A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning
Abstract
:1. Introduction
2. Related Research
2.1. Hyperparameter Optimization
2.2. Particle Swarm Optimization (PSO) and Sparrow Search Algorithm (SSA)
3. Proposed Approach
3.1. Hybrid Sparrow Search Algorithm (HSSA)
- (1)
- Algorithmic Modeling
- (2)
- Basic Rules
- (3)
- Discoverers
- (4)
- Followers
- (5)
- Vigilantes
- (6)
- Algorithm Framework
Algorithm 1. Procedure Hybrid Sparrow Search Algorithm | |
1 | Input: individuals n, dimension m, iterations smax |
2 | Output: optimal value |
3 | Initialize the population n, individual optimal value fi and global optimal value fg |
4 | for s in smax do |
5 | Divide the population n into discoverers nd and followers nf |
6 | for i in nd do |
7 | for j in m do |
8 | if R < T then |
9 | |
10 | else |
11 | |
12 | for i in nf do |
13 | for j in m do |
14 | if i > n/2 then |
15 | |
16 | |
17 | else |
18 | |
19 | Randomly generate vigilantes nv |
20 | for i in nv do |
21 | for j in m do |
22 | if fi > fg then |
23 | |
24 | else |
25 | |
26 | for i in n do |
27 | Update fi |
28 | Update fg |
29 | if fg meet the requirement then |
30 | exit for |
31 | Return the optimal value |
3.2. Fitness Function
4. Experiments
4.1. Convolutional Neural Network
- The input layer determines the type and style of the data entered.
- The convolutional layer is performed on two matrices. The convolution kernel moves on the input matrix with a certain step length. The output matrix is obtained after the convolution operation.
- The pooling layer is used for down sampling. The pooling layer continuously reduces the size of the data space. The number of parameters and calculations are decreased to control data over-fitting.
- Fully connected layers connect to all nodes of the previous layer, thus integrating extracted features in mapping distributed features to the sample label space.
- The output layer outputs the final result.
4.2. Performance Verification
4.2.1. Experiment on MNIST Dataset
4.2.2. Experiment on Five Flowers Dataset
4.3. Meaning Verification
4.4. Result Analysis
4.4.1. Optimization Effect Analysis
4.4.2. Global Search Capability Analysis
4.5. Stability Analysis of HSSA
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gorshenin, A.; Kuzmin, V. Statistical Feature Construction for Forecasting Accuracy Increase and Its Applications in Neural Network Based Analysis. Mathematics 2022, 10, 589. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Althubiti, S.A.; Escorcia-Gutierrez, J.; Gamarra, M.; Soto-Diaz, R.; Mansour, R.F.; Alenezi, F. Improved Metaheuristics with Machine Learning Enabled Medical Decision Support System. Comput. Mater. Contin. 2022, 73, 2423–2439. [Google Scholar] [CrossRef]
- Xiong, J.; Zuo, M. What does existing NeuroIS research focus on? Inf. Syst. 2020, 89, 101462. [Google Scholar] [CrossRef]
- Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; Matsumoto, K. The Impact of Automated Parameter Optimization on Defect Prediction Models. IEEE Trans. Softw. Eng. 2019, 45, 683–711. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ng, W.W.Y.; Wang, T.; Pelillo, M.; Kwong, S. HELP: An LSTM-based approach to hyperparameter exploration in neural network learning. Neurocomputing 2021, 442, 161–172. [Google Scholar] [CrossRef]
- van Rijn, J.N.; Hutter, F. Hyperparameter Importance Across Datasets. In Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), London, UK, 19–23 August 2018; pp. 2367–2376. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xuan, J. Intelligent fault recognition framework by using deep reinforcement learning with one dimension convolution and improved actor-critic algorithm. Adv. Eng. Inform. 2021, 49, 101315. [Google Scholar] [CrossRef]
- Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An empirical evaluation of deep architectures on problems with many factors of variation. In Proceedings of the 24th International Conference on Machine Learning (ICML), Corvalis, OR, USA, 20–24 June 2007; pp. 473–480. [Google Scholar]
- Lerman, P.M. Fitting Segmented Regression Models by Grid Search. J. R. Stat. Soc. Ser. C Appl. Stat. 1980, 29, 77–84. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Frank, H.; Holger, H.H.; Kevin, L.B. Sequential Model-Based Optimization for General Algorithm Configuration. In Proceedings of the 5th International Conference on Learning and Intelligent Optimization, Rome, Italy, 17 January 2011; pp. 507–523. [Google Scholar] [CrossRef] [Green Version]
- Talathi, S.S. Hyper-parameter optimization of deep convolutional networks for object recognition. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3982–3986. [Google Scholar]
- Cui, J.; Tan, Q.; Zhang, C.; Yang, B. A novel framework of graph Bayesian optimization and its applications to real-world network analysis. Expert Syst. Appl. 2021, 170, 114524. [Google Scholar] [CrossRef]
- Lee, M.; Bae, J.; Kim, S.B. Uncertainty-aware soft sensor using Bayesian recurrent neural networks. Adv. Eng. Inform. 2021, 50, 101434. [Google Scholar] [CrossRef]
- Kong, H.; Yan, J.; Wang, H.; Fan, L. Energy management strategy for electric vehicles based on deep Q-learning using Bayesian optimization. Neural Comput. Appl. 2019, 32, 14431–14445. [Google Scholar] [CrossRef]
- Jin, N.; Yang, F.; Mo, Y.; Zeng, Y.; Zhou, X.; Yan, K.; Ma, X. Highly accurate energy consumption forecasting model based on parallel LSTM neural networks. Adv. Eng. Inform. 2021, 51, 101442. [Google Scholar] [CrossRef]
- Chanona, E.A.d.R.; Petsagkourakis, P.; Bradford, E.; Graciano, J.E.A.; Chachuat, B. Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation. Comput. Chem. Eng. 2021, 147, 107249. [Google Scholar] [CrossRef]
- Zhou, P.; El-Gohary, N. Semantic information alignment of BIMs to computer-interpretable regulations using ontologies and deep learning. Adv. Eng. Inform. 2021, 48, 101239. [Google Scholar] [CrossRef]
- Sun, L.-X.; Xie, Y.; Song, X.-H.; Wang, J.-H.; Yu, R.-Q. Cluster analysis by simulated annealing. Comput. Chem. 1994, 18, 103–108. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G. Traffic flow prediction model based on deep belief network and genetic algorithm. IET Intell. Transp. Syst. 2018, 12, 533–541. [Google Scholar] [CrossRef]
- Di Francescomarino, C.; Dumas, M.; Federici, M.; Ghidini, C.; Maggi, F.M.; Rizzi, W.; Simonetto, L. Genetic algorithms for hyperparameter optimization in predictive business process monitoring. Inf. Syst. 2018, 74, 67–83. [Google Scholar] [CrossRef]
- Perera, R.; Guzzetti, D.; Agrawal, V. Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Comput. Mater. Sci. 2021, 196, 110524. [Google Scholar] [CrossRef]
- Lorenzo, P.R.; Nalepa, J.; Ramos, L.S.; Pastor, J.R. Hyper-parameter selection in deep neural networks using parallel particle swarm optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Berlin, Germany, 15–19 July 2017; pp. 1864–1871. [Google Scholar] [CrossRef]
- Djenouri, Y.; Srivastava, G.; Lin, J.C.-W. Fast and Accurate Convolution Neural Network for Detecting Manufacturing Data. IEEE Trans. Ind. Inform. 2021, 17, 2947–2955. [Google Scholar] [CrossRef]
- Öztürk, M.M.; Cankaya, I.A.; Ipekçi, D. Optimizing echo state network through a novel fisher maximization based stochastic gradient descent. Neurocomputing 2020, 415, 215–224. [Google Scholar] [CrossRef]
- Hu, T.; Khishe, M.; Mohammadi, M.; Parvizi, G.-R.; Karim, S.H.T.; Rashid, T.A. Real-time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm. Biomed. Signal Process. Control 2021, 68, 102764. [Google Scholar] [CrossRef]
- Kalita, D.J.; Singh, V.P.; Kumar, V. A dynamic framework for tuning SVM hyper parameters based on Moth-Flame Optimization and knowledge-based-search. Expert Syst. Appl. 2021, 168, 114139. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Wu, C.; Khishe, M.; Mohammadi, M.; Karim, S.H.T.; Rashid, T.A. Evolving deep convolutional neutral network by hybrid sine–cosine and extreme learning machine for real-time COVID19 diagnosis from X-ray images. Soft Comput. 2021, 1–20. [Google Scholar] [CrossRef]
- Wang, X.; Gong, C.; Khishe, M.; Mohammadi, M.; Rashid, T.A. Pulmonary Diffuse Airspace Opacities Diagnosis from Chest X-Ray Images Using Deep Convolutional Neural Networks Fine-Tuned by Whale Optimizer. Wirel. Pers. Commun. 2022, 124, 1355–1374. [Google Scholar] [CrossRef]
- Yutong, G.; Khishe, M.; Mohammadi, M.; Rashidi, S.; Nateri, M.S. Evolving Deep Convolutional Neural Networks by Extreme Learning Machine and Fuzzy Slime Mould Optimizer for Real-Time Sonar Image Recognition. Int. J. Fuzzy Syst. 2021, 24, 1371–1389. [Google Scholar] [CrossRef]
- Khishe, M.; Caraffini, F.; Kuhn, S. Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-ray Images. Mathematics 2021, 9, 1002. [Google Scholar] [CrossRef]
- Chen, F.; Yang, C.; Khishe, M. Diagnose Parkinson’s disease and cleft lip and palate using deep convolutional neural networks evolved by IP-based chimp optimization algorithm. Biomed. Signal Process. Control 2022, 77, 103688. [Google Scholar] [CrossRef]
- Yang, X.-S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, T.; Basturk, A. Transfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognition. Neural Comput. Appl. 2019, 31, 8955–8970. [Google Scholar] [CrossRef]
- Freitas, D.; Lopes, L.G.; Morgado-Dias, F. Particle Swarm Optimisation: A Historical Review Up to the Current Developments. Entropy 2020, 22, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Lynn, N.; Suganthan, P.N. Ensemble particle swarm optimizer. Appl. Soft Comput. 2017, 55, 533–548. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Gašperov, B.; Begušić, S.; Šimović, P.P.; Kostanjčar, Z. Reinforcement Learning Approaches to Optimal Market Making. Mathematics 2021, 9, 2689. [Google Scholar] [CrossRef]
- Wu, X.; Sahoo, D.; Hoi, S.C.H. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [Google Scholar] [CrossRef] [Green Version]
- Trappey, C.V.; Trappey, A.J.C.; Lin, S.C.-C. Intelligent trademark similarity analysis of image, spelling, and phonetic features using machine learning methodologies. Adv. Eng. Inform. 2020, 45, 101120. [Google Scholar] [CrossRef]
- Escalante, H.J. Automated Machine Learning—A Brief Review at the End of the Early Years. In Automated Design of Machine Learning and Search Algorithms; Natural Computing Series; Pillay, N., Qu, R., Eds.; Springer: Cham, Switzerland, 2021; pp. 11–28. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Biehl, M.; Hammer, B. Hyperparameter learning in probabilistic prototype-based models. Neurocomputing 2010, 73, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Baldominos, A.; Saez, Y.; Isasi, P. A Survey of Handwritten Character Recognition with MNIST and EMNIST. Appl. Sci. 2019, 9, 3169. [Google Scholar] [CrossRef] [Green Version]
- Kido, D.; Fukuda, T.; Yabuki, N. Assessing future landscapes using enhanced mixed reality with semantic segmentation by deep learning. Adv. Eng. Inform. 2021, 48, 101281. [Google Scholar] [CrossRef]
- Omri, M.; Abdel-Khalek, S.; Khalil, E.M.; Bouslimi, J.; Joshi, G.P. Modeling of Hyperparameter Tuned Deep Learning Model for Automated Image Captioning. Mathematics 2022, 10, 288. [Google Scholar] [CrossRef]
- Quiroz, J.; Baumgartner, R. Interval Estimations for Variance Components: A Review and Implementations. Stat. Biopharm. Res. 2019, 11, 162–174. [Google Scholar] [CrossRef]
- Zhang, J.; Kou, G.; Peng, Y.; Zhang, Y. Estimating priorities from relative deviations in pairwise comparison matrices. Inf. Sci. 2021, 552, 310–327. [Google Scholar] [CrossRef]
Method | Setup |
---|---|
Random search | Completely random |
Bayesian Optimization | Tree Parzen Estimator Gaussian process EI function |
CMA-ES | Initial step: σ(0) = 0.618 (ub-lb) Initial evolutionary path: pσ(0) = 0, pc(0) = 0 Initial covariance matrix: C = I |
SA | Initial temperature: T0 = 100 Descent rate: α = 0.99 |
GA | Variation rate: Pm = 0.2 Roulette wheel selection |
PSO | Inertia weight: ω = 0.6 Learning factors: c1 = 2, c2 = 2 |
SSA | Discoverer ratio: 20% Detective ratio: 10% Alert threshold: 0.8 |
HSSA | Discoverer ratio: 20% Detective ratio: 10% Alert threshold: 0.8 Inertia weight: ω = 0.6 Learning factors: c1 = 2, c2 = 2 |
Name | Range |
---|---|
Number of F1 units | 128–1024 |
Number of F2 units | 128–1024 |
L2 weight decay | 0.0001–0.01 |
Batch size | 16–128 |
Learning rate | 0.0001–0.01 |
Dropout rate | 0.1–0.5 |
Name | Value |
---|---|
Epochs | 10 |
Input | Shape: 28 × 28; Dimensions: 1 |
Convolution layer 1 | Size: 5 × 5; Strides: 1 |
Pooling layer 1 | Size: 2 × 2; Strides: 2 |
Convolution layer 2 | Size: 5 × 5; Strides: 1 |
Pooling layer 2 | Size: 2 × 2; Strides: 2 |
Activation function | Relu; Softmax |
Method | Setup |
---|---|
Random search | 700 iterations |
Bayesian Optimization | 700 iterations |
CMA-ES | 700 iterations |
SA | 700 iterations |
GA | 50 initial individuals; 700 generations |
HSSA | 10 individuals per generation; 70 generations |
Name | Range |
---|---|
Number of F1 units | 128–1024 |
Number of F2 units | 128–1024 |
Number of F3 units | 128–1024 |
Number of F4 units | 128–1024 |
L2 weight decay | 0.0001–0.01 |
Batch size | 16–128 |
Learning rate | 0.0001–0.01 |
F1 Dropout rate | 0.1–0.5 |
F2 Dropout rate | 0.1–0.5 |
F3 Dropout rate | 0.1–0.5 |
F4 Dropout rate | 0.1–0.5 |
Name | Value |
---|---|
Epochs | 20 |
Input | Shape: 32 × 32; Dimension: 3 |
Convolution layer 1 | Size: 3 × 3; Strides: 2 |
Pooling layer 1 | Size: 2 × 2; Strides: 2 |
Convolution layer 2 | Size: 3 × 3; Strides: 2 |
Pooling layer 2 | Size: 2 × 2; Strides: 2 |
Convolution layer 3 | Size: 3 × 3; Strides: 1 |
Convolution layer 4 | Size: 3 × 3; Strides: 1 |
Convolution layer 5 | Size: 3 × 3; Strides: 1 |
Pooling layer 3 | Size: 2 × 2; Strides: 2 |
Activation function | Relu; Softmax |
Method | Setup |
---|---|
Random search | 700 iterations |
Bayesian Optimization | 700 iterations |
CMA-ES | 700 iterations |
SA | 700 iterations |
GA | 50 initial individuals; 700 generations |
HSSA | 10 individuals per generation; 70 generations |
Method | Setup |
---|---|
SSA | 10 individuals per generation; 70 generations |
PSO | 10 individuals per generation; 70 generations |
HSSA | 10 individuals per generation; 70 generations |
Method | Mean Error | Minimum Error | Number of Iterations |
---|---|---|---|
Random search | 0.0119 | 0.0115 | 277 |
Bayesian Optimization | 0.0100 | 0.0097 | 62 |
CMA-ES | 0.0107 | 0.0102 | 612 |
SA | 0.0099 | 0.0096 | 68 |
GA | 0.0109 | 0.0107 | 404 |
PSO | 0.0102 | 0.0098 | 330 |
SSA | 0.0106 | 0.0104 | 230 |
HSSA | 0.0097 | 0.0086 | 530 |
Method | Mean Error | Minimum Error | Number of Iterations |
---|---|---|---|
Random search | 0.3537 | 0.3148 | 312 |
Bayesian Optimization | 0.2837 | 0.2692 | 371 |
CMA-ES | 0.2895 | 0.2830 | 580 |
SA | 0.7555 | 0.7555 | 1 |
GA | 0.3250 | 0.2869 | 570 |
PSO | 0.3113 | 0.2973 | 90 |
SSA | 0.3063 | 0.2957 | 190 |
HSSA | 0.2714 | 0.2473 | 460 |
Bs | L2 | F1 | F2 | Dr | Lr | |
---|---|---|---|---|---|---|
1 | 127 | 0.0032 | 716 | 340 | 0.10 | 0.0008 |
2 | 127 | 0.0032 | 716 | 340 | 0.10 | 0.0008 |
3 | 127 | 0.0032 | 716 | 340 | 0.10 | 0.0008 |
4 | 127 | 0.0032 | 716 | 340 | 0.10 | 0.0008 |
5 | 127 | 0.0032 | 716 | 340 | 0.10 | 0.0008 |
6 | 127 | 0.0032 | 716 | 340 | 0.10 | 0.0008 |
7 | 127 | 0.0032 | 716 | 340 | 0.10 | 0.0008 |
8 | 127 | 0.0032 | 716 | 340 | 0.10 | 0.0008 |
9 | 128 | 0.0017 | 521 | 409 | 0.17 | 0.0029 |
10 | 98 | 0.0035 | 1003 | 507 | 0.24 | 0.0014 |
Bs | L2 | F1 | F2 | Dr | Lr | |
---|---|---|---|---|---|---|
1 | 128 | 0.0100 | 1024 | 1024 | 0.50 | 0.0100 |
2 | 107 | 0.0084 | 954 | 973 | 0.41 | 0.0094 |
3 | 99 | 0.0097 | 1017 | 912 | 0.47 | 0.0086 |
4 | 68 | 0.0006 | 579 | 1015 | 0.15 | 0.0059 |
5 | 97 | 0.0029 | 629 | 283 | 0.49 | 0.0031 |
6 | 85 | 0.0061 | 358 | 420 | 0.30 | 0.0089 |
7 | 61 | 0.0065 | 690 | 421 | 0.36 | 0.0099 |
8 | 51 | 0.0074 | 466 | 212 | 0.34 | 0.0011 |
9 | 91 | 0.0066 | 306 | 677 | 0.29 | 0.0055 |
10 | 27 | 0.0081 | 447 | 379 | 0.35 | 0.0004 |
Bs | L2 | F1 | F2 | Dr | Lr | |
---|---|---|---|---|---|---|
1 | 16 | 0.0001 | 128 | 128 | 0.10 | 0.0001 |
2 | 21 | 0.0001 | 132 | 130 | 0.11 | 0.0001 |
3 | 19 | 0.0008 | 146 | 183 | 0.13 | 0.0001 |
4 | 17 | 0.0077 | 838 | 959 | 0.16 | 0.0066 |
5 | 72 | 0.0020 | 310 | 914 | 0.34 | 0.0089 |
6 | 123 | 0.0066 | 436 | 498 | 0.28 | 0.0041 |
7 | 45 | 0.0036 | 451 | 180 | 0.23 | 0.0003 |
8 | 111 | 0.0037 | 314 | 924 | 0.14 | 0.0024 |
9 | 116 | 0.0058 | 1019 | 658 | 0.45 | 0.0009 |
10 | 42 | 0.0046 | 957 | 614 | 0.43 | 0.0024 |
Bs | L2 | F1 | F2 | F3 | F4 | Dr1 | Dr2 | Dr3 | Dr4 | Lr | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 68 | 0.0010 | 544 | 137 | 241 | 232 | 0.50 | 0.50 | 0.50 | 0.50 | 0.0010 |
2 | 68 | 0.0010 | 544 | 137 | 241 | 232 | 0.50 | 0.50 | 0.50 | 0.50 | 0.0010 |
3 | 68 | 0.0010 | 544 | 137 | 241 | 232 | 0.50 | 0.50 | 0.50 | 0.50 | 0.0010 |
4 | 68 | 0.0010 | 544 | 137 | 241 | 232 | 0.50 | 0.50 | 0.50 | 0.50 | 0.0010 |
5 | 68 | 0.0010 | 544 | 137 | 241 | 232 | 0.50 | 0.50 | 0.50 | 0.50 | 0.0010 |
6 | 68 | 0.0010 | 544 | 137 | 241 | 232 | 0.50 | 0.50 | 0.50 | 0.50 | 0.0010 |
7 | 68 | 0.0010 | 544 | 137 | 241 | 232 | 0.50 | 0.50 | 0.50 | 0.50 | 0.0010 |
8 | 83 | 0.0010 | 472 | 189 | 380 | 176 | 0.45 | 0.43 | 0.49 | 0.48 | 0.0010 |
9 | 49 | 0.0038 | 718 | 444 | 426 | 264 | 0.34 | 0.40 | 0.37 | 0.39 | 0.0007 |
10 | 72 | 0.0027 | 385 | 235 | 192 | 370 | 0.25 | 0.38 | 0.32 | 0.47 | 0.0015 |
Bs | L2 | F1 | F2 | F3 | F4 | Dr1 | Dr2 | Dr3 | Dr4 | Lr | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 61 | 0.0012 | 128 | 184 | 184 | 184 | 0.48 | 0.47 | 0.50 | 0.47 | 0.0014 |
2 | 119 | 0.0001 | 153 | 455 | 616 | 510 | 0.26 | 0.40 | 0.35 | 0.25 | 0.0022 |
3 | 78 | 0.0008 | 997 | 208 | 482 | 1010 | 0.39 | 0.23 | 0.20 | 0.16 | 0.0002 |
4 | 61 | 0.0015 | 630 | 798 | 176 | 703 | 0.47 | 0.48 | 0.47 | 0.46 | 0.0090 |
5 | 66 | 0.0048 | 832 | 745 | 389 | 446 | 0.48 | 0.43 | 0.18 | 0.28 | 0.0046 |
6 | 67 | 0.0060 | 432 | 944 | 593 | 631 | 0.27 | 0.37 | 0.22 | 0.24 | 0.0002 |
7 | 64 | 0.0097 | 771 | 199 | 326 | 454 | 0.43 | 0.10 | 0.14 | 0.32 | 0.0093 |
8 | 21 | 0.0020 | 598 | 480 | 466 | 830 | 0.43 | 0.17 | 0.49 | 0.49 | 0.0030 |
9 | 51 | 0.0005 | 426 | 737 | 957 | 870 | 0.36 | 0.25 | 0.31 | 0.15 | 0.0094 |
10 | 43 | 0.0057 | 610 | 722 | 810 | 908 | 0.49 | 0.45 | 0.11 | 0.27 | 0.0008 |
Bs | L2 | F1 | F2 | F3 | F4 | Dr1 | Dr2 | Dr3 | Dr4 | Lr | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 128 | 0.0001 | 572 | 497 | 555 | 222 | 0.41 | 0.41 | 0.41 | 0.41 | 0.0010 |
2 | 35 | 0.0021 | 354 | 500 | 573 | 193 | 0.43 | 0.30 | 0.33 | 0.35 | 0.0080 |
3 | 106 | 0.0032 | 181 | 326 | 481 | 655 | 0.23 | 0.26 | 0.48 | 0.13 | 0.0034 |
4 | 55 | 0.0040 | 138 | 714 | 244 | 265 | 0.13 | 0.42 | 0.31 | 0.13 | 0.0059 |
5 | 28 | 0.0059 | 294 | 858 | 276 | 150 | 0.22 | 0.34 | 0.17 | 0.14 | 0.0007 |
6 | 63 | 0.0047 | 856 | 520 | 211 | 285 | 0.49 | 0.17 | 0.47 | 0.27 | 0.0008 |
7 | 23 | 0.0096 | 241 | 575 | 647 | 966 | 0.39 | 0.37 | 0.21 | 0.19 | 0.0026 |
8 | 43 | 0.0070 | 715 | 410 | 489 | 378 | 0.49 | 0.14 | 0.24 | 0.45 | 0.0068 |
9 | 74 | 0.0031 | 263 | 618 | 652 | 158 | 0.34 | 0.30 | 0.40 | 0.25 | 0.0081 |
10 | 28 | 0.0028 | 922 | 505 | 162 | 617 | 0.34 | 0.48 | 0.15 | 0.12 | 0.0028 |
Experiment | Mean Error | Minimum Error |
---|---|---|
Experiment 1 | 0.0095 | 0.0089 |
Experiment 2 | 0.0104 | 0.0092 |
Experiment 3 | 0.0094 | 0.0085 |
Experiment 4 | 0.0099 | 0.0081 |
Experiment 5 | 0.0108 | 0.0093 |
Mean Value | 0.0100 | 0.0088 |
Standard Deviation | 0.00053 | 0.00048 |
Experiment | Mean Error | Minimum Error |
---|---|---|
Experiment 1 | 0.2697 | 0.2457 |
Experiment 2 | 0.2821 | 0.2472 |
Experiment 3 | 0.2749 | 0.2464 |
Experiment 4 | 0.2701 | 0.2403 |
Experiment 5 | 0.2663 | 0.2396 |
Mean Value | 0.2726 | 0.2438 |
Standard Deviation | 0.00548 | 0.00322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zhang, Y.; Guo, B.; Luo, X.; Peng, Q.; Jin, Z. A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning. Mathematics 2022, 10, 3019. https://doi.org/10.3390/math10163019
Fan Y, Zhang Y, Guo B, Luo X, Peng Q, Jin Z. A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning. Mathematics. 2022; 10(16):3019. https://doi.org/10.3390/math10163019
Chicago/Turabian StyleFan, Yanyan, Yu Zhang, Baosu Guo, Xiaoyuan Luo, Qingjin Peng, and Zhenlin Jin. 2022. "A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning" Mathematics 10, no. 16: 3019. https://doi.org/10.3390/math10163019
APA StyleFan, Y., Zhang, Y., Guo, B., Luo, X., Peng, Q., & Jin, Z. (2022). A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning. Mathematics, 10(16), 3019. https://doi.org/10.3390/math10163019