
Citation: Yang, J.; Liu, Z.; Zhang, X.;

Hu, G. Elite Chaotic Manta Ray

Algorithm Integrated with Chaotic

Initialization and Opposition-Based

Learning. Mathematics 2022, 10, 2960.

https://doi.org/10.3390/

math10162960

Academic Editors: Shi Qiang Liu,

Erhan Kozan, Felix T. S. Chan

and Weidong Li

Received: 25 July 2022

Accepted: 13 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Elite Chaotic Manta Ray Algorithm Integrated with Chaotic
Initialization and Opposition-Based Learning
Jianwei Yang 1, Zhen Liu 1, Xin Zhang 1 and Gang Hu 2,3,*

1 Design Art College, Xijing University, Xi’an 710123, China
2 Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China
3 School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
* Correspondence: hugang@xaut.edu.cn

Abstract: The manta ray foraging optimizer (MRFO) is a novel nature-inspired optimization algo-
rithm that simulates the foraging strategy and behavior of manta ray groups, i.e., chain, spiral, and
somersault foraging. Although the native MRFO has revealed good competitive capability with
popular meta-heuristic algorithms, it still falls into local optima and slows the convergence rate
in dealing with some complex problems. In order to ameliorate these deficiencies of the MRFO,
a new elite chaotic MRFO, termed the CMRFO algorithm, integrated with chaotic initialization of
population and an opposition-based learning strategy, is developed in this paper. Fourteen kinds
of chaotic maps with different properties are used to initialize the population. Thereby, the chaotic
map with the best effect is selected; meanwhile, the sensitivity analysis of an elite selection ratio
in an elite chaotic searching strategy to the CMRFO is discussed. These strategies collaborate to
enhance the MRFO in accelerating overall performance. In addition, the superiority of the presented
CMRFO is comprehensively demonstrated by comparing it with a native MRFO, a modified MRFO,
and several state-of-the-art algorithms using (1) 23 benchmark test functions, (2) the well-known
IEEE CEC 2020 test suite, and (3) three optimization problems in the engineering field, respectively.
Furthermore, the practicability of the CMRFO is illustrated by solving a real-world application of
shape optimization of cubic generalized Ball (CG-Ball) curves. By minimizing the curvature variation
in these curves, the shape optimization model of CG-Ball ones is established. Then, the CMRFO
algorithm is applied to handle the established model compared with some advanced meta-heuristic
algorithms. The experimental results demonstrate that the CMRFO is a powerful and attractive
alternative for solving engineering optimization problems.

Keywords: manta ray foraging optimizer; chaotic map; opposition-based learning; elite chaotic
search; CG-Ball curves; shape optimization

MSC: 49K35; 68T20

1. Introduction

Many complex problems to be solved in life can be described as optimization problems,
and the research on high-precision algorithms for optimization problems has attracted
many scholars. Traditional mathematical optimization (TMO) methods usually require
the objective function of the optimization problem to satisfy convexity and differentiabil-
ity. This requirement theoretically ensures that TMO methods can approach the optimal
solution. However, since the objective functions of most optimization problems tend to
be multimodal, discrete, non-differentiable, and non-convex, TMO cannot better handle
complex optimization problems. Nowadays, swarm intelligence algorithms simulating
organisms in nature are often adopted to solve optimization problems in order to achieve
the desired purpose.

The concept of swarm intelligence was first introduced by Hackwood et al. [1] and
originates from the research on the social behavior of swarm gregarious creatures (such as
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birds, fish, and wolves). Swarm intelligence algorithms take advantage of the swarm
evolution behavior of creatures. With the help of information sharing and competition
mechanisms among populations, the swarm intelligence algorithm makes random explo-
ration and exploitation to search for the optimal objective function solution. In addition, a
swarm intelligence algorithm has no strict mathematical conditions on objective function
compared with the traditional random search algorithm. When dealing with complex opti-
mization problems, it can quickly search for the global optimal, is simple to operate, and
has fast convergence speed. These advantages have made swarm intelligence algorithms
popular in a short amount of time. The genetic algorithm (GA) introduced by scholar
Holland in 1975 is an optimization technique inspired by natural evolution [2]. The birth of
the genetic algorithm promoted the development of swarm intelligence algorithms, making
the theoretical research of swarm intelligence algorithms a hot research field. After the
development of biology and continuous research on intelligent optimization algorithms, a
series of swarm intelligence optimization algorithms with their own characteristics have
been put forward, and these algorithms have been widely used in data clustering [3],
feature selection [4], economic emission dispatch [5], engineering problems [6], shape
optimization [7], and many other application fields.

Since swarm intelligence optimization algorithms were often proposed and intro-
duced with the help of the influence of natural flora and fauna, different swarm intelligence
algorithms have focused on different strategies and solved different problems, showing
differences and defects, and as they are a reliable means, the introduction of improve-
ment strategies will help different algorithms in different optimization problems. Many
scholars have modified different population intelligence algorithms with the help of some
enlightening methods and solved some practical engineering problems [8–12]. For ex-
ample, Elsisi et al. proposed a modified multitracker optimization algorithm by adding
contrastive-based learning and quasi-OBL methods and applied it to nonlinear model pre-
dictive control [13]. Zheng et al. proposed an improved gray wolf optimization algorithm
and applied it to solve Quintic generalized [14]. Elsisi and Abdelfattah proposed a new
design of variable structure control based on the lightning search algorithm [15]. Hu et al.
proposed an improved chimp optimization algorithm based on a combination of selective
opposition and cuckoo search strategies and used for optimal degree reduction of Said-Ball
curves [16]. Zhao et al. proposed an improved artificial hummingbird algorithm for solving
complex multiobjective optimization problems [17]. In addition to the above, there have
been many studies on improving optimization algorithms and their applications in solving
practical problems [18–22].

As a representative of excellent meta-heuristic algorithms, the MRFO simulates the
foraging strategy and behavior of manta ray groups [23]. In addition, the MRFO owns
good global searching ability, high solving efficiency, and strong stability. Therefore, many
scholars have used the MRFO to resolve complex optimization problems in practical
application fields. For example, Houssein et al. used manta ray foraging optimization
to solve the parameter extraction of the three-diode photovoltaic model [24]. Fathy et al.
used the MRFO to deal with the robust global MPPT to mitigate partial shading of the
triple-junction solar-cell-based system [25]. Ben et al. used the MRFO to deal with the
Novel technique for interpreting gravity anomalies over geologic structures with idealized
geometries and the Novel methodology for interpreting magnetic anomalies due to two-
dimensional dipping dikes [26,27]. El-Hameed et al. used the MRFO to analyze and
validate the three-diode model to characterize industrial solar generating units [28]. In
addition, the MRFO has been applied to solve optimization of the support vector machine
model [29], optimization of distributed generators [30], and parameter extraction of the
artificial neural network model [31]. Some scholars have extended the MRFO to solve
multiobjective problems. For example, Got et al. proposed an MOMRFO for solving
multiobjective problems [32]. Zouache et al. and Abdelaziz proposed guided manta
ray foraging optimization using epsilon dominance to solve multiobjective engineering
problems [33]. Some scholars have improved it to solve the practical problem of optimal
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power flow [34]. The MRFO also has room for further improvement. Many scholars have
made relevant improvements to solve complex problems in their fields. There are many
improvement methods: (1) Combining the MRFO with various improvement strategies:
For example, Elaziz et al. [35,36] used fractional-order algorithms to enhance the MRFO
for global optimization and image segmentation. Yousri et al. proposed a Novel memory-
based fractional-order Caputo manta ray foraging optimizer [37]. Xu et al. proposed
an improved MRFO algorithm for fire-use analysis and optimization of HT-PEMFC [38].
Jena et al. proposed an attacking manta-ray foraging optimization algorithm for handling
multilevel thresholding of brain MR images based on maximum 3D Tsallis entropy [39].
Other studies have also worked on improving the MRFO [40–42]. (2) Combining the MRFO
with other algorithms: For example, the SA algorithm was fused with the MRFO to obtain
the SA–MRFO algorithm [43], the MRFO was combined with the GBO algorithm to obtain
the MRFO–GBO [44], and the proposed ROA was combined with the MRFO to obtain the
ROA–MRFO [45]. In this work, we develop a novel elite chaotic MRFO, termed the CMRFO,
by integrating three different strategies: chaotic initialization of population, opposition-
based learning, and elite chaotic searching. Through 23 test functions, the CEC 2020 test
suite, three engineering examples, and one real-world application, the effectiveness of
the CMRFO is examined by comparing it with the native MRFO, a modified MRFO, and
well-known meta-heuristic algorithms.

Furthermore, the practicability of the CMRFO is verified by the shape optimization
of parametric curves (i.e., CG-Ball curves). The classical Ball curves are a forceful tool for
shape design in many geometric modeling fields, such as industrial design, manufacturing,
and path planning. [36]. However, the shape of classical Ball curves is only defined by their
control points. This paper constructs the local controlled CG-Ball curves to overcome these
weaknesses by generalizing classical cubic Ball curves. Furthermore, a new mathematical
model of shape optimization for CG-Ball ones based on minimum curvature variation is
established and then the CMRFO is applied to deal with this optimization model to obtain
the optimal shape of CG-Ball curves. The innovative points and main contributions of this
paper are as follows:

(a) A new manta ray foraging optimizer (CMRFO) based on chaotic initialization, opposition-
based learning, and elite chaotic searching is proposed.

(b) The effectiveness of the CMRFO is demonstrated by comparing it with the native
MRFO, a modified MRFO, and several advanced algorithms on 23 classical bench-
marks and IEEE CEC 2020, as well as three engineering design examples.

(c) A new optimization model of CG-Ball curves based on minimum curvature variation
is established, and the CMRFO is adopted to solve this model to certify the superiority
of the algorithm.

The rest of this paper is arranged as follows: a new elite chaotic CMRFO is proposed
in Section 2. The effectiveness of the CMRFO is demonstrated by comparison with other
optimization algorithms using 23 classical benchmarks and the IEEE CEC 2020 test suite in
Section 3. Three real-world engineering application problems are presented to verify the
superiority of the CMRFO in Section 4. In Section 5, the practicability of the CMRFO is
verified by the shape optimization problem of CG-Ball curves. There is a summary of this
paper in Section 6.

2. Proposed Chaotic MRFO
2.1. Overview of the MRFO

The MRFO is a new swarm intelligence optimization algorithm that simulates the
behaviors of manta ray foraging for plankton, which has the following three foraging
behaviors [23].
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2.1.1. Chain Foraging (CF)

In the CF strategy, manta rays form a chain to swim straight for the plankton. Except
for the first individual in the foraging chain, each individual is updated by the previous
and best individual, respectively. The updating formula of zd

i (x) is given by:


zd

1(x + 1) = zd
1(x) + r·

[
zd

best(x)− zd
1(x)

]
+ α·

[
zd

best(x)− zd
1(x)

]
,

zd
i (x + 1) = zd

i (x) + r·
[
zd

i−1(x)− xd
i (x)

]
+ α·

[
zd

best(x)− zd
i (x)

]
, i = 2, 3, . . . , M

α = 2r·
√
|log(r)|,

(1)

where the random vector r ∈ [0, 1], x represents the current number of iterations, and
M represents the total number of individuals.

2.1.2. Spiral Foraging

In this behavior of manta rays, each individual moves both toward the previous
individual and toward food in a spiral way. The updated position of zd

i (t) is defined by:


zd

1(x + 1) = zd
best(x) + r·

[
zd

best(x)− zd
1(x)

]
+ β·

[
zd

best(x)− zd
1(x)

]
,

zd
i (x + 1) = zd

best(x) + r·
[
zd

i−1(x)− zd
i (x)

]
+ β·

[
zd

best(x)− zd
i (x)

]
, i = 2, 3, . . . , M

β = 2er1
X−t+1

X · sin(2πr1),

(2)

in which the random number r1 ∈ [0, 1] and X represents the maximum number of iterations.
The above spiral foraging behavior can also be improved for exploration. Then, the

mathematical formula is given by:


zd

1(x + 1) = zd
rand(x) + r·

[
zd

rand(x)− zd
1(x)

]
+ β·

[
zd

rand(x)− zd
1(x)

]
,

zd
i (x + 1) = zd

rand(x) + r·
[
zd

i−1(x)− zd
i (x)

]
+ β·

[
zd

rand(x)− zd
i (x)

]
, i = 2, 3, . . . , M

zd
rand = Lbd + r·(Ubd − Lbd),

(3)

where Lbd and Ubd represent the upper and lower bounds, respectively.

2.1.3. Somersault Foraging (SF)

In SF behavior of manta rays, each individual is updated only in relation to the best
individual. The updated formula of zd

i (x) in SF is given by

zd
i (x + 1) = zd

i (x) + S·
[
r2·zd

best(x)− r3·zd
i (x)

]
, i = 1, 2, . . . , M (4)

where r2, r3 ∈ [0, 1] are random numbers and S = 2 is the somersault factor.

2.2. Chaotic MRFO

To heighten the overall performance of the MRFO algorithm, a novel elite chaotic
manta ray algorithm, called the CMRFO, integrated with chaotic initialization and opposition-
based learning is developed in the section.

2.2.1. Chaotic Initialization of Population

The global convergence speed and convergence accuracy are affected by the quality
of the initial population of optimization algorithms, and the high diversity of the initial
population is conducive to enhancing the solution quality. The MRFO is known to initialize
its population randomly, and the population cannot be uniformly distributed in the whole
search space, which results in the reduction of efficiency in the search process. Nevertheless,
a chaotic map owns the peculiarity of ergodicity and randomness, which can thoroughly
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probe the search space in a range. In our paper, multiple chaotic maps are used to improve
the MRFO algorithm. Table 1 describes 14 different one-dimensional maps, where k is the
index and θk is the k-th number in the chaotic sequence. Figure 1 shows the corresponding
14 different one-dimensional map images.

Table 1. Fourteen chaotic maps.

No. Map Name Map Equation

1 Chebyshev (M1) θk+1 = cos
[

k
cos(θk)

]
2 Circle (M2) θk+1 = θk − a

2π sin(2πθk)mod(1) + b

3 Gauss/mouse (M3) θk+1 =

{
0 , θk = 0

1
θkmod(1) , otherwise

4 Intermittency (M4)
θk+1 =

 ε + θk + cθn
k , 0 < θk ≤ P

θk − P
1 − P , P < θk < 1

5 Iterative (M5) θk+1 = sin
(

aπ
θk

)
, a ∈ (0, 1)

6 Liebovitch (M6)
θk+1 =


aθk , 0 < θk ≤ P 1
P − θk
P2 − P1

, P1 < θk ≤ P2
1− β(1− θk) , P2 < θk ≤ 1

7 Logistic (M7) θk+1 = aθk(1− θk)

8 Piecewise (M8)
θk+1 =


θkP−1, 0 ≤ θk < P
(θk − P)(0.5− P)−1, P ≤ θk < 0.5
(1− P− θk)(0.5− P)−1, 0.5 ≤ θk < 1− P
(1− θk)P−1, 1− P ≤ θk < 1

9 Sine (M9) θk+1 = a
4 sin(πθk), a ∈ (0, 4]

10 Singer (M10) θk+1 = µ(7.86θk − 23.31θ2
k + 28.75θ3

k − 13.302875θ4
k )

11 Sinusoidal (M11) θk+1 = aθ2
k sin(πθk)

12 Tent (M12) θk+1 =

{
θk/0.7 , θk < 0.7
10(1 − θk)/3, θk ≥ 0.7

13 β-chaotic (M13) θk+1 = kβ(θk, µ, ν, θ1, θ2)

14 Cubic (M14) θk+1 = ρ(1− θ2
k )
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2.2.2. Opposition-Based Learning (OL)

High diversity of the population can emphasize the exploratory stage of the algorithm,
and OL is one of the methods to improve population diversity. The size of the population is M.
Suppose the individuals are denoted as zi(x) = (zi

1(x), . . . , zi
d(x), . . . , zi

D(x)) ∀ i = 1, 2, . . . , M
and each dimension component satisfies zd

i (x) ∈ [Ubd, Lbd], d = 1, 2, . . . , D. Then, the
opposition-based solution of each dimension is calculated by Equation (5), where z̃i(x) =
(z̃1

i (x), . . . , z̃d
i (x), . . . , z̃D

i (x)), ∀ i = 1, 2, . . . , M.

z̃d
i (x) = Ubd + Lbd − zd

i (x) (5)

The fitness values of 2M individuals composed of current and opposition-based
individuals are calculated and sorted from small to large, and the first N individuals
are selected as the new population. Opposition-based learning not only enhances the
diversity of the population but also increases the ability of the MRFO to approach the
global optimal solution.

2.2.3. Elite Chaotic Searching (ECS)

OL can improve the exploration ability of the proposed CMRFO. Then, elite chaotic
searching is implemented to heighten the exploitation capacity of this algorithm, in which
chaotic mutation is carried out on elite individuals to realize further renewal of elite indi-
viduals. The fitness values of the current population are calculated and sorted in ascending
order, and then the first n (n = p·M) individuals are selected as elite individuals, where
p is the selection proportion and belongs to [0, 1]. The elite individuals are recorded as
{ez1(x), ez2(x), . . . , ezm(x)} ∈ {z1(x), z2(x), . . . , zM(x)}, where the i-th elite individual
is ezi(x) = (ez1

i (x), ez2
i (x), . . . , ezD

i (x)) and its upper and lower bounds are as follows:ebd(x) = max
{

ezd
i (x), ezd

2(x), . . . , ezd
n(x)

}
,

ead(x) = min
{

ezd
1(x), ezd

2(x), . . . , ezd
n(x)

}
.

(6)

The elite individual ezi(x) is mapped to the interval [0, 1], and the chaotic individual
ci(x) =

{
c1

i (x), c2
i (x), . . . , cD

i (x)
}

is acquired, whose calculation is as follows:

cd
i (x) =

ezd
i (x)− Lbd(x)

Ubd(x)− Lbd(x)
, i = 1, 2, . . . , n (7)

Then, logistic chaotic maps on chaotic individual ci(x) are performed.

cd
i (κ + 1) = µ·cd

i (κ)[1− cd
i (κ)], (8)

where the constant µ = 4 and κ is the iteration number of chaotic maps.
When the maximum number of chaotic iterations κmax is gained, the chaotic individu-

als are remapped into the interval [ead(x), ebd(x)]. In this paper, κmax is set to X. The i-th
new elite individual ecd

i (x) is obtained as follows:

ecd
i (x) = cd,κmax

i (x)·[ebd(x)− ead(x)] + ead(x) (9)

Finally, a greedy choice is made between eci(x) and ezi(x), that is

zi(x + 1) =
{

ezi(x), f (ezi(x)) ≤ f (eci(x))
eci(x). f (ezi(x)) > f (eci(x))

(10)

With the increase in iterations, the upper and lower bounds of elite individuals are
gradually reduced to the vicinity of the target solution. Hence the local search ability of the
MRFO is enhanced.
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The above three strategies are combined with the MRFO, and the chaotic manta ray
foraging optimizer is proposed, which is recorded as the CMRFO. The pseudo-code and
the flow chart for the CMRFO are given by Algorithm 1 and Figure 2, respectively.

Algorithm 1: CMRFO

Set the parameters: M, X, Ub, Lb, D, p
The chaotic map is used to generate the initial position of N manta rays. //Chaotic initialization
of population
Calculate the fitness value of each individual, and save the best position.
While x < X

for i = 1: M
for d = 1 to D

if rand < 0.5 //Cyclone foraging
if t/T < rand

zd
i (x + 1) =

{
zd

rand(x) + r·(zd
rand(x)− zd

i (x)) + β·(zd
rand(x)− zd

i (x)), i = 1
zd

rand(x) + r·(zd
i−1(x)− zd

i (x)) + β·(zd
rand(x)− zd

i (x)). i = 2, 3, . . . , M
else

zd
i (x + 1) =

{
zd

best(x) + r·(zd
best(x)− zd

i (x)) + β·(zd
best(x)− zd

i (x)), i = 1
zd

best(x) + r·(zd
i−1(x)− zd

i (x)) + β·(zd
best(x)− zd

i (x)). i = 2, 3, . . . , M
end if

else //Chain foraging

zd
i (x + 1) =

{
zd

i (x) + r·(zd
best(x)− zd

i (x)) + α·(zd
best(x)− zd

i (x)), i = 1
zd

i (x) + r·(zd
i−1(x)− xd

i (x)) + α·(zd
best(x)− zd

i (x)). i = 2, 3, . . . , M
end if

Update the best position.
zd

i (x + 1) = zd
i (x) + S·(r2·zd

best(x)− r3·zd
i (x)) i = 1, 2, . . . , M //Somersault foraging

Update the best position.
z̃d

i (x) = Ubd + Lbd − zd
i (x) //Opposition-based learning

The first N individuals among current and opposition-based individuals are selected as the
new population.

The fitness values of the current population are sorted in ascending order, and the first n
individuals are selected as elite individuals. //Elite chaotic searching

for I = 1 to n

cd
i (x) = ezd

i (x) − Lbd(x)
Ubd(x) − Lbd(x)

for k = 1 to X
cd

i (κ + 1) = µ·cd
i (κ)·(1− cd

i (κ))
end for
ecd

i (x) = cd,κmax
i (x)·(ebd(x)− ead(x)) + ead(x)

if f (eci(x)) < f (zi(x)) then
zi(x + 1) = eci(x)

end if
end for

end for
end for

End while
Output the global best position.
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3. Experimental Results and Analysis

In this section, the capability and superiority of the CMRFO are comprehensively
demonstrated by 23 classical test suites and the IEEE CEC2020 benchmark. The numerical
experiments are implemented on Intel(R) Core(TM) i7-7700HQ, 2.80 GHz or 2.81 GHz,
8.00 GB, 512 GB, Windows 10, and Matlab 2018a. Here, the values of N and T are 50 and 1000,
respectively. The obtained data are the results of each algorithm running independently
30 times. The 23 classical test functions of three different types are listed in the literature [7].

3.1. Performance of the CMRFO for the Initializing Population Based on Different Chaotic Maps

The CMRFO uses chaotic maps to generate the initial population, which can achieve a
uniform distribution of the population and explore the search space more comprehensively
within a certain range. This is conducive to heightening the performance and efficiency of
intelligence algorithms in the search process. Unimodal functions can examine the local
search ability of the CMRFO. Meanwhile, multimodal and fixed-dimensional multimodal
functions are treated to be an intractable problem because they have numerous local
extrema. So this comparison experiment is performed on 23 benchmark functions of three
different types. Table 2 shows the statistical results of the CMRFO using 14 different chaotic
maps to initialize the population, in which the boldface data represent the optimal values
of 14 different chaotic maps.

Table 2. Results of the CMRFO using 14 different chaotic maps on 23 benchmark functions.

No. Result
CMRFO

M1 M2 M3 M4 M5 M6 M7

F1
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F2
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F3
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F4
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F5
Mean 8.70060 0.90144 1.76270 2.17 × 10−7 7.80430 0.89795 0.88399
Std 79.7595 16.2520 29.5025 8.89 × 10−13 78.6172 16.1263 15.6288
Rank 14 7 11 3 13 6 5

F6
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F7
Mean 3.26 × 10−5 5.28 × 10−5 4.33 × 10−5 4.65 × 10−5 5.44 × 10−5 4.37 × 10−5 3.88 × 10−5

Std 4.58 × 10−10 1.29 × 10−9 1.20 × 10−9 1.71 × 10−9 1.63 × 10−9 1.87 × 10−9 7.27 × 10−10

Rank 1 12 6 8 13 7 3

F8
Mean −38,051.19 −12,569.49 −12,391.83 −9584.84 −39,165.73 −12,569.49 −12,569.49
Std 0.0 2.35 × 10−23 6.31 × 105 1.66 × 106 5.57 × 10−23 1.41 × 10−23 1.60 × 10−23

Rank 13 10 11 12 14 5 7

F9
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F10
Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F11
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F12
Mean 1.88 × 10−30 1.04 × 10−31 3.61 × 10−31 9.12 × 10−32 2.06 × 10−30 8.87 × 10−32 2.68 × 10−31

Std 2.61 × 10−59 5.64 × 10−62 2.93 × 10−61 6.34 × 10−62 2.56 × 10−59 2.65 × 10−62 7.27 × 10−61

Rank 13 5 11 4 14 3 9
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Table 2. Cont.

No. Result
CMRFO

M1 M2 M3 M4 M5 M6 M7

F13
Mean 1.38 × 10−29 7.61 × 10−31 1.15 × 10−29 1.87 × 10−31 5.49 × 10−4 2.35 × 10−31 5.92 × 10−31

Std 1.08 × 10−57 3.98 × 10−60 3.90 × 10−58 1.77 × 10−61 6.04 × 10−6 7.95 × 10−62 1.46 × 10−60

Rank 13 7 12 2 14 3 6

F14
Mean 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F15
Mean 3.53 × 10−4 3.07 × 10−4 3.53 × 10−4 3.07 × 10−4 3.53 × 10−4 3.07 × 10−4 3.07 × 10−4

Std 4.19 × 10−8 5.88 × 10−38 4.19 × 10−8 3.37 × 10−38 4.19 × 10−8 2.68 × 10−38 2.26 × 10−38

Rank 11 10 11 9 11 3 2

F16
Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32

Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F17
Mean 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F18
Mean 3 3 3 3 3 3 3
Std 4.05 × 10−31 3.01 × 10−31 5.19 × 10−32 1.56 × 10−31 0 7.78 × 10−31 9.34 × 10−32

Rank 9 7 3 6 1 12 4

F19
Mean −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628
Std 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30

Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F20
Mean −3.2863 −3.3101 −3.2863 −3.3042 −3.3101 −3.2923 −3.3161
Std 3.12 × 10−3 1.34 × 10−3 3.12 × 10−3 1.90 × 10−3 1.34 × 10−3 2.79 × 10−3 7.07 × 10−4

Rank 6 2 6 3 2 5 1

F21
Mean −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532
Std 1.13 × 10−29 1.33 × 10−29 1.08 × 10−29 1.08 × 10−29 9.80 × 10−30 1.08 × 10−29 1.18 × 10−29

Rank 3 7 2 2 1 2 4

F22
Mean −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029
Std 7.31 × 10−30 8.30 × 10−30 9.80 × 10−30 8.30 × 10−30 7.31 × 10−30 9.30 × 10−30 9.80 × 10−30

Rank 2 4 6 4 2 5 6

F23
Mean −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364
Std 3.32 × 10−30 3.65 × 10−30 3.16 × 10−30 3.32 × 10−30 2.99 × 10−30 3.32 × 10−30 4.32 × 10−30

Rank 3 4 2 3 1 3 5

Mean Rank 4.3478 3.7826 4.0435 2.9565 4.2609 2.8696 2.7826

Result 13 8 10 5 12 4 3

Table 3 shows that in the CMRFO algorithm, the results of using different chaotic maps
to initialize the initial population are slightly different. For all chaotic maps, according
to the final ranking in the last line of Table 3, the performance of the CMRFO using M14
(cubic map) is significantly better than that on using other chaotic maps. Therefore, we
choose M14 (cubic map) to initialize the population, and the M14-integrated CMRFO will
be studied in detail in Section 3.2.

Table 3. Results of CMRFO using 14 different chaotic maps to initialize the population (continued).

No. Result
CMRFO

M8 M9 M10 M11 M12 M13 M14

F1
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F2
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F3
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table 3. Cont.

No. Result
CMRFO

M8 M9 M10 M11 M12 M13 M14

F4
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F5
Mean 0.91203 1.68030 0.91182 1.77 × 10−7 7.79 × 10−7 3.55540 1.62 × 10−8

Std 16.6361 26.7471 16.6282 2.01 × 10−13 5.36 × 10−12 53.3194 1.04 × 10−15

Rank 9 10 8 2 4 12 1

F6
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F7
Mean 4.89 × 10−5 5.01 × 10−5 4.30 × 10−5 3.75 × 10−5 6.05 × 10−5 5.23 × 10−5 4.14 × 10−5

Std 6.98 × 10−10 2.06 × 10−9 1.05 × 10−9 1.08 × 10−9 2.74 × 10−9 1.30 × 10−9 9.62 × 10−10

Rank 9 10 5 2 14 11 4

F8
Mean −12,569.49 −12,569.49 −12,569.49 −12,569.49 −12,569.49 −12,569.49 −12,569.49
Std 5.22 × 10−24 1.36 × 10−23 1.76 × 10−23 1.95 × 10−23 1.57 × 10−23 1.22 × 10−23 6.27 × 10−24

Rank 1 4 8 9 6 3 2

F9
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F10
Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F11
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F12
Mean 2.29 × 10−31 1.46 × 10−31 7.63 × 10−32 7.80 × 10−32 2.86 × 10−31 6.84 × 10−31 1.56 × 10−31

Std 6.98 × 10−61 5.94 × 10−62 1.80 × 10−62 9.70 × 10−63 3.54 × 10−61 2.90 × 10−60 2.00 × 10−61

Rank 8 6 1 2 10 12 7

F13
Mean 1.21 × 10−30 3.99 × 10−30 3.19 × 10−30 2.93 × 10−30 4.16 × 10−31 2.19 × 10−30 1.80 × 10−31

Std 6.54 × 10−60 5.57 × 10−59 3.21 × 10−61 8.34 × 10−59 7.06 × 10−61 1.42 × 10−59 1.45 × 10−61

Rank 8 11 4 10 5 9 1

F14
Mean 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Std 0 2.59 × 10−33 0 0 0 0 0
Rank 1 2 1 1 1 1 1

F15
Mean 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.53 × 10−4 3.07 × 10−4

Std 2.17 × 10−38 2.72 × 10−38 2.80 × 10−38 2.94 × 10−38 2.71 × 10−38 4.19 × 10−8 3.12 × 10−38

Rank 1 5 6 7 4 11 8

F16
Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32

Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F17
Mean 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F18
Mean 3 3 3 3 3 3 3
Std 3.43 × 10−31 7.68 × 10−31 4.46 × 10−31 9.34 × 10−32 9.34 × 10−32 1.35 × 10−31 1.04 × 10−32

Rank 8 11 10 4 4 5 2

F19
Mean −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628
Std 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30

Rank 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F20
Mean −3.2982 −3.2923 −3.2982 −3.2923 −3.2744 −3.3042 −3.2923
Std 2.38 × 10−3 2.79 × 10−3 2.38 × 10−3 2.79 × 10−3 3.57 × 10−3 1.90 × 10−3 2.79 × 10−3

Rank 4 5 4 5 7 3 5

F21
Mean −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532
Std 1.23 × 10−29 1.13 × 10−29 1.28 × 10−29 1.23 × 10−29 1.23 × 10−29 1.18 × 10−29 1.23 × 10−29

Rank 5 3 6 5 5 4 5

F22
Mean −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029
Std 5.31 × 10−30 7.81 × 10−30 9.30 × 10−30 7.81 × 10−30 7.81 × 10−30 9.80 × 10−30 7.31 × 10−30

Rank 1 3 5 3 3 6 2

F23
Mean −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364
Std 3.16 × 10−30 1.23 × 10−29 3.16 × 10−30 2.99 × 10−30 3.32 × 10−30 1.13 × 10−29 3.32 × 10−30

Rank 2 7 2 1 3 6 3

Mean Rank 2.9565 3.8261 3.0870 2.6957 3.3478 4.0870 2.2609

Result 5 9 6 2 7 11 1
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3.2. Elite Individual Proportion Analysis

In the CMRFO, the selection proportion p of elite individuals is the key to an elite
chaotic searching strategy. A large value of p will cause premature algorithm convergence,
while too small a value of p will have little impact on the algorithm. Therefore, this
section discusses the influence of the parameter p on the performance of the CMRFO by
simulation experiments. Table 4 illustrates the effects of the CMRFO based on different
p-values on benchmark functions, where the boldface data represent the optimal values of
different p-values.

Table 4. Results of the CMRFO based on different p-values.

No. Result
The p-Value of CMRFO

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1
Mean 0 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F2
Mean 0 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F3
Mean 0 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F4
Mean 0 4.94 × 10−324 4.94 × 10−324 4.94 × 10−324 4.94 × 10−324 4.94 × 10−324 4.94 × 10−324 4.94 × 10−324 4.94 × 10−324

Std 0 0 0 0 0 0 0 0 0
Rank 1 2 2 2 2 2 2 2 2

F5
Mean 5.79 × 10−9 1.29 × 10−8 3.25 × 10−8 1.76 × 10−8 6.58 × 10−8 3.11 × 10−7 4.64 × 10−8 1.23 × 10−6 1.56 × 10−7

Std 2.35 × 10−16 1.17 × 10−15 1.64 × 10−14 7.74 × 10−16 1.24 × 10−14 1.52 × 10−12 1.59 × 10−14 2.23 × 10−11 4.22 × 10−13

Rank 1 2 4 3 6 8 5 9 7

F6
Mean 0 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F7
Mean 2.07 × 10−5 2.40 × 10−5 2.17 × 10−5 2.44 × 10−5 3.70 × 10−5 2.70 × 10−5 3.72 × 10−5 5.33 × 10−5 6.42 × 10−5

Std 2.88 × 10−10 3.61 × 10−10 6.50 × 10−10 3.90 × 10−10 7.30 × 10−10 3.51 × 10−10 1.03 × 10−9 2.81 × 10−9 3.66 × 10−9

Rank 1 3 2 4 6 5 7 8 9

F8
Mean −12,569.49 −12,504.34 −12,563.56 −12,534.94 −12,569.49 −12,489.54 −12,569.49 −12,541.85 −12,532.97
Std 6.62 × 10−24 8.49 × 10−4 7.01 × 10−2 1.67 × 10−4 6.62 × 10−24 1.28 × 105 6.10 × 10−24 7.60 × 103 2.67 × 104

Rank 2 7 3 5 2 8 1 4 6

F9
Mean 0 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F10
Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F11
Mean 0 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F12
Mean 1.57 × 10−32 1.60 × 10−32 7.76 × 10−32 1.81 × 10−30 2.38 × 10−30 4.23 × 10−30 1.07 × 10−29 1.15 × 10−29 8.80 × 10−30

Std 7.88 × 10−96 1.23 × 10−67 9.46 × 10−63 1.13 × 10−59 1.78 × 10−59 2.93 × 10−59 1.35 × 10−57 5.77 × 10−58 2.37 × 10−58

Rank 1 2 3 4 5 6 8 9 7

F13
Mean 1.36 × 10−32 1.62 × 10−32 2.21 × 10−30 2.95 × 10−29 1.01 × 10−29 4.16 × 10−29 1.29 × 10−28 5.31 × 10−28 1.24 × 10−28

Std 7.60 × 10−68 4.79 × 10−65 7.23 × 10−60 4.54 × 10−57 1.57 × 10−58 5.71 × 10−57 8.07 × 10−56 4.54 × 10−54 6.16 × 10−56

Rank 1 2 3 5 4 6 8 9 7

F14
Mean 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F15
Mean 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4

Std 1.87 × 10−38 2.06 × 10−38 2.72 × 10−38 2.92 × 10−38 3.96 × 10−38 3.28 × 10−38 1.89 × 10−38 2.41 × 10−38 2.10 × 10−38

Rank 1 3 6 7 9 8 2 5 4

F16
Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 2.55 × 10−20 8.55 × 10−20 5.83 × 10−41 2.23 × 10−16 1.03 × 10−18 1.41 × 10−18 1.02 × 10−19 1.70 × 10−18 1.58 × 10−12

Rank 1 2 8 7 4 5 3 6 9

F17
Mean 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Std 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

F18
Mean 3 3 3 3 3 3 3 3 3
Std 1.35 × 10−31 3.11 × 10−31 5.19 × 10−32 3.11 × 10−31 2.70 × 10−31 1.25 × 10−31 5.29 × 10−31 4.05 × 10−31 3.63 × 10−31

Rank 3 5 1 5 4 2 8 7 6

F19
Mean −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628
Std 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30

Rank 1 1 1 1 1 1 1 1 1

F20
Mean −3.2982 −3.2863 −3.2863 −3.2804 −3.2863 −3.2804 −3.2804 −3.2625 −3.2685
Std 2.38 × 10−3 3.12 × 10−3 3.12 × 10−3 3.39 × 10−3 3.12 × 10−3 3.39 × 10−3 3.39 × 10−3 3.72 × 10−3 3.68 × 10−3

Rank 1 2 2 3 2 3 3 5 4
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Table 4. Cont.

No. Result
The p-Value of CMRFO

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F21
Mean −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532
Std 1.18 × 10−29 1.28 × 10−29 1.33 × 10−29 1.23 × 10−29 1.23 × 10−29 1.28 × 10−29 1.33 × 10−29 1.28 × 10−29 1.28 × 10−29

Rank 1 3 4 2 2 3 4 3 3

F22
Mean −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029
Std 5.81 × 10−30 8.30 × 10−30 7.31 × 10−30 7.81 × 10−30 5.81 × 10−30 9.30 × 10−30 9.30 × 10−30 6.81 × 10−30 9.30 × 10−30

Rank 1 5 3 4 1 6 6 2 6

F23
Mean −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364
Std 3.16 × 10−30 3.32 × 10−30 3.32 × 10−30 4.32 × 10−30 3.32 × 10−30 3.82 × 10−30 3.32 × 10−30 3.82 × 10−30 3.32 × 10−30

Rank 1 2 2 4 2 3 2 3 2

Mean Rank 1.1304 2.1739 2.3043 2.8261 2.5652 3.2609 3.0000 3.5652 3.5652

Result 1 2 3 5 4 7 6 8 8

It is observed that when the different values of the selection proportion p are taken,
CMRFO has different results on some functions, so the ECS is sensitive to the value of p. In
conclusion, when p = 0.1, the CMRFO performs best. Therefore, in this paper, the value of
p in the elite chaotic searching is set to 0.1.

3.3. Exploration–Exploitation Analysis

Exploration and exploitation are the two basic building blocks of a meta-heuristic
optimization algorithm. The search phase can be explored in the search space of distant
regions. However, in the exploitation phase, candidate solutions steadily exploit promising
areas already identified in the previous step using local strategies. Thus, maintaining
a good balance between these two phases is one way to ensure that an algorithm can
guarantee optimal convergence.

In this paper, exploration and exploitation are obtained by the dimensional diversity
measure. During the search process, the exploration capability can be measured by the
increase in the average value of the distance within the population dimension. Alternatively,
the decreasing mean can be considered as the stage of exploitation where the search agent
is located in a concentrated area. The following equation shows that dimensional diversity
is measured during the search process.

Divj =
1
N

N

∑
i=1

Median(xj)− xi,j (11)

Div(t) =
1
D

D

∑
j=1

Divj, t = 1, 2, . . . , T (12)

where xi,j is the position of the i-th candidate solution in the j-th dim, Divj is the average
diversity in the j-th dimension, and Median(xj) is the median of the j-th dim of the candidate
solution. N is the number of all populations, D is the dim, and T is the maximum number of
iterations. The following equation calculates the percentage of exploration and exploitation:

Exploration% =
Div(t)

max(Div)
× 100% (13)

Exploitation% =
|Div(t)−max(Div)|

max(Div)
× 100% (14)

where max(Div) is the maximum diversity in T iterations.
We plotted the exploration and exploitation convergence behavior using some CEC2020

test functions. Figure 3 shows the exploration and exploitation behavior of the cec01, cec02,
cec05, cec07, cec09, and cec10 functions. For these functions, the CMRFO demonstrates
highly dynamic behavior. As seen from the figure, the CMRFO tends to start the iterative
process with a high exploration rate and a low exploitation rate. However, it remains more
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exploitative in the late iterations. The CMRFO maintains a tendency to balance exploration
and exploitation during the search process.
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3.4. Comparison of the CMRFO with Other Optimizers on 23 Benchmark Functions

The CMRFO is compared with some optimizers using 23 classical test suites in this
section. These algorithms are the original MRFO, an improved MRFO, classical algorithms,
and recently proposed algorithms, including MRFO [23], MRFO–GBO [44], DMRFO [38],
SA–MRFO [43], PSO [46], GWO [47], HHO [48], AOA [49], CHOA [50], and MPA [51].
For all improved MRFOs, the parameter settings of these algorithms remain unchanged.
Table 5 provides the parameter settings for other optimizers. Numerical results of 11 com-
parison algorithms using 23 classical benchmarks are shown in Figure 4 and Table 6.

Table 5. Description of parameter settings.

Algorithms Parameter Values

MRFO S = 2
CMRFO S = 2, p = 0.1

PSO P1 = P2 = 2; ω: linearly decreases from 0.8 to 0.2
GWO α: the value range of α is [0, 2]; increases linearly
HHO E0: [−1 1]
AOA P1 = 2, P2 = 6, P3 = 1, P4 = 2

CHOA f : non-linearly decreases from 2.5 to 0; chaotic map: tent map
MPA F = 0.2, P = 0.5
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Table 6. Comparison results of all 11 optimizers on 23 classical benchmarks.

No. Result
Algorithm

MRFO CMRFO MRFO–GBO DMRFO SA–MRFO PSO GWO HHO AOA CHOA MPA

F1
Mean 0 0 0 0 0 1.31 × 10−10 4.08 × 10−70 3.36 × 10−187 6.99 × 10−181 1.73 × 10−125 1.28 × 10−49

Std 0 0 0 0 0 2.91 × 10−19 8.72 × 10−139 0 0 1.24 × 10−249 8.54 × 10−98

Rank 1 1 1 1 1 7 5 2 3 4 6

F2
Mean 0 0 0 0 0 1.42 × 10−6 6.14 × 10−41 1.16 × 10−100 2.80 × 10−91 2.07 × 10−66 1.29 × 10−27

Std 0 0 0 0 0 6.47 × 10−12 5.88 × 10−81 1.19 × 10−199 1.56 × 10−180 5.94 × 10−131 9.56 × 10−54

Rank 1 1 1 1 1 7 5 2 3 4 6

F3
Mean 0 0 0 0 0 43.72 4.72 × 10−21 1.40 × 10−160 5.16 × 10−142 1.05 × 10−99 3.04 × 10−13

Std 0 0 0 0 0 292.39 1.17 × 10−40 3.94 × 10−319 5.31 × 10−282 2.08 × 10−197 6.34 × 10−25

Rank 1 1 1 1 1 7 5 2 3 4 6

F4
Mean 0 0 0 4.94 × 10−324 0 1.0411 1.47 × 10−17 1.74 × 10−100 5.26 × 10−79 3.93 × 10−55 1.94 × 10−19

Std 0 0 0 0 0 9.58 × 10−2 3.01 × 10−34 2.14 × 10−199 2.95 × 10−156 1.79 × 10−108 2.08 × 10−38

Rank 1 1 1 2 1 8 7 3 4 5 6

F5
Mean 17.3485 9.10 × 10−9 10.4979 16.526 17.3679 37.8739 26.5877 1.44 × 10−3 28.8316 28.9262 22.2968
Std 2.49 × 10−1 2.83 × 10−16 4.5822 4.82 × 10−1 3.12 × 10−1 1.48 × 103 7.74 × 10−1 4.99 × 10−6 8.71 × 10−3 8.71 × 10−3 2.12 × 10−1

Rank 5 1 3 4 6 11 8 2 9 10 7

F6
Mean 0 0 0 0 0 5.00 × 10−2 0 0 0 0 0
Std 0 0 0 0 0 5.00 × 10−2 0 0 0 0 0
Rank 1 1 1 1 1 2 1 1 1 1 1

F7
Mean 5.98 × 10−5 1.54 × 10−5 1.08 × 10−4 5.41 × 10−5 3.37 × 10−5 8.66 × 10−3 5.20 × 10−4 3.60 × 10−5 2.56 × 10−4 6.50 × 10−5 5.71 × 10−4

Std 2.13 × 10−9 1.21 × 10−10 3.99 × 10−9 1.52 × 10−9 9.95 × 10−10 5.97 × 10−6 1.28 × 10−7 7.04 × 10−10 2.10 × 10−8 3.16 × 10−9 1.10 × 10−7

Rank 5 1 7 4 2 11 8 3 8 6 10

F8
Mean −8432.83 −12,569.49 −9533.46 −9485.30 −8554.22 −6758.13 −5962.18 −12,569.41 −5.83 × 107 −5866.21 −10,161.35
Std 7.61 × 105 7.14 × 10−24 4.30 × 105 1.29 × 105 6.33 × 105 4.85 × 105 4.73 × 105 1.09 × 10−2 3.24 × 1016 3.87 × 103 1.05 × 105

Rank 7 1 4 5 6 8 9 2 11 10 3

F9
Mean 0 0 0 0 0 43.6786 0.1592 0 6.1970 4.0521 0
Std 0 0 0 0 0 145.0417 0.5071 0 768.0535 98.1056 0
Rank 1 1 1 1 1 5 2 1 4 3 1

F10
Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 2.58 × 10−7 1.44 × 10−14 8.88 × 10−16 10.9812 19.9597 3.38 × 10−15

Std 0 0 0 0 0 3.54 × 10−13 6.11 × 10−30 0 1.04 × 10−2 1.42 × 10−6 2.79 × 10−30

Rank 1 1 1 1 1 4 3 1 5 6 2

F11
Mean 0 0 0 0 0 1.73 × 10−2 0 0 0 0 0
Std 0 0 0 0 0 3.12 × 10−4 0 0 0 0 0
Rank 1 1 1 1 1 2 1 1 1 1 1

F12
Mean 7.81 × 10−29 1.57 × 10−32 1.71 × 10−32 5.32 × 10−31 1.03 × 10−28 1.04 × 10−2 2.45 × 10−2 4.59 × 10−7 7.34 × 10−1 1.25 × 10−1 5.85 × 10−11

Std 1.06 × 10−56 8.73 × 10−70 9.10 × 10−67 1.87 × 10−60 7.17 × 10−56 1.02 × 10−3 3.25 × 10−4 3.69 × 10−13 1.54 × 10−2 3.84 × 10−4 1.34 × 10−21

Rank 4 1 2 3 5 8 9 7 11 10 6
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Table 6. Cont.

No. Result
Algorithm

MRFO CMRFO MRFO–GBO DMRFO SA–MRFO PSO GWO HHO AOA CHOA MPA

F13
Mean 2.3948 1.41 × 10−23 1.47 × 10−2 1.7660 1.5257 1.65 × 10−3 3.74 × 10−1 2.75 × 10−5 2.8802 2.9816 9.50 × 10−10

Std 1.3760 2.95 × 10−66 8.60 × 10−4 1.8956 2.1871 1.62 × 10−5 2.79 × 10−2 8.72 × 10−10 1.092 1.58 × 10−3 3.87 × 10−19

Rank 9 1 5 8 7 4 6 3 10 11 2

F14
Mean 0.998 0.998 0.998 0.998 0.998 2.0349 3.6456 0.998 1.0509 0.9981 0.998
Std 0 0 0 0 0 3.5231 14.0541 1.38 × 10−21 5.00 × 10−2 3.47 × 10−8 0
Rank 1 1 1 1 1 5 6 2 4 3 1

F15
Mean 3.53 × 10−4 3.07 × 10−4 3.07 × 10−4 3.53 × 10−4 4.05 × 10−4 2.44 × 10−3 2.36 × 10−3 3.20 × 10−4 5.27 × 10−4 1.35 × 10−3 3.07 × 10−4

Std 4.19 × 10−8 6.81 × 10−39 2.23 × 10−38 4.19 × 10−8 7.90 × 10−8 3.77 × 10−5 3.80 × 10−5 2.95 × 10−10 1.78 × 10−7 3.81 × 10−9 5.82 × 10−37

Rank 5 1 2 5 6 10 9 4 7 8 3

F16
Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 5.19 × 10−32 2.44 × 10−20 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 5.19 × 10−32 1.01 × 10−17 3.40 × 10−26 9.69 × 10−11 6.32 × 10−9 4.67 × 10−32

Rank 2 4 2 2 2 2 5 3 6 7 1

F17
Mean 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39791 0.39856 0.39789
Std 0 0 0 0 0 0 1.68 × 10−14 9.53 × 10−17 3.85 × 10−9 3.40 × 10−7 0
Rank 1 1 1 1 1 1 3 2 4 5 1

F18
Mean 3 3 3 3 3 3 3 3 3.0353 3 3
Std 4.26 × 10−31 1.35 × 10−31 1.04 × 10−32 2.59 × 10−31 4.67 × 10−31 5.61 × 10−31 1.57 × 10−11 1.31 × 10−17 5.48 × 10−3 1.50 × 10−10 1.06 × 10−30

Rank 4 2 1 3 5 6 9 8 11 10 7

F19
Mean −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8616 −3.8626 −3.8580 −3.8539 −3.8628
Std 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 5.19 × 10−30 7.18 × 10−6 3.93 × 10−7 4.30 × 10−5 8.75 × 10−7 5.19 × 10−30

Rank 1 1 1 1 1 1 3 2 4 5 1

F20
Mean −3.2566 −3.2923 −3.2566 −3.2863 −3.2625 −3.2863 −3.2472 −3.1740 −3.0823 −2.6656 −3.322
Std 3.6 × 10−3 2.79 × 10−3 3.68 × 10−3 3.12 × 10−3 3.72 × 10−3 3.12 × 10−3 7.71 × 10−3 4.50 × 10−3 1.38 × 10−2 1.86 × 10−1 1.18 × 10−29

Rank 5 2 5 3 4 3 6 7 8 9 1

F21
Mean −8.8787 −10.1532 −8.8787 −9.8983 −9.6434 −5.7660 −9.6453 −5.5628 −7.4155 −3.1803 −10.1532
Std 5.1295 1.23 × 10−29 5.1295 1.2995 2.4622 11.7623 2.4401 2.4432 3.8455 4.2111 4.32 × 10−30

Rank 6 2 6 3 5 8 4 9 7 10 1

F22
Mean −9.8714 −10.4029 −9.6057 −10.3412 −9.3399 −9.4930 −10.1369 −5.3528 −7.4643 −3.2238 −10.4029
Std 2.6765 7.81 × 10−30 3.7917 7.61 × 10−2 4.7582 5.1374 1.4124 1.4087 3.8869 3.9396 1.36 × 10−29

Rank 5 1 6 3 8 7 4 10 9 11 2

F23
Mean −9.4548 −10.5364 −9.7252 −10.2660 −10.5364 −6.4475 −10.5361 −5.6641 −8.7643 −4.0086 −10.5364
Std 4.9256 3.32 × 10−30 3.9251 1.4623 3.8230 14.947 2.48 × 10−8 2.7207 4.2842 2.6005 4.98 × 10−30

Rank 7 1 6 5 2 9 4 10 8 11 3

Mean Rank 3.2609 1.2609 2.6087 2.6087 3.0000 5.9130 5.3043 3.7826 6.1304 6.6957 3.3913

Result 4 1 2 2 3 8 7 6 9 10 5
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To study the convergence characteristics of the CMRFO, Figure 4 shows the conver-
gence curves of 11 comparison methods for 23 classical test suites. From Figure 4, we
can see that the CMRFO, the MRFO, and other improved MRFOs can reach the optimal
value on unimodal functions F1–F4, while the optimization ability of other comparison
algorithms is not strong. Among them, the CMRFO has the fastest convergence speed.
Particularly, for functions F5 and F7, the CMRFO obtains a great ameliorate in the field
of convergence accuracy and speed compared with the MRFO, and the CMRFO is also
obviously superior to other comparison algorithms. For multimodal functions, the CMRFO
is greatly improved compared with the MRFO and the CMRFO performs better than all
comparison optimizers. The results on fixed-dimensional multimodal functions for all
11 algorithms have little difference. Compared with 10 comparison optimizers, the CMRFO
possesses a good convergence rate at the initial stage of iteration and does not fall into
the local optimum. The CMRFO algorithm shows better convergence accuracy and speed.
In general, Figure 4 illustrates that the proposed CMRFO has obvious improvements in
convergence characteristics and has strong competitiveness.

The statistical results obtained by 11 methods on 23 classical benchmarks are given
in Table 6. We can see that the CMRFO ranks first on 19 functions, showing the good
optimization ability of the CMRFO. Except for functions F16, F18, F20, and F21, the CMRFO
ranks second, and it performs best on the remaining functions. From the final rank in
Table 6, the CMRFO is number one and the MRFO is number four, which shows that
the CMRFO algorithm has obvious improvement and also shows the advantages of the
CMRFO. In addition, the standard deviation of the CMRFO on 19 functions is small, which
indicates that the CMRFO is relatively stable on benchmark functions. To sum up, the
CMRFO displays excellent performance on 23 classical benchmarks.

The rank sum test (RST) is usually used to verify the distinction of different intelligent
optimization algorithms. Table 7 gives the p-values of the RST of each algorithm based on
the CMRFO at a 95% significance level (α = 0.05) on 23 benchmark functions. “+/=/−” is
the statistical result using the p-value and the rank on each function, which, respectively,
represent that the CMRFO is significantly worse than/equal to/better than the comparison
optimizer. Note that the data in bold are p-values greater than 0.05 in Table 7.

Table 7. Statistical results of each algorithm based on the CMRFO.

No.
Algorithm

MRFO MRFO–GBO DMRFO SA–MRFO PSO GWO HHO AOA CHOA MPA

F1 NaN NaN NaN NaN 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9

F2 NaN NaN NaN NaN 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9

F3 NaN NaN NaN NaN 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9

F4 5.2 × 10−2 3.3 × 10−4 3.3 × 10−4 2.1 × 10−2 4.2 × 10−8 4.2 × 10−8 4.2 × 10−8 4.2 × 10−8 4.2 × 10−8 4.2 × 10−8

F5 6.8 × 10−8 6.8 × 10−8 6.8 × 10−8 6.8 × 10−8 6.8 × 10−8 6.8 × 10−8 6.8 × 10−8 6.8 × 10−8 6.8 × 10−8 6.8 × 10−8

F6 NaN NaN NaN NaN 3.4 × 10−1 NaN NaN NaN NaN NaN
F7 2.3 × 10−5 3.0 × 10−7 4.2 × 10−5 3.6 × 10−2 6.8 × 10−8 6.8 × 10−8 8.4 × 10−3 1.1 × 10−7 6.6 × 10−5 6.8 × 10−8

F8 3.7 × 10−8 3.7 × 10−8 3.7 × 10−8 3.7 × 10−8 3.7 × 10−8 3.7 × 10−8 3.7 × 10−8 2.8 × 10−2 3.7 × 10−8 3.7 × 10−8

F9 NaN NaN NaN NaN 8.0 × 10−9 4.0 × 10−2 NaN 3.4 × 10−1 8.1 × 10−2 NaN
F10 NaN NaN NaN NaN 8.0 × 10−9 3.7 × 10−9 NaN 6.7 × 10−5 8.0 × 10−9 5.0 × 10−6

F11 NaN NaN NaN NaN 8.0 × 10−9 NaN NaN NaN NaN NaN
F12 1.9 × 10−8 1.1 × 10−7 1.9 × 10−8 1.9 × 10−8 1.9 × 10−8 1.9 × 10−8 1.9 × 10−8 1.9 × 10−8 1.9 × 10−8 1.9 × 10−8

F13 1.1 × 10−8 1.5 × 10−8 1.4 × 10−8 1.4 × 10−8 1.5 × 10−8 1.5 × 10−8 1.5 × 10−8 1.5 × 10−8 1.5 × 10−8 1.5 × 10−8

F14 NaN NaN NaN NaN 2.0 × 10−3 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 NaN
F15 2.1 × 10−3 5.5 × 10−3 1.4 × 10−1 4.3 × 10−2 6.1 × 10−8 6.1 × 10−8 6.1 × 10−8 6.1 × 10−8 6.1 × 10−8 4.7 × 10−7

F16 2.9 × 10−8 2.9 × 10−8 2.9 × 10−8 2.9 × 10−8 2.9 × 10−8 1.2 × 10−7 4.2 × 10−1 9.1 × 10−8 6.7 × 10−8 1.2 × 10−7

F17 NaN NaN NaN NaN NaN 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 NaN
F18 9.5 × 10−1 9.1 × 10−2 6.2 × 10−1 3.1 × 10−1 7.1 × 10−1 1.5 × 10−8 5.0 × 10−8 1.5 × 10−8 1.5 × 10−8 5.7 × 10−2

F19 NaN NaN NaN NaN NaN 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 NaN
F20 4.5 × 10−2 4.5 × 10−2 5.8 × 10−1 8.5 × 10−2 5.8 × 10−1 3.5 × 10−5 6.8 × 10−7 1.6 × 10−7 3.4 × 10−8 2.7 × 10−2

F21 2.1 × 10−2 1.6 × 10−1 6.9 × 10−4 5.9 × 10−1 5.9 × 10−6 1.5 × 10−8 1.5 × 10−8 1.5 × 10−8 1.5 × 10−8 6.4 × 10−7

F22 3.5 × 10−2 1.9 × 10−1 3.2 × 10−1 4.1 × 10−1 1.9 × 10−1 4.1 × 10−8 4.1 × 10−8 4.1 × 10−8 4.1 × 10−8 5.7 × 10−4

F23 2.0 × 10−2 8.1 × 10−2 8.1 × 10−2 3.4 × 10−1 6.6 × 10−5 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 5.4 × 10−7

+/=/− 1/12/10 1/14/8 1/15/7 1/15/7 1/6/16 0/2/21 0/5/18 0/3/20 0/3/20 3/7/13

The last row of Table 7 has a statistical result of 1/12/10, 1/14/8, 1/15/7, 1/15/7,
1/6/16, 0/2/21, 0/5/18, 0/3/20, 0/3/20, and 3/7/13. The experimental results indicate
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that the CMRFO is superior to the original MRFO on 10 functions. For other improved
MRFOs, the CMRFO is significantly better than the MRFO–GBO on eight functions and
significantly superior to the DMRFO and the SA–MRFO on seven functions, which fully
shows that the CMRFO has obvious advantages over other competitors. To sum up, the
capability of the CMRFO is better than that of other comparison algorithms.

Figure 5 displays the radar charts of all 11 algorithms based on the rank on 23 functions.
Obviously, the CMRFO has the smallest shadow region, demonstrating its superiority over
other MRFOs. By comparing radar charts of the MRFO and other algorithms, we can also
see which test functions the CMRFO has improved and performs well.
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3.5. Comparison of the CMRFO with Other Optimizers on CEC2020

To further test the optimization capability of the CMRFO, the CMRFO is further tested
on the CEC2020 test suite in this section. The comparison algorithms are the MRFO [23],
the PSO [46], the SCA [52], the WOA [53], the HHO [48], the AOA [49], the CHOA [50],
the SSA [54], and the SOA [55]. Table 8 provides the parameter setting for all optimizers.
Numerical results of 10 comparison algorithms on IEEE CEC2020 are enumerated in
Figure 6 and Table 9.

Table 8. Parameter settings of algorithms.

Algorithm Parameter

MRFO S = 2
CMRFO S = 2, p = 0.1
PSO F1 = 2, F2 = 2; s: linearly decreases from 0.8 to 0.2
SCA α = 2
WOA α: the value range of α is [0, 2]; increases linearly; b = 1
HHO E0: [−1 1]
CHOA f : non-linearly decreases from 2.5 to 0; chaotic map: tent map
AOA F1 = F4 = 2, F2 = 6, F3 = 1
SSA v0 = 0
SOA A: linearly decreases from 2 to 0; fc = 0
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Figure 6. Convergence curves for 10 comparison algorithms (50-dimensional IEEE CEC2020).

Table 9. Results of all 10 algorithms on the 50-dimensional CEC2020 test suite.

No. Result
Algorithm

MRFO CMRFO PSO SCA WOA HHO CHOA AOA SSA SOA

F1
Mean 6.80 × 103 2.56 × 103 6.68 × 108 5.45 × 1010 3.48 × 109 1.48 × 108 5.69 × 1010 1.05 × 1011 8.03 × 103 3.70 × 1010

Std 3.75 × 107 7.12 × 106 9.35 × 1017 6.69 × 1019 2.92 × 1018 1.08 × 1016 2.53 × 1018 7.30 × 1019 5.92 × 107 6.81 × 1019

Rank 2 1 5 8 6 4 9 10 3 7

F2
Mean 8.58 × 103 8.57 × 103 7.46 × 103 1.52 × 104 1.15 × 104 1.03 × 104 1.56 × 104 1.51 × 104 8.61 × 103 1.24 × 104

Std 1.19 × 106 9.48 × 105 6.85 × 105 1.80 × 105 1.13 × 106 1.42 × 106 1.49 × 105 2.58 × 105 9.92 × 105 1.14 × 105

Rank 3 2 1 9 6 5 10 8 4 7

F3
Mean 1.45 × 103 1.51 × 103 9.29 × 102 1.76 × 103 1.79 × 103 1.83 × 103 1.75 × 103 1.99 × 103 1.21 × 103 1.54 × 103

Std 1.79 × 104 6.04 × 104 4.08 × 103 9.22 × 103 1.41 × 104 7.42 × 103 1.65 × 103 4.92 × 103 2.55 × 104 9.80 × 103

Rank 3 4 1 7 8 9 6 10 2 5

F4
Mean 1.90 × 103 1.90 × 103 1.91 × 103 2.04 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.93 × 103 1.90 × 103

Std 0 0 3.77 1.75 × 104 0 0 0 0 1.04 × 102 0
Rank 1 1 2 4 1 1 1 1 3 1

F5
Mean 7.44 × 105 4.10 × 105 1.76 × 106 7.65 × 107 1.18 × 108 1.01 × 107 5.96 × 107 4.27 × 108 2.62 × 106 1.28 × 107

Std 2.25 ×
1011

4.32 ×
1010 6.46 × 1011 1.60 × 1015 3.92 × 1015 2.67 × 1013 2.09 × 1014 1.08 × 1016 1.65 ×

1012 6.12 × 1013

Rank 2 1 3 8 9 5 7 10 4 6

F6
Mean 3.36 × 103 3.17 × 103 2.85 × 103 6.34 × 103 5.77 × 103 4.55 × 103 5.79 × 103 7.61 × 103 3.86 × 103 4.22 × 103

Std 2.07 × 105 1.15 × 105 1.04 × 105 4.45 × 105 9.15 × 105 1.81 × 105 1.08 × 105 8.27 × 105 1.83 × 105 2.67 × 105

Rank 3 2 1 9 7 6 8 10 4 5

F7
Mean 3.94 × 105 2.36 × 105 1.52 × 106 2.06 × 107 1.33 × 107 4.26 × 106 2.35 × 107 3.72 × 107 2.16 × 106 7.55 × 106

Std 6.89 ×
1010

1.79 ×
1010 1.43 × 1012 7.40 × 1013 3.48 × 1013 6.53 × 1012 4.31 × 1013 2.76 × 1014 1.88 ×

1012 1.73 × 1013

Rank 2 1 3 8 7 5 9 10 4 6

F8
Mean 9356.9042 8852.8621 8545.6711 16798.8094 13060.8894 11558.1408 17340.3701 16235.7414 9446.7043 13085.0313
Std 6.33 × 106 9.47 × 106 3.22 × 106 2.79 × 105 1.15 × 106 1.29 × 106 1.07 × 105 5.20 × 105 5.59 × 105 1.39 × 106

Rank 3 2 1 9 6 5 10 8 4 7

F9
Mean 3324.5494 3304.7364 3399.3970 3799.0453 3801.2554 4208.3563 4063.366 4906.9563 3155.6406 3306.2197
Std 1.78 × 104 1.07 × 104 1.62 × 104 4.87 × 103 2.79 × 104 6.15 × 104 6.99 × 103 1.48 × 105 3.20 × 103 4.83 × 103

Rank 4 2 5 6 7 9 8 10 1 3

F10
Mean 3075.667 3059.2648 3077.4469 7425.5938 3592.3986 3209.6626 11,968.0231 14507.0025 3092.3489 5653.4024
Std 5.95 × 102 1.07 × 103 2.48 × 103 5.82 × 105 3.10 × 104 1.43 × 103 5.49 × 105 1.59 × 106 6.87 × 102 8.37 × 105

Rank 2 1 3 8 6 5 9 10 4 7

Mean Rank 2.50 1.70 2.50 7.60 6.30 5.40 7.70 8.70 3.30 5.40

Result 2 1 2 6 5 4 7 8 3 4
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Figure 6 illustrates the convergence curves for 10 comparison algorithms on the
50-dimensional IEEE CEC2020 benchmark. Compared with the native MRFO, the con-
vergence accuracy and speed of the CMRFO are also significantly improved on the
50-dimensional CEC2020 test suite. Compared with other algorithms, the CMRFO can
obtain the optimum value quickly at the beginning of the iteration and it can avert running
into the local optimum solution at the end of the iteration, which shows excellent search
performance. Overall, the CMRFO possesses powerful competitiveness.

The experimental results of 10 comparison algorithms on the 50-dimensional IEEE
CEC2020 test suite are given in Table 8. From the last line of Table 8, we can see that
the comprehensive rank of the CMRFO is first, which further verifies the superiority and
effectiveness of the CMRFO for solving the 50-dimensional CEC2020 test suite.

Figure 7 further plots the boxplots of 10 comparison algorithms on the CEC2020 test
suite. Apparently, the CMRFO possesses the narrowest boxplot without outliers with
regard to F4, F5, F7, and F10, indicating that the CMRFO has excellent performance and
stability for solving these functions. With respect to functions F1 and F8, although CMRFO
results have few outliers, the results are more competitive. As for F2, F6, as well as F9, the
positions of the CMRFO boxplot are much lower than that of the original MRFO and the
median is smaller, indicating that the result of the CMRFO is closer to the optimal value.
Based on the above analysis, it can be concluded that the proposed CMRFO is also effective
for solving the 50-dimensional CEC2020 test suite.

Mathematics 2022, 10, x FOR PEER REVIEW 24 of 35 
 

 

Figure 7 further plots the boxplots of 10 comparison algorithms on the CEC2020 test 

suite. Apparently, the CMRFO possesses the narrowest boxplot without outliers with re-

gard to F4, F5, F7, and F10, indicating that the CMRFO has excellent performance and 

stability for solving these functions. With respect to functions F1 and F8, although CMRFO 

results have few outliers, the results are more competitive. As for F2, F6, as well as F9, the 

positions of the CMRFO boxplot are much lower than that of the original MRFO and the 

median is smaller, indicating that the result of the CMRFO is closer to the optimal value. 

Based on the above analysis, it can be concluded that the proposed CMRFO is also effec-

tive for solving the 50-dimensional CEC2020 test suite. 

   

   

   

Figure 7. Boxplots of all 10 algorithms on the 50-dimensional CEC2020 test suite. 

4. Practical Engineering Application 

Next, the CMRFO is used to deal with three practical applications with nonlinear 

constrained optimization. The result of the CMRFO is compared with other comparison 

algorithms, including MRFO [23], AO [56], AOA [49], CHOA [50], TSA [57], SCA [52], 

SOA [55], GWO [47], HHO [48], JS [58], and MPA [51]. For the execution of the engineering 

application, we guaranteed a population of 50 for all comparison algorithms and a maxi-

mum number of iterations of 1000 and ensured that all algorithms were executed 30 times. 

In general, the practical engineering application with minimization constraints is defined 

as: 

Minimize: f (X), X = [x1, x2, ..., xn] (15) 

Figure 7. Boxplots of all 10 algorithms on the 50-dimensional CEC2020 test suite.



Mathematics 2022, 10, 2960 24 of 34

4. Practical Engineering Application

Next, the CMRFO is used to deal with three practical applications with nonlinear
constrained optimization. The result of the CMRFO is compared with other comparison
algorithms, including MRFO [23], AO [56], AOA [49], CHOA [50], TSA [57], SCA [52],
SOA [55], GWO [47], HHO [48], JS [58], and MPA [51]. For the execution of the engineer-
ing application, we guaranteed a population of 50 for all comparison algorithms and a
maximum number of iterations of 1000 and ensured that all algorithms were executed
30 times. In general, the practical engineering application with minimization constraints is
defined as:

Minimize: f (X), X = [x1, x2, . . . , xn] (15)

Subject to :
{

gi(X) ≤ 0, i = 1, . . . , m.
hj(X) = 0, j = 1, . . . , n.

(16)

where m is the number of multiple constraints and l is the number of balance constraints [6].
Thus, the engineering optimization equation after constraint weighting is described as:

f (X) = f (X) + α
m

∑
i=1

max{gi(X), 0}+ β
n

∑
j=1

max
{

hj(X), 0
}

. (17)

where α is the weight of multiple constraints and β is the weight of balance constraints.

4.1. Pressure Vessel (PV) Design

Figure 8 shows graphically the structure of PV with four variables [51]. The objective
function (OF) of the corresponding optimization task is the entire cost of PV. The objective
function needs to be minimized by optimizing four design variables.
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Figure 8. Structure of the pressure vessel.

Let W = [w1, w2, w3, w4] = [Ts, Th, R, L]. The optimization model of the PV design
task can be mathematically described in detail as follows:

min PV(W) = 0.6224w1w3w4 + 1.7781w2w2
3 + 3.1661w2

1w4 + 19.84w2
1w3

s.t.
{

c1(W) = 0.0193w3 − w1 ≤ 0, c2(W) = 0.00954w3 − w2 ≤ 0,
c3(W) = −πw2

3w4 − 4
3 πw3

3 + 1, 296, 000 ≤ 0, c4(W) = w4 − 240 ≤ 0,
(18)

where 0 ≤ w1, w2 ≤ 99, 10 ≤ w3, w4 ≤ 200.
Table 10 gives the minimum cost and design variables of 11 algorithms to solve the

PV optimization problem. Table 11 gives the PV optimization statistical analyses of all



Mathematics 2022, 10, 2960 25 of 34

11 algorithms running 30 times. The simulation results show that the obtained value of the
CMRFO is the smallest and the CMRFO is more effective than 10 comparison algorithms
for solving PV optimization design.

Table 10. Results of all 11 algorithms.

Algorithm
Variable

Minimum Cost
z1 z2 z3 z4

MRFO 0.7745007 0.3832242 40.31993 199.9957 5870.1394
CMRFO 0.7745476 0.3832055 40.31962 200.0000 5870.1240

AO 0.8585610 0.4232512 44.60451 149.0881 6061.6264
AOA 1.0039500 4.4602500 53.50010 72.7940 27,253.6871

CHOA 1.3046100 0.6133140 66.01640 10.0000 7843.5750
TSA 0.7724745 0.3829585 40.36756 200.0000 5895.4548
SCA 0.8249876 0.4522591 41.32788 187.4612 6313.5757
SOA 0.8284806 0.4054728 42.92673 166.8016 5984.1297
GWO 0.7891866 0.3899311 41.06881 189.8338 5895.9798
HHO 0.9126808 0.4497941 47.41997 120.2297 6150.9174

JS 0.7745259 0.3831937 40.32009 199.9941 5870.1564

Table 11. Statistical analyses of all 11 algorithms after 30 runs.

Algorithm Best Worst Mean Std

MRFO 5870.1245 5871.2569 5870.2136 6.22 × 10−2

CMRFO 5870.1240 5870.1240 5870.1240 4.62 × 10−11

AO 5988.6403 7564.7221 6666.1339 2.34 × 105

AOA 6662.4718 142,714.8674 33,101.3667 1.69 × 109

CHOA 7528.6200 362,414.1763 77,881.9124 1.45 × 1010

TSA 5873.3548 6418.7976 5956.9796 1.75 × 104

SCA 6171.7885 6859.0257 6406.6324 3.74 × 104

SOA 5878.9664 753,596.6961 80,183.5623 2.93 × 1010

GWO 5870.1956 7171.1804 5943.8058 8.42 × 104

HHO 6015.6406 7482.8086 6684.3887 1.50 × 105

JS 5870.1240 5873.7386 5871.1915 1.34

4.2. Tension/Compression Spring (TCS) Optimization Problem

The design task on TCS mathematically is an optimization problem with three opti-
mization variables, and its structure is illustrated in Figure 9 [51]. The optimization model
of the design task is given in Equation (16), whose objective function with four constraints
is the total weight of TCS. The total weight is minimized by optimizing the parameters in
the model.
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Consider W = [w1, w2, w3] = [d, D, N],

min spring(W) = (w3 + 2)w2w2
1

s.t.


g1(W) =

4w2
2 − w1w2

12,566(w2w3
1 − w4

1)
+ 1

5108w2
1
− 1 ≤ 0, g2(W) = 1− 140.45w1

w2
2w3

≤ 0,

g3(W) = 1− w3
2w3

71,785w4
1
≤ 0, g4(W) = w1+w2

1.5 − 1 ≤ 0,

(19)

where w1 ∈ [0.05, 2], w2 ∈ [0.25, 1.3], w3 ∈ [2, 15].
Table 12 gives the minimum weight and design variables of 11 algorithms to finish

this optimization design task. Meanwhile, Table 13 gives the comparison results of
all 11 algorithms after 30 runs, where the data in bold are the optimal values of the
11 algorithms. From Tables 12 and 13, we can see that the simulation results of all
11 comparison methods are not significantly different, but the CMRFO can still provide a
better solution to this optimization problem.

Table 12. Results of all 11 algorithms.

Algorithm
Variable

Minimum Weight
z1 z2 z3

MRFO 0.0517557 0.358265 11.2078 0.012675
CMRFO 0.0516888 0.356712 11.2893 0.012665

AO 0.0572140 0.504390 6.5055 0.014044
AOA 0.0638360 0.725450 3.1224 0.015143

CHOA 0.0500000 0.316611 14.2597 0.012870
TSA 0.0526618 0.379585 10.1016 0.012739
SCA 0.0500000 0.316202 14.2037 0.012809
SOA 0.0500000 0.317083 14.0790 0.012746
GWO 0.0506104 0.331238 12.9618 0.012694
HHO 0.0564420 0.482210 6.4974 0.013053

JS 0.0520076 0.364425 10.8523 0.012668

Table 13. Comparison results of all 11 algorithms after 30 runs.

Algorithm Best Worst Mean Std

MRFO 0.012667 0.012754 0.012688 5.43 × 10−10

CMRFO 0.012666 0.012695 0.012679 7.95 × 10−11

AO 0.012983 0.020436 0.015930 5.25 × 10−6

AOA 0.012907 0.016086 0.013938 9.99 × 10−7

CHOA 0.012856 0.017668 0.014543 3.28 × 10−6

TSA 0.012713 0.013048 0.012801 5.45 × 10−9

SCA 0.012742 0.013197 0.012982 1.01 × 10−8

SOA 0.012730 0.012798 0.012758 3.83 × 10−10

GWO 0.012669 0.012766 0.012708 6.44 × 10−10

HHO 0.012805 0.014597 0.013365 3.30 × 10−7

JS 0.012671 0.012770 0.012710 1.02 × 10−9

4.3. Pressure Vessel (PV) Design

The OF of the mathematical model for WB optimization design is the entire cost
of WB, which minimizes the objective function of the model by finding a set of feasible
problem variables [51]. The structure of this design is shown graphically in Figure 10. The
mathematical model of WB design is defined in Equation (17), where W = [w1, w2, w3, w4]
= [h, l, t, b].
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min Weidedbeam(W) = 1.10471w2
1w2 + 0.04811w3w4(14.0 + w2)

s.t.


h1(W) = τ(W)− τmax ≤ 0, h2(W) = σ(W)− σmax ≤ 0,
h3(W) = δ(W)− δmax ≤ 0, h4(W) = w1 − w4 ≤ 0, h5(W) = P− Pc(W) ≤ 0,
h6(W) = 0.125− w1 ≤ 0, h7(W) = 1.10471w2

1 + 0.04811w3w4(14.0 + w2)− 5.0 ≤ 0,

(20)

in which 0.1 ≤ w1, w4 ≤ 2.0, 0.1 ≤ w2, w3 ≤ 10.0, τmax = 136,000 psi, σmax = 36,600 psi,
δmax = 0.25 in, and P = 6000 lb. The formulas for τ(W), σ(W), Pc(W), and δ(W). are:

τ(W) =

√
(τ′)2 + 2τ′τ′′

w2

2R
+ (τ′′ )2, τ′ =

P√
2w1w2

, τ′′ =
MR

J
, M = P(L +

w2

2
), R =

√
w2

2
4

+ (
w1 + w3

2
)

2
,

J = 2
√

2w1w2

[
w2

2
4

+ (
w1 + w3

2
)

2
]

, σ(W) =
6PL

w4w2
3

, δ(W) =
6PL3

Ew2
3w4

, Pc(W) =
4.013E

√
w2

3w6
4

36
L2 (1− w3

2L

√
E

4G
),

where L = 14in and E = 30× 106.
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Figure 10. Structure of WB.

Table 14 shows the simulation results of 11 algorithms to solve the WB optimization
problem. Table 15 shows the WB optimization statistical analyses of 11 algorithms after 30
runs. From the results of the experiment, the CMRFO, the MRFO, JS, and MPA, all perform
well and can obtain the same minimum value. However, Table 15 shows that the CMRFO
has a smaller standard deviation, indicating that the CMRFO is more stable in solving
welded beam optimization problems.
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Table 14. Results of all 11 algorithms.

Algorithm
Variable

Minimum Cost
z1 z2 z3 z4

MRFO 0.20573 3.2531 9.0366 0.20573 1.6952
CMRFO 0.20573 3.2531 9.0366 0.20573 1.6952

AO 0.16706 7.5426 8.9751 0.21036 2.1893
CHOA 0.13745 5.2800 8.9767 0.21607 1.9093

TSA 0.20558 3.2838 9.0614 0.20599 1.7054
SCA 0.18648 3.6064 9.1512 0.20602 1.7355
SOA 0.19182 3.5352 9.0470 0.20578 1.7143
GWO 0.20408 3.2834 9.0390 0.20573 1.6973
HHO 0.19402 3.6019 8.8153 0.21619 1.7636

JS 0.20573 3.2531 9.0366 0.20573 1.6952
MPA 0.20573 3.2531 9.0366 0.20573 1.6952

Table 15. Results of all 11 algorithms after 30 runs.

Algorithm Best Worst Mean Std

MRFO 1.6952 1.6952 1.6952 1.48 × 10−19

CMRFO 1.6952 1.6952 1.6952 6.49 × 10−21

AO 1.7456 2.2250 1.8935 1.32 × 10−2

CHOA 1.7621 1.9147 1.8597 1.48 × 10−3

TSA 1.7013 1.7209 1.7105 2.57 × 10−5

SCA 1.7755 1.9083 1.8190 1.23 × 10−3

SOA 1.6996 1.7465 1.7100 1.33 × 10−4

GWO 1.6955 1.6994 1.6971 1.52 × 10−6

HHO 1.7248 1.8616 1.7949 1.66 × 10−3

JS 1.6952 1.6952 1.6952 3.81 × 10−20

MPA 1.6952 1.6952 1.6952 1.06 × 10−15

From what has been discussed above, the numerical results of three practical engineer-
ing applications show that the CMRFO is more effective than comparison optimizers in
dealing with practical engineering applications.

5. Real-World Application: Construction of CG-Ball Curves with Optimal Shape

Then, the CMRFO is used to address a challenging real-world optimization problem
further. An optimization model of CG-Ball curves based on minimum curvature variation
in curves is established in this section. CG-Ball curves are a new kind of parametric curve
containing three shape control parameters, which are generalized cubic Ball curves. What
is more, its advantage is that the shape of the curve can be freely changed by using the
control parameters.

5.1. Shape Optimization Model: Minimum Curvature Variation in Curves

Given four control points Pi (i = 0, 1, 2, 3) ∈ R2 or R3, the following parametric
equation

P(s; Ω) =
3

∑
i=0

Pibi,4(s) (21)

is for cubic generalized Ball (CG-Ball) curves [36], where t ∈ [0, 1] and Ω = (α, β, γ) are
three shape parameters. The basic functions Bi,4(s), i = 0, 1, 2, 3 are defined as follows:

b0,4(s) = [1− αs(1− s)](1− s)2,
b1,4(s) = (2 + α− αs− βs)s(1− s)2,
b2,4(s) = (2 + γ s + β− βs)s2(1− s),
b3,4(s) = (1− γ s + γ s2) s2,

(22)



Mathematics 2022, 10, 2960 29 of 34

where −2 ≤ α, γ ≤ 4, −2 ≤ β ≤ 2.
The curvature variation (CV) of CG-Ball curves is given by Equation (23).

CV(Ω) =
∫ 1

0

∥∥∥P(3)(s; Ω)
∥∥∥2

ds (23)

Further calculation shows that

∥∥∥P(3)(s; Ω)
∥∥∥2

=
∥∥∥b(3)0,4 (s)P0

∥∥∥2
+
∥∥∥b(3)1,4 (s)P1

∥∥∥2
+
∥∥∥b(3)2,4 (s)P2

∥∥∥2
+
∥∥∥b(3)3,4 (s)P3

∥∥∥2

+2b(3)0,4 (s)b
(3)
1,4 (s)P0P1 + 2b(3)0,4 (s)b

(3)
2,4 (s)P0P2 + 2b(3)0,4 (s)b

(3)
3,4 (s)P0P3

+2b(3)1,4 (s)b
(3)
2,4 (s)P1P2 + 2b(3)1,4 (s)b

(3)
3,4 (s)P1P3 + 2b(3)2,4 (s)b

(3)
3,4 (s)P2P3.

(24)

Substituting Equation (24) into Equation (23), we have

CV(Ω) =
∫ 1

0

∥∥∥P(3)(s; Ω)
∥∥∥2

ds

= l0‖P0‖2 + l1‖P1‖2 + l2‖P2‖2 + l3‖P3‖2

+ l4P0P1 + l5P0P2 + l6P0P3 + l7P1P2 + l8P1P3 + l9P2P3

(25)

where
l0 = 84α2, l1 = 84α2 + 96αβ + 144α + 48β2 + 144,
l2 = 48β2 − 96βγ + 84γ2 + 144γ + 144, l3 = 84γ2,
l4 = −12α(7α + 4β + 6), l5 = 12α(4β− γ + 6),

l6 = 12αγ,
l7 =

12αγ− 72γ− 48αβ− 72α + 48βγ− 48β2 − 144,
l8 = −12γ(α + 4β− 6), l9 = −12γ(7γ− 4β + 6).

Finally, the shape optimization model based on minimum curvature variation in
curves is established, and the specific formula is:

arg min C(Ω) =
∫ 1

0

∥∥∥P(3)(s; Ω)
∥∥∥2

ds = l0‖P0‖2 + l1‖P1‖2 + l2‖P2‖2 + l3‖P3‖2

+ l4P0P1 + l5P0P2 + l6P0P3 + l7P1P2 + l8P1P3 + l9P2P3,
s.t. α, γ ∈ [−2, 4], β ∈ [−2, 2]

(26)

5.2. Modeling Examples

This section will optimize the CG-Ball curves shape according to the proposed op-
timization model. Two examples are given to prove the effectiveness of the CMRFO in
solving the established optimization model in Equation (26).

Example 1. The shape optimization of plane-S-type CG-Ball curves and the convergence curve of
the CMRFO are given in this example. The control points of CG-Ball curves are

P0 = (0, 0.1), P1 = (0.25, 0.8), P2 = (0.75, 0.1), P3 = (1, 0.8)

Figure 11 shows the optimized CG-Ball curves with the minimum curvature variation obtained
by five algorithms. Figure 11a–e shows the CG-Ball curves with optimal shape obtained by the
proposed CMRFO, SCA [52], LFD [59], AO [56], and CHOA [50] algorithms, respectively. The
red curve is the curve with optimized shape parameter values, and all shape parameters of the blue
curve have the value of 1, which demonstrates that CG-Ball curves have flexible shape adjustability.
The convergence curves of the five algorithms are illustrated in Figure 11f. The optimal values
of shape parameters and objective function obtained by all five algorithms are shown in Table 16.
According to the experimental results, the CMRFO has the best effect on solving the optimization
model and the curvature variation in CG-Ball curves obtained by the CMRFO is minimum among
all five algorithms (its value is 101.5338). Meanwhile, the CMRFO has the fastest convergence
speed compared with other algorithms.
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Table 16. Optimal values of shape parameters and corresponding objective function.

Algorithm α β γ Objective Function

CMRFO −0.91829 0.37267 −0.24463 101.5338
SCA −0.92874 0.38598 −0.24488 101.5411
LFD −0.85734 0.29792 −0.28173 101.8180
AO −0.92616 0.38264 −0.24147 101.5378

CHOA −0.91621 0.36598 −0.25012 101.5374

Example 2. The shape optimization of space-M-type CG-Ball curves and convergence curves of the
optimization model when the curvature variation in curves converges to the optimal value are given
graphically in this example. Take the control points of the curves as

P0 = (0.2, 0.1, 0.1), P1 = (0, 0.8, 0.8), P2 = (1, 0.8, 0.8), P3 = (0.8, 0.1, 0.1)

Figure 12 displays the CG-Ball curves after optimization. Figure 12a–e displays the CG-Ball
curves after shape optimization using five different algorithms, and the curvature variation in the
curves is the smallest. The red curve is the curve with optimized shape parameters, and all shape
parameters of the blue curve have the value of 1. Figure 12f shows the convergence of the curvature
variation in CG-Ball curves. Table 17 gives the optimal shape parameters and corresponding
objective function after shape optimization using five different algorithms. It can be seen that the
curvature variation in the CG-Ball curve obtained by the CMRFO is the smallest. The optimal value
of the objective function is 252.6226.
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Table 17. Optimal values of shape parameters and corresponding fitness value.

Algorithm α β γ Objective Function

CMRFO −0.44182 −0.17432 −0.58420 252.6226
SCA −0.43369 −0.16005 −0.57312 252.6623
LFD −0.46342 −0.16430 −0.58057 252.6614
AO −0.42406 −0.17529 −0.58248 252.6538

CHOA −0.44194 −0.17604 −0.58321 252.6233

6. Conclusions

This paper develops an improved manta ray foraging optimizer (CMRFO) that com-
bines chaos initialization, opposition-based learning, and elite chaotic searching strategy
with higher accuracy and a faster convergence rate. Various correction techniques are
used in the MRFO. First, a chaos-based initialization strategy is introduced to help ex-
plore the search space comprehensively and improve the algorithm’s efficiency during the
search. In addition, an opposition-based learning strategy improves the solution quality of
the solution, further improving the algorithm’s solution quality. Finally, the elite chaotic
searching strategy is introduced to achieve the update of elite individuals and enhance the
optimization capability. Fourteen different chaotic maps are used to initialize the popula-
tion. It has been proved that a cubic map can provide better searchability. In addition, the
effect of critical parameters (elite selection proportion) on CMRFO sensitivity is discussed.
The CMRFO is competitive compared with numerous advanced intelligent algorithms
on 23 benchmark functions, the well-known IEEE CEC2020 test suite, and three practical
engineering applications. In addition, a mathematical model of shape optimization for
CG-Ball curves is established and the CMRFO is used to solve the established shape op-
timization model contrasted with four popular advanced algorithms. Numerical results
further verify the effectiveness and practicability of the CMRFO in solving challenging
optimization problems in the engineering field.

Future work can extend the proposed CMRFO to other examples of CG-Ball curve
shape optimization. In addition, multiobjective optimization of CG-Ball curve shapes
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can be considered. We also believe in the application of the proposed CMRFO in other
engineering fields, for example feature selection, surface optimization, and path planning.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/math10162960/s1: The Matlab codes of the proposed CMRFO
algorithm and other optimization algorithms.
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43. Micev, M.; Ćalasan, M.; Ali, Z.M.; Hasanien, H.M.; Aleem, S.H.E.A. Optimal design of automatic voltage regulation controller
using hybrid simulated annealing—Manta ray foraging optimization algorithm. Ain Shams Eng. J. 2021, 12, 641–657. [CrossRef]

44. Hassan, M.H.; Houssein, E.H.; Mahdy, M.A.; Kamel, S. An improved manta ray foraging optimizer for cost-effective emission
dispatch problems. Eng. Appl. Artif. Intell. 2021, 100, 104155. [CrossRef]

http://doi.org/10.1016/j.cma.2022.115223
http://doi.org/10.1016/j.advengsoft.2014.07.006
http://doi.org/10.1016/j.knosys.2021.108071
http://doi.org/10.1007/s10462-022-10137-0
http://doi.org/10.1016/j.matcom.2022.04.031
http://doi.org/10.1093/jcde/qwab041
http://doi.org/10.1016/j.engappai.2019.103300
http://doi.org/10.1016/j.compeleceng.2021.107304
http://doi.org/10.1016/j.solener.2020.06.108
http://doi.org/10.1016/j.jaesx.2021.100070
http://doi.org/10.1016/j.jappgeo.2021.104405
http://doi.org/10.1016/j.enconman.2020.113048
http://doi.org/10.1016/j.eswa.2021.115131
http://doi.org/10.1016/j.asej.2020.07.009
http://doi.org/10.1016/j.jenvman.2021.113520
http://doi.org/10.1016/j.knosys.2021.107880
http://doi.org/10.1016/j.eswa.2021.116126
http://doi.org/10.1016/j.asoc.2021.108334
http://doi.org/10.1016/j.engappai.2020.104105
http://doi.org/10.1016/0010-4485(95)00047-X
http://doi.org/10.1016/j.eswa.2021.116355
http://doi.org/10.1016/j.ijhydene.2020.08.053
http://doi.org/10.1016/j.engappai.2021.104293
http://doi.org/10.1016/j.egyr.2021.02.028
http://doi.org/10.1016/j.jclepro.2020.125733
http://doi.org/10.1016/j.egyr.2020.10.003
http://doi.org/10.1016/j.asej.2020.07.010
http://doi.org/10.1016/j.engappai.2021.104155


Mathematics 2022, 10, 2960 34 of 34

45. Jain, S.; Indora, S.; Atal, D.K. Rider manta ray foraging optimization-based generative adversarial network and CNN feature for
detecting glaucoma, Biomed. Signal Process. Control 2022, 73, 103425. [CrossRef]

46. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

47. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
48. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.L. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
49. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new

metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]
50. Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [CrossRef]
51. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine predators algorithm: A nature-inspired metaheuristic. Expert

Syst. Appl. 2020, 152, 113377. [CrossRef]
52. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
53. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
54. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for

engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
55. Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems.

Knowl. Based Syst. 2019, 165, 169–196. [CrossRef]
56. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
57. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm

for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]
58. Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021,

389, 125535. [CrossRef]
59. Houssein, E.H.; Saad, M.R.; Hashim, F.A.; Shaban, H.; Hassaballah, M. Lévy flight distribution: A new metaheuristic algorithm

for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 94, 103731. [CrossRef]

http://doi.org/10.1016/j.bspc.2021.103425
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1007/s10489-020-01893-z
http://doi.org/10.1016/j.eswa.2020.113338
http://doi.org/10.1016/j.eswa.2020.113377
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.knosys.2018.11.024
http://doi.org/10.1016/j.cie.2021.107250
http://doi.org/10.1016/j.engappai.2020.103541
http://doi.org/10.1016/j.amc.2020.125535
http://doi.org/10.1016/j.engappai.2020.103731

	Introduction 
	Proposed Chaotic MRFO 
	Overview of the MRFO 
	Chain Foraging (CF) 
	Spiral Foraging 
	Somersault Foraging (SF) 

	Chaotic MRFO 
	Chaotic Initialization of Population 
	Opposition-Based Learning (OL) 
	Elite Chaotic Searching (ECS) 


	Experimental Results and Analysis 
	Performance of the CMRFO for the Initializing Population Based on Different Chaotic Maps 
	Elite Individual Proportion Analysis 
	Exploration–Exploitation Analysis 
	Comparison of the CMRFO with Other Optimizers on 23 Benchmark Functions 
	Comparison of the CMRFO with Other Optimizers on CEC2020 

	Practical Engineering Application 
	Pressure Vessel (PV) Design 
	Tension/Compression Spring (TCS) Optimization Problem 
	Pressure Vessel (PV) Design 

	Real-World Application: Construction of CG-Ball Curves with Optimal Shape 
	Shape Optimization Model: Minimum Curvature Variation in Curves 
	Modeling Examples 

	Conclusions 
	References

