Mathematical model” OR “Mathematical modeling” OR “Dynamical Anal-
ysis” OR “Dynamical System”) AND (“Optimal Control”) AND (“Plant disease”) AND
(“Tungro”)”, data were obtained for 35 articles, five from the Scopus database, 16 from the
Google Scholar database, and 14 from the Dimension database. Therefore, 20 articles were
screened, after duplication. The next step is to filter articles relevant to the research topic.
Thirteen papers are suitable based on the relevancy of their titles and abstracts. Meanwhile,
seven were excluded as their titles and abstracts did not corresponding to the research
topic. All relevant articles in the previous step were screened based on the availability of
full papers, but after studying them in detail, only three matched the expected focus of
the topic.

From the three articles studied, a backward and forwarding process was carried out
by collecting relevant articles. This process was repeated and stopped when the article
obtained was from the most recent year, and there are no more citing articles. From this
process, four articles were obtained that were relevant to the research topic [19–22], and
were used as study material, as seen in Table 2. The screening process was carried out using
the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow
chart, as shown in Figure 1.
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Table 2. Summary of relevant articles.

No Author Purpose and Objectives Method/Model Object/Description Ref.

1. Castle and Giligan
Make mathematical modeling to consider
fungicide dynamics that affect plant pathogens’
invasion and persistence.

(1) Model A (Susceptible-Infected) is a
conventional model (permanently uses
a protector).

(2) Model B (Susceptible-Infected-Protected) is an
explicit model (allows for spoilage, protection,
and fungicide-dependent infection rates).

Fungal disease/full paper is
not suitable. [17]

2 Atallah et al.

Models the dynamic spatial diffusion of disease
in vineyards, evaluates nonspatial and spatial
control strategies and ranks them based on
expected net present values.

Bioeconomic models, agent-based models, dynamic
spatial processes, disease control.

Leaf roll
disease/inappropriate title. [25]

3. Bousset et al.
Consider the interactions between plants,
pathogens, the environment, and human actions
in space and time to formalize cyclic epidemics.

- Review article/title
irrelevant. [26]

4. Blas et al. Analyze the equilibrium solution, and solve
numerically for susceptible rice varieties.

Make a mathematical model of the spread of tungro
disease by considering the characteristics of RTSV
and RTBV and analyze the model numerically.

Tungro disease in rice
plants/paper added and used

as a reference paper.
[21]

5. Papaïx et al.

Study the impact of landscape organization
(defined by the proportion of cultivated fields
with resistant cultivars and their spatial
aggregation) and life-history traits of major
pathogens on three disease control steps.

Model:
Susceptible-Exposed-Infectious-Removed (SEIR)
Method:
Statistical analysis.

Epidemiological
control/inappropriate title. [27]

6. Anggriani et al.
Examine the effect of using insecticides on
plants infected with tungro disease in rice
plants.

Make the SH IHSV IV model and use Pontryagin’s
maximum principle in finding optimal control.

Tungro disease in rice
plants/reference paper. [19]

7. Blas and David

Analyze the efficiency of the roguing process on
land infected with rice tungro disease and pay
attention to the types and characteristics of the
virus.

Created a rice plant model based on a system of
ordinary differential equations to simulate the effect
of roguing in controlling the spread of the
Tungro virus.

Tungro disease in rice
plants/reference paper. [22]

8. Jeger et al. Improve understanding and control of disease
through mathematical modeling and analysis. Modeling Analysis. Plants in general/full paper

are not suitable. [28]
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Table 2. Cont.

No Author Purpose and Objectives Method/Model Object/Description Ref.

9. Rimbaud et al. Develop stochastic models to assess
epidemiological and evolutionary outcomes Stochastic The pathogen/title is

not appropriate. [29]

10. Anggriani et al. Seek optimal control of the use of
botanical fungicides.

Create a SIRXP model taking into account:

(1) Control of infected plants is carried out by
preventive treatment to reduce infected plants.

(2) Control of infected plants is carried out by
preventive treatment to reduce infected plants.

Plant diseases in general/full
paper are not suitable. [15]

11. Al-Basir et al. Develop a dynamic model of mosaic disease by
considering roguing and insecticides.

Model:
x− y− u− v
Method:
Stability analysis
Bifurcation Analysis
Using the Pontryagin Maximum Principle.

Mosaic virus on Jatropha
plants/full paper is

not suitable.
[30]

12. Amelia et al. Determining optimal control of the use of
Verticillium lecanii Using the Pontryagin Maximum Principle.

Yellow virus disease in red
chili plants/whole paper is

not suitable.
[24]

13. Amelia et al. Seek optimal control of the use of
botanical fungicides

Changing the birth rate following a logistic function
as the model developed by Anggriani et al. [15]

Plant diseases in general/full
paper are not suitable. [16]

14. Suryaningrat et al.
Looking for optimal control of the use of
insecticides and biological agents in controlling
the spread of tungro virus disease

(1) Developed the previous model (SH IHSV IV) by
adding a predator as a green leafhopper
controller (SH IHSV IV P)

(2) Consider predators and insecticides.
(3) Determine optimal control using Pontryagin’s

Maximum Principle.

Tungro disease in rice
plants/reference paper. [19]

15. Anggriani et al.

Determine the optimal control of the roguing
and replanting plant disease model that
considers curative treatment, preventive
treatment, and the combination of curative and
preventive treatment.

Using the Pontryagin Maximum Principle. Plant diseases in general/full
paper are not suitable. [14]



Mathematics 2022, 10, 2944 6 of 18

Table 2. Cont.

No Author Purpose and Objectives Method/Model Object/Description Ref.

16. Jeger et al. Review: Epidemiology of Plant Viral Diseases. Review mathematical models. Plant virus/inappropriate
title. [31]

17. El-Sayed et al. Creating a fractional model for plant disease in
two-stage infection

Model:
S− P− E− I − R
Method:
Determine disease-free stability and endemic balance
and perform numerical simulations using the
fractional Euler method (FEM).

Plants in general/full paper
are not suitable. [32]

18. Sabir et al.

Introducing a stochastic solver based on
Levenberg-Marquardt backpropagation Neural
Networks (LMBNNs) for nonlinear
host-vector-predator models.

The model used: nonlinear host-vector-predator
Sh − Ih − Sv − Iv − P
Method:
Mean Square Error (MSE), Error Histograms (EHs),
and regression/correlation.

Plants in general/irrelevant
title. [33]

19. Amelia et al.
Analyzes a mathematical model of plant disease
that considers the plant growth phase and the
application of Verticillium lecanii

Performs dynamic analysis on the model that has
been created

(
Sv IvSg IgSBT IBT ).

Yellow virus disease in red
chili plants/whole paper is

not suitable.
[23]

20. Suryaningrat et al. Completed the host-vector predator system. Using the DTM and Runge–Kutta methods. Host-vector- predators/full
papers are not suitable. [34]

21. Rimbaud et al.
They analyzed 69 modeling studies considering
the specific model structure, underlying
assumptions, and evaluation criteria.

Review of 69 modeling studies The review paper/title is not
appropriate. [35]
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These keywords are used as the research is limited to developing a mathematical
model of tungro virus disease in rice plants, which is dynamically analyzed and uses
optimal control theory as a tool to determine the most optimal control that practitioners
should carry out.

2.3. Data Analysis

Data analysis consisted of four stages, namely:

1. Reviewing the mathematical model of the spread of tungro virus disease in rice
plants. This is necessary to determine the extent to which previous findings have
developed the model. Each paper used as a reference is discussed starting with what
was analyzed, what assumptions were used, how the model was formed, and what
kind of control was carried out;

2. Reviewing the results that have been previously achieved. The results obtained in
each paper used as a reference are presented at this stage;

3. Determining the research gap regarding the mathematical model of the spread of
tungro virus disease. Each model and analysis carried out in each paper is discussed
to obtain a gap that can be used in the development of research models and methods
regarding the spread of tungro virus disease in rice plants;

4. Perform statistical analysis to see the development of the model for the spread of
tungro virus disease. The development of a model of the spread of tungro virus
disease is seen based on how many studies on modeling have been published, since
the modeling was carried out, and how it was developed;

5. Performing bibliometric analysis to analyze the novelty, obsolescence, and scientific
reference distribution. Mapping the model for the spread of tungro virus disease in
rice plants with the help of VOSViewer software so that we can see how far the model
for the spread of tungro virus disease in rice plants has been developed.

3. Results and Discussion
3.1. Overview of Previous Models

From the results of selecting articles using the keywords “(“Stability analysis” OR
“Mathematical model” OR “Mathematical modelling” OR “Dynamical Analysis” OR “Dy-
namical System”) AND (“Optimal Control”) AND (“Plant disease”) AND (“Tungro”)”,
there were 20 selected based on the results of duplication plus one article from the backward
and forwarding process. The summary can be seen in Table 2.

After screening, four relevant articles out of the twenty-one are used as reference
material. The results show that a dynamic system model for the spread of tungro disease in
rice plants developed from the Vector-Borne model has been conducted since 2016 [19–22],
as seen in Table 3.

The model developed by Blas et al. in 2016 [21] consisted of eight compartments,
equally divided between plant populations, and vector populations. The four compart-
ments of each population were the healthy population, infected with RTSV only, infected
with RTBV only, and infected with both (RTSV and RTBV). The infected compartment was
distinguished as RTSV alone did not show definite symptoms. In contrast to RTBV-infected
plants, they showed dwarfism and moderate discoloration. However, rice plants infected
with RTBV and RTSV experienced severe stunting and yellowing [4,36,37].

Rice tungro virus is transmitted exclusively (in a semi-persistent manner and without
a latency period) by green leafhoppers, with Nephotettix virescens as the primary vector [38].
A vector can feed on plants infected with RTSV to capture and transmit the virus. However,
when the planthopper sucks food from rice plants infected with RTBV only, it cannot
acquire or transmit the virus. The planthopper can transmit both viruses by sucking the
RTSV-infected and RTBV-infected plant [39,40].
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Table 3. Previous Tungro Disease Spread Model.

Formed Models

Model 1 [19]

dSH
dt = π − βH b

NH
SH IV − µHSH

dIH
dt =

βH b
NH

SH IV − µH IH − dIH
dSV
dt = η − βV b

NV
SV IH − µVSV − pSV

dIV
dt =

βV b
NV

SV IH − µV IV − pIV

Model 2 [20]

dSH
dt = π − βH b

NH
SH IV − µHSH

dIH
dt =

βH b
NH

SH IV − µH IH − dIH
dSV
dt = η − βV b

NV
SV IH − µVSV − cVSVu− αPSV

dIV
dt =

βV b
NV

SV IH − µV IV − cV IVu− αPIV
dP
dt = rP

(
1− P

NP

)
+ αP(SV + IV)− PcPu

Model 3 [21]

dP0
dt = r(K− NP)− αP0V3

NP
− γP0V3

NP
− τP0V3

NP
− βP0V1

NP
− σP0V2

NP
− q0P0

dP1
dt =

βP0V1
NP

+ γP0V3
NP
− λP1V3

NP
− q1P1

dP2
dt = τP0V3

NP
+ σP0V2

NP
− δP2V3

NP
− q2P2

dP3
dt = αP0V3

NP
+ λP1V3

NP
+ δP2V3

NP
− q3P3

dV0
dt = BNV

(
1− NV

V

)
− αP3V0

NP
− bP1V0

NP
+ f V2 − µV0

dV1
dt = bP1V0

NP
− gP2V1

NP
− µV1

dV2
dt = cV3 − f V2 − µV2

dV3
dt = αP3V0

NP
+

gP2V1
NP
− cV3 − µV3

Model 4 [22]

dP0
dt = r(K− NP)− αP0V3

NP
− γP0V3

NP
− τP0V3

NP
− βP0V1

NP
− σP0V2

NP
− q0P0

dP1
dt =

β(1−ρ)P0V1
NP

+
γ(1−ρ)P0V3

NP
− λ(1−ρ)P1V3

NP
− q1(1− ρ)P1 − ρP1

dP2
dt =

τ(1−ρ)P0V3
NP

+
σ(1−ρ)P0V2

NP
− δ(1−ρ)P2V3

NP
− q2(1− ρ)P2 − ρP2

dP3
dt =

α(1−ρ)P0V3
NP

+
λ(1−ρ)P1V3

NP
+

δ(1−ρ)P2V3
NP

− q3(1− ρ)P3 − ρP3
dV0
dt = BNV

(
1− NV

V

)
− αP3V0

NP
− bP1V0

NP
+ f V2 − µV0

dV1
dt = bP1V0

NP
− gP2V1

NP
− µV1

dV2
dt = cV3 − f V2 − µV2

dV3
dt = αP3V0

NP
+

gP2V1
NP
− cV3 − µV3

The assumptions used by Blas et al. [21], in line with Zang and Holt’s [41] research,
show that the rate of rice cultivation depends on the maximum capacity r

(
K− Np

)
, where

r is the rate of planting, Np is the total crop and K is the maximum capacity for planting rice.
Illustrations for possible virus transitions and Blas modeling can be seen in Figures 2 and 3.

Figure 2 shows that the population of susceptible plants increased due to the recruit-
ment of plants by r

(
K− Np

)
and decreased due to the transition from susceptible plants

to plants infected with RTSV, RTBV, and both. This is due to the infected vectors (both
infected with RTSV, RTBV, or both) sucking up susceptible plants at rates of α, β, γ, σ,
and τ. In addition, the population of susceptible plants decreased due to harvesting at a
rate of q0. Meanwhile, the process of possible transition can be seen in Figure 3. The figure
explains that the susceptible plant population interacts with only RTSV-infected vectors so
that the susceptible plants undergo a transition to only RTSV-infected plants. On the other
hand, a description of each variable and parameter can be seen in Table 4.
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Table 4. Description of variables [21].

Variable/Parameter Description

V0 Healthy Vector Population
V1 RTSV Infected Vector Population
V2 RTBV Infected Vector Population
V3 RTSV + RTBV Infected Vector Population
P0 Healthy Plants Population
P1 RTSV Infected Plants Population
P2 RTBV Infected Plants Population
P3 RTSV + RTBV Infected Plants Population

α
RTSV + RTBV transmission rate by RTSV + RTBV infected vector in

susceptible plants
β RTSV transmission rate by RTSV Infected vector in susceptible plants

γ
RTSV transmission rate by RTSV + RTBV infected vector in

susceptible plants
σ RTBV transmission rate by RTBV infected vector in susceptible plants

τ
RTBV transmission rate by RTSV + RTBV infected vector in

susceptible plants

λ
RTSV + RTBV transmission rate by RTSV + RTBV infected vector in

RTSV + RTBV infected plants

δ
RTSV + RTBV transmission rate by RTSV + RTBV infected vector in

RTBV infected plants

a The rate of acquisition of RTSV + RTBV infected plants by susceptible
vectors to RTSV + RTBV infected vectors

b The rate of acquisition of RTSV infected plants by susceptible vectors
to RTSV infected vectors

g The rate of acquisition of RTBV infected plants by RTSV infected
vectors to RTSV + RTBV infected vectors

Blas and David [22] developed the previous model [21] to analyze the efficiency of the
roguing process on land infected with rice tungro disease. The distribution process in a
study conducted in 2017 can be seen in Figure 4 with a roguing effect ρ (representing the
percentage of diseased plants removed from the field represented by the green arrow in
Figure 4), where 0 ≤ ρ ≤ 1.
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Figure 4. Schematic diagram of the model for the spread of tungro virus disease in rice plants carried
out by Blas in 2017 [22].

The following study was conducted by Anggriani et al. in 2017 [19] to analyze the
spread of tungro disease based on the SIR (Susceptible–Infected–Recovered) host-vector
model [42,43]. Some assumptions used are: plant population is not constant, and growth



Mathematics 2022, 10, 2944 11 of 18

and death rates are not the same. In addition, new plants are considered healthy, disease
transmission occurs as vector insects carry the virus from infected plants, infected plants
cannot be cured, and tungro disease can cause death. Insecticide-treated plants are immune
to reinfection, regardless of environmental, climate, or weather conditions. The schematic
diagram of the spread of tungro disease can be seen in Figure 5, where SH is a susceptible
host plant, IH is an infected host plant, SV is a susceptible vector, IV is an infected vector,
NH is the number of plant populations, NV is the number of vector populations, π is the
rate of plant recruitment, η is the rate of vector recruitment, µH is the rate of plant death,
µV is the mortality vector, βH is the probability from vector to plant, βV is the probability
from plant to vector, b is the vector suction rate, d is the per capita plant mortality rate, and
p is the level of insecticide application.
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Figure 5. Compartment diagram and flow of disease transmission [19].

Previous research on mathematical modeling for the spread of tungro disease was
conducted by Suryaningrat et al. in 2020 [20]. The model created in a previous study [19]
was developed by adding predator–prey interactions between vectors and biological agents.
The rice plant population into healthy (SH) and infected (IH) plants, susceptible (SV) and
infected (IV) vector populations, and predatory populations (P), where r is the predator
birth rate, cp is the predator death rate due to insecticides, cv is the rate of vector death due
to insecticides, and α is the rate of predation. The schematic diagram and description of
each parameter can be seen in Figure 6.
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Figure 6. Schematic diagram of the spread of tungro disease in rice plants conducted by
Suryaningrat et al. [20].

A “phylogenetic tree” diagram is drawn to represent the relationships between the
articles used, as shown in Figure 7. Each branch reflects the model’s main characteristics
developed in a previous study. For example, the mathematical model of the spread of
tungro disease in rice plants is divided into two categories. This includes models for the
characteristics of the virus and the similarity between every viral infection.
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3.2. Results That Have Been Achieved in Previous Studies

From models 1 and 2, the plant population is divided into susceptible plants and
those infected with tungro disease. The green leafhopper vector population consists of
susceptible and infected vectors. Control is conducted by giving insecticides to infected
plants (Model 1) and applying predators and insecticides (Model 2). The two models
are solved dynamically, starting from finding the equilibrium point, basic reproduction
number, and local stability analysis. In addition, optimal control is also sought using the
Pontryagin Maximum Principle.

A model for the spread of tungro disease in rice by considering the characteristics
of RTSV and RTBV (Model 3) and the effect of rouging control (Model 4) has also been
carried out, but the last two models were analyzed only numerically. Meanwhile, sensitivity
and stability analysis should be performed to identify the very influential parameters and
determine the stability of the developed model.

3.3. Research Gaps That Might Be Developed

Previous studies have made mathematical models by considering control through
rouging, insecticides, and using predators as natural enemies.

The use of insecticides has a quicker capacity to control the spread of tungro disease.
However, this application can cause pest and disease resistance, is not environmentally
friendly, the price is not economical and can kill natural enemies.

The employment of natural enemies is considered more environmentally beneficial,
and the price is relatively affordable, as it is sufficient to plant refugia plants. However, the
control process using natural enemies is quite long, hence, when the green leafhopper has
exceeded the threshold, further control is needed, such as applying pesticides. This kind of
control follows the recommended Integrated Pest Management (IPM) concept, where the
application of pesticides is given after reaching the threshold.

Possible development of Models 1 to 4 includes the use of refugia plants and para-
sitoids, which are considered more environmentally friendly and more economical so that
these two controls can be used as consideration for developing a model for the spread of
tungro virus disease in rice plants.

The parameters used to model the spread of tungro virus disease in rice plants when
performing numerical simulations are only based on assumptions. This is due to the
inaccessibility or incompleteness of the required data. Therefore, conducting a sensitivity
analysis is essential to identify the parameters that are very influential on the developed
model. This is consistent with research the conducted by:

1. Chitnis et al. [44] and Muryawi et al. [45] have analyzed local sensitivity by using
partial derivation techniques to determine the parameters of the model influencing
disease transmission and prevalence;

2. Blower and Dowlatabadi [46] have performed a sensitivity analysis using Partial Rank
Correlation Coefficient (PRCC);
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3. Wu et al. [47] conducted a sensitivity analysis using Scatter plots, Sobol Method,
Morris Method, Partial Rank Correlation Coefficient (PRCC), and sensitivity heat map
method; and

4. Hurint et al. [48] and Rois et al. [49] carried out a sensitivity analysis locally by ana-
lyzing the effect of changes in parameter values on the basic reproduction ratio (R0).

The previous works primarily studied the stability analysis of the model around
the equilibrium point. Therefore, it is also necessary to conduct a global stability anal-
ysis of the mathematical model of plant disease spread, such as building the Lyapunov
function [12,45,50,51] or using the Volterra–Lyapunov matrix method [52].

3.4. Statistical Analysis

From the keywords used in the data search, 21 articles were obtained, as described
in Table 2. After grouping based on the research object, only 19% did modeling on tungro
disease, and the other 81% discussed different problems (see Figure 8).
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Figure 9 shows that since 2016, several publications have analyzed mathematical
models of the spread of tungro virus disease in rice plants. The most publications occurred
in 2017, with as many as two publications. Unfortunately, no articles were published in
the next two years, and publications will be available again in 2020. This indicates that
research on tungro disease models in rice is scarce.
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3.5. Bibliometric Analysis

About 20 articles were relevant to the keywords used as described in Sections 2.2 and 3.1.
They were obtained from the duplication selection results and one article was selected
based on reference relevance. The results of the visualization of the bibliometric network
using the VOSviewer software can be seen in Figure 8.

From Figure 10, it can be seen that there are several nodes with different sizes and
distances. The size of the node indicates the number of words discussed. The larger the
node, the more terms are available in the database. At the same time, the distance from one
node to another indicates the strength of the relationship between one word and another.
The tungro virus node looks small, and the distance between the “tungro virus” node and
the “model” node is quite far. This shows that analysis of the mathematical model of the
spread of tungro disease is still rarely conducted.
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Figure 11 shows no correlation between the node distribution model of the tungro
virus and refugia plants, parasitoid utilization, sensitivity analysis, global stability analysis,
and software design to predict spread. This means that there is no research on modeling
tungro virus disease by considering refugia plants and the use of parasitoids. In addition,
the analysis of the mathematical model of the spread of tungro disease has not applied
sensitivity analysis, global stability analysis, and software design to predict the spread.
However, this analysis is also essential. Therefore, this is an opportunity for further research
to develop a model for spreading the tungro virus in rice plants.
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While Figure 12 shows that mathematical modeling of the spread of the tungro virus
has been carried out since 2016, it is still rarely conducted, and this can be seen from the
node’s color and the node’s small size. In addition, the four articles used as references were
also mapped to visualize the relationship between the two, as shown in Figure 13. The
figure shows that the control carried out only considers the use of insecticides, biological
agents, and rouging. So that control by considering the planting of refugia plants and the
use of parasitoids becomes an opportunity for developing models for spreading tungro
virus disease in rice plants.
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4. Discussion

Research on mathematical modeling of the spread of tungro virus disease in rice
plants has been carried out since 2016, but few researchers have conducted such research.
This can be seen from the data obtained from the results of a literature study on the
dimension database, Google Scholar, and Scopus in 2012–2021, which show there are only
four papers available after analysis using the PRISMA method. Of the four papers, the
control considered in modeling is limited to using insecticides, rouging, and biological
agents. Farmers often carry out control by utilizing the refugia plants and parasitoid, which
are considered more environmentally friendly and more economical so that these two
controls can be used as consideration for developing a model for the spread of tungro virus
disease in rice plants. In addition, the analysis is only limited to finding the equilibrium
point, basic reproduction number, local stability analysis, and optimal control, even though
other studies, such as sensitivity and global stability analysis, need to be carried out.
Furthermore, the model made by previous researchers is continuous, even though rice
plants are not continuous, so making a discrete model for the spread of tungro virus disease
in rice plants can be considered by future researchers.
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5. Conclusions

Mathematical modeling of the spread of the tungro virus in rice plants is rarely
conducted. This can be seen from the results of a literature study on the mathematical
model of the spread of tungro virus disease in rice plants with data sourced from scholarly
references available in the dimension database, Google Scholar, and Scopus in 2012–2021,
which were analyzed using PRISMA methods and bibliometric visualization. The results
showed that there were only four articles on mathematical modeling of the spread of the
tungro virus. Furthermore, the controls carried out by the previous researchers considered
rouging, insecticide treatment, and the use of predators as natural enemies in their modeling.
Therefore, the use of refugia plants and parasitoids can be considered in future studies to
develop a model for spreading the tungro virus in rice plants. In addition, discrete models
for the spread of tungro virus disease, global stability, and sensitivity analysis can be used
to develop mathematical models for the spread of tungro virus disease in rice plants that
future researchers can use.
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