
Citation: Diaz-Porto, G.; Gutierrez, I.;

Torres-Grandisson, A. The t-Graphs

over Finitely Generated Groups and

the Minkowski Metric. Mathematics

2022, 10, 3030. https://doi.org/

10.3390/math10173030

Academic Editors: Hashem Bordbar

and Irina Cristea

Received: 13 July 2022

Accepted: 5 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The t-Graphs over Finitely Generated Groups and the
Minkowski Metric
Gabriela Diaz-Porto , Ismael Gutierrez * and Armando Torres-Grandisson

Department of Mathematics, Universidad del Norte, Km 5 via a Puerto Colombia, Barranquilla 081007, Colombia
* Correspondence: isgutier@uninorte.edu.co

Abstract: In this paper, we introduce t-graphs defined on finitely generated groups. We study
some general aspects of the t-graphs on two-generator groups, emphasizing establishing necessary
conditions for their connectedness. In particular, we investigate properties of t-graphs defined on
finite dihedral groups.

Keywords: finitely generated groups; finite groups; t-graph; subgraph; connected components;
chromatic number

MSC: 20F05; 20E65; 05C12; 05C15

1. Introduction

One of the best-known connections between groups and graph theory was presented
by A. Cayley [1]. He gave a group G as a directed graph, where the vertices correspond to
elements of G and the edges to multiplication by group generators and their inverses. Such
a graph is called a Cayley diagram or Cayley graph of G. It is a central tool in combinatorial
and geometric group theory.

Recent works reveal many different ways of associating a graph to a given finite group,
most of which were inspired by a question posed by P. Erdös [2]. These differences lie in the
adjacency criterion used to relate two group elements constituting the set of vertices of such
a graph. Some essential authors in this context are A. Abdollahi [3], A. Ballester-Bolinches
et al. [4–8], A. Lucchini [9,10], and D. Hai-Reuven [11], among others.

Our notation will be standard, as in [12] and [13] for groups and graphs. Let G =
〈g1, . . . , gn〉 be a finitely generated group and suppose now that every element g ∈ G can
be uniquely written as follows

g =
n

∏
i=1

gεi
i , (1)

with 0 ≤ εi < mi, and 1 ≤ i ≤ n. The numbers mi can be, for example, the orders of the
corresponding elements in the finite case, but they may also differ from these orders.

To determine a measure of the separation between two elements of G, we introduce
the following distance map d1 : G× G −→ N0, defined by

d1(g, h) = d1

( n

∏
i=1

gεi
i ,

n

∏
i=1

gδi
i

)
=

n

∑
i=1
|εi − δi|. (2)

The set G endowed with this distance d is a metric space. Note that d1 is just the
Minkowski lp metric for p = 1 in {(ε1, . . . , εn) | 0 ≤ εi < mi}. This is also called the taxicab
distance, Manhattan distance, or grid distance.

G. Diaz-Porto and A. Torres-Grandisson introduced t-graphs using Minkowski’s
metric in [14,15]. These graphs can be defined by the group G as the underlying set of
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vertices and the following adjacency criteria: Let t be an integer number with 1 ≤ t ≤ n.
We say that g, h ∈ G are adjacent if and only if d1(g, h) = t.

The simplest example is when G is a finite cyclic group. Let G = 〈g〉 be a cyclic group
with the finite order m. That is, G = {1, g, · · · , gm−1}. From (2), we have

d1(gi, gj) = |i− j|, for all 0 ≤ i, j ≤ m− 1. (3)

This means that in the t-graph of G there exists an edge between gi and gj if and only
if |i− j| = t. Defining on G the following relation

gi ∼ gj ⇐⇒ i ≡ j mod t, (4)

where ∼ is an equivalence relation, and then we have a partition of G in t classes given by

[gi] := {gj ∈ G | j ≡ i mod t}, (5)

where i ∈ {0, 1, . . . , t − 1}. Then, the t-graph of a finite cyclic group G can be viewed
as the union of t connected components, consisting of path graphs or isolated points.
Consequently for t ≥ 2, the t-graph is non-connected and 2-chromatic. The 1-graph of G is
a finite path graph and then connected.

If t is a divisor of the group order m, then it is well known that G has a cyclic subgroup
U of order m/t, and the elements of U form a subgraph with m/n vertices, which is a
connected component of the t-graph of G.

If G = 〈g〉 is an infinite cyclic group, then the 1-graph of G is an infinite path graph.
This statement follows directly from the definition of the t-graph.

An immediate consequence of the above discussion is that if G is a finite abelian group,
say G = 〈g1〉 × · · · × 〈gn〉, with ord(gj) = εj. Then, the 1-graph of G is the Cartesian
product of n path graphs of lengths εj, respectively. That is an n-dimensional square grid
graph. In general, using the above example, the t-graph of G is the Cartesian product of
t components.

In the general case, if G is a direct product of cyclic groups with at least one infinite
factor, then the t-graph of G is an infinite rectangular grid graph.

The first thing we can observe is that for a group G different generating systems can
give different graphs. For instance, the groups Z4 ×Z6 and Z2 ×Z12 are isomorphic, but
the graphs associated with the natural generating sets corresponding to these ways to
present the group G are different.

On the other hand, if two groups admit generating systems such that every element g
can be described as in (1), then it is possible that the corresponding t-graphs are the same,
even though the groups are not isomorphic. We can see this in the following example. It is
well known that the dihedral group Dn and the quaternion group Q8 have the subsequent
group presentation, respectively,

Dn = 〈a, b | a2 = bn = 1, aba = b−1〉, (6)

Q8 = 〈a, b | a4 = 1, a2 = b2, bab−1 = a−1〉. (7)

Furthermore,
Z2 ×Z4 = 〈a, b | a2 = b4 = 1, ab = ba〉. (8)

Note that, in terms of their generators, the elements of D4, Q8, and Z2 × Z4 can be
written as follows

{1, a, b, b2, b3, ab, ab2, ab3}. (9)

This means that the three groups have the same distance table (see Table 1) and,
consequently, the same t-graphs for all t.
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Table 1. Table of distances of Z2 ×Z4, D4, and Q8.

d1 1 a b b2 b3 ab ab2 ab3

1 0 1 1 2 3 2 3 4
a 1 0 2 3 4 1 2 3
b 1 2 0 1 2 1 2 3
b2 2 3 1 0 1 2 1 2
b3 3 4 2 1 0 3 2 1
ab 2 1 1 2 3 0 1 2
ab2 3 2 2 1 2 1 0 1
ab3 4 3 3 2 1 2 1 0

An illustration of the first four t-graphs of these three groups is presented in the
following Figure 1.

1

aabab2ab3

b3 b2 b
t=1

1

abab3bb3

ab2 a b2

t=2

b2aab3b

ab21b3ab

t=3

a b3 b ab2

abb2ab31
t=4

Figure 1. Some t-graphs of Z2 ×Z4, D4, and Q8.

Despite being non-isomorphic groups, these groups have precisely the same t-graphs
since the metric used to define the adjacency criterion only considers the writing of the
group’s elements and not how they interact. This leads to the conclusion that any two-
generator finite group G = 〈a, b〉, in which every element can be written in the form aibj

with 0 ≤ i ≤ ord(a) − 1 and 0 ≤ j ≤ ord(b) − 1, has the same t-graphs as the group
Zord(a) × Zord(b) since, when considering the form in which its elements are written in
terms of the generators, the underlying sets are the same.

Therefore, to study the t-graphs of a finite group G, it is sufficient to consider abelian
groups, expressed as products of cyclic groups. Naturally, this implies asking oneself, given
an arbitrary group G, how to determine the abelian group with which it will share the
same t-graphs. For example, the symmetric group of degree five has the same t-graph
as Z2 ×Z3 ×Z4 ×Z5. In fact, in general, the group Sym(n) can be factorized in the form
Sym(n) = Sym(n− 1)〈(12 · · · n)〉, and, applying this property inductively, we have that
Sym(n) is generated by the set {(12), (123), · · · , (12 · · · , n)}. In particular, the set

{(12)i(123)j(1234)k(12345)l | i = 0, 1, j = 0, 1, 2, k = 0, 1, 2, 3, l = 0, 1, 2, 3, 4}

is exactly Sym(5).
On the other hand, this situation brings the possibility of studying t-graphs by defining

the adjacency criterion in terms of another metric. This change may imply that the group
structure plays a more critical role.
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The main goal of this paper is to obtain some characterizations of the t-graphs G
associated with the two-generator finite group G that can be expressed in the form

G = 〈a, b〉 = {aibj | 0 ≤ i ≤ m, 0 ≤ j ≤ n}. (10)

where m ≤ ord(a) y n ≤ ord(b); n, m ∈ Z. These numbers m and n depend exclusively on
the structure, namely on the group’s presentation and the order of G. We determine the
number of connected components of G depending on whether t is an even or odd number.

2. Preliminaries on t-Graphs

A desirable property of the t-graphs is that every subgroup H of a group G naturally
results in a subgraph. However, this is, in general, not true. For example, let G be the Klein
four-group, say G = {1, a, b, ab} and H = {1, ab}. Concerning their natural generating
systems, ab and one are not adjacent in the 1-graph of G. Nevertheless, in H, they are
adjacent.

Lemma 1. Let G = 〈g1, . . . , gn〉 be a finitely generated group and H ≤ G, with H = 〈h1, . . . , hn〉
and hj = g

kj
j for some natural numbers k j. Then, the t-graph of H is a subgraph of the t-graph of G.

Proof. It follows immediately from the definition of the t-graph.

Lemma 2. Let G = 〈g1, · · · , gn〉 be a finitely generated group and suppose now that every element
in g ∈ G can be uniquely written as g = ∏n

i=1 gεi
i with 0 ≤ εi < mi and 1 ≤ i ≤ n. Further, let

H = 〈h1, · · · , hn〉 be a finitely generated group with the same property. If G and H are isomorphic,
then the corresponding t-graphs are isomorphic, for all natural numbers t.

Proof. Let f : G −→ H be a group isomorphism with f (gi) = hi, and let G = (G, E1)
and H = (H, E2) be the corresponding t-graphs of G and H, respectively. Suppose that
{x, y} ∈ E1 with x = ∏n

i=1 gεi
i and y = ∏n

i=1 gδi
i . Then, d1(x, y) = t, and we have

d1( f (x), f (y)) = d1

( n

∏
i=1

f (gi)
εi ,

n

∏
i=1

f (gi)
δi
)
= d1

( n

∏
i=1

hεi
i ,

n

∏
i=1

hδi
i )
)

=
n

∑
i=1
|εi − δi| = d1(x, y).

It follows that { f (x), f (y)} ∈ E2.

Remark 1. Note that the reciprocal of the statement in Lemma 2 is, in general, not true. For
example, the t-graphs of the dihedral D4 and the quaternions group, Q8 are isomorphic even though
D4 6∼= Q8.

To study t-graphs in the given context, we can use the spectral theory of graphs, which
consists of studying the properties of the Laplacian matrix of a graph, more specifically, its
eigenvalues and eigenvectors.

The Laplacian matrix of G = (V, E) is the n× n matrix L = (lij) indexed by V, whose
(i, j)-entry is defined as follows

lij =


−1 if {vi, vj} ∈ E
deg(vi) if i = j
0 otherwise.

(11)

To analyze the behavior of the number of connected components k(G) of the t-
graphs defined on a group G, we use the following theorem, which allows us to realize
Tables 2 and 3. A proof of this theorem can be found in [16] (Theorem 7.1).
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Theorem 1. A graph G has k connected components if and only if the algebraic multiplicity of zero
as the Laplacian eigenvalue is k.

In the following, to study the t-graphs associated with a finite group G, we will
consider only finite two-generator groups, which can be expressed in the form (10). These
numbers m and n depend exclusively on the structure, namely on the group’s presentation
and the order of G.

Let G be such a group. To observe the behavior of the number of connected compo-
nents k(G) of a t-graph G determined by a group G, we make use of Theorem 1, with which
we were able to make the following tables:

Table 2. Number of connected components of the t-graphs on Zn ×Z2.

n\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 2 - - - - - - - - - - - - - - - - - -
3 1 2 4 - - - - - - - - - - - - - - - - -
4 1 2 2 6 - - - - - - - - - - - - - - - -
5 1 2 1 4 8 - - - - - - - - - - - - - - -
6 1 2 1 2 6 10 - - - - - - - - - - - - - -
7 1 2 1 2 4 8 12 - - - - - - - - - - - - -
8 1 2 1 2 2 6 10 14 - - - - - - - - - - - -
9 1 2 1 2 1 4 8 12 16 - - - - - - - - - - -

10 1 2 1 2 1 2 6 10 14 18 - - - - - - - - - -
11 1 2 1 2 1 2 4 8 12 16 20 - - - - - - - - -
12 1 2 1 2 1 2 2 6 10 14 18 22 - - - - - - - -
13 1 2 1 2 1 2 1 4 8 12 16 20 24 - - - - - - -
14 1 2 1 2 1 2 1 2 6 10 14 18 22 26 - - - - - -
15 1 2 1 2 1 2 1 2 4 8 12 16 20 24 28 - - - - -
16 1 2 1 2 1 2 1 2 2 6 10 14 18 22 26 30 - - - -
17 1 2 1 2 1 2 1 2 1 4 8 12 16 20 24 28 32 - - -
18 1 2 1 2 1 2 1 2 1 2 6 10 14 18 22 26 30 34 - -
19 1 2 1 2 1 2 1 2 1 2 4 8 12 16 20 24 28 32 36 -
20 1 2 1 2 1 2 1 2 1 2 2 6 10 14 18 22 26 30 34 38

Table 3. Number of connected components of the t-graphs on Zn ×Z3.

n\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 2 4 - - - - - - - - - - - - - - - - -
3 1 2 2 7 - - - - - - - - - - - - - - - -
4 1 2 1 4 10 - - - - - - - - - - - - - - -
5 1 2 1 3 7 13 - - - - - - - - - - - - - -
6 1 2 1 2 4 10 16 - - - - - - - - - - - - -
7 1 2 1 2 2 7 13 19 - - - - - - - - - - - -
8 1 2 1 2 1 4 10 16 22 - - - - - - - - - - -
9 1 2 1 2 1 3 7 13 19 25 - - - - - - - - - -

10 1 2 1 2 1 2 4 10 16 22 28 - - - - - - - - -
11 1 2 1 2 1 2 2 7 13 19 25 31 - - - - - - - -
12 1 2 1 2 1 2 1 4 10 16 22 28 34 - - - - - - -
13 1 2 1 2 1 2 1 3 7 13 19 25 31 37 - - - - - -
14 1 2 1 2 1 2 1 2 4 10 16 22 28 34 40 - - - - -
15 1 2 1 2 1 2 1 2 2 7 13 19 25 31 37 43 - - - -
16 1 2 1 2 1 2 1 2 1 4 10 16 22 28 34 40 46 - - -
17 1 2 1 2 1 2 1 2 1 3 7 13 19 25 31 37 43 49 - -
18 1 2 1 2 1 2 1 2 1 2 4 10 16 22 28 34 40 46 52 -
19 1 2 1 2 1 2 1 2 1 2 2 7 13 19 25 31 37 43 49 55
20 1 2 1 2 1 2 1 2 1 2 1 4 10 16 22 28 34 40 46 52
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Remark 2. Note in the previous tables that k(G) has the same value up to a certain value of t
where, if t is even, k(G) = 2, and, if t is odd, then k(G) = 1 and, when t >

⌈m+n−2
2

⌉
, then k(G)

has a value with the following possible pattern:

1. If m = 2 (for example by dihedral groups), then the number of connected components of the
t-graph increases by four. We conjecture that K(G) = 2(2t− n)− 2.

2. If m = 3, then the number of connected components starts with seven and so progresses from
six to six, if n is odd, and starts at four and progresses from six to six when n is even. We
conjecture that K(G) = 3(2t− n− 2)− 2.

This fact leads us to state the first theorem in the next section, which allows us
to characterize first the t-graphs associated with two-generator groups in the form (10),
concerning the number of connected components.

3. The t-Graph of Some Two-Generator Groups

This section considers the t-graph of a particular case of two-generator groups. Specif-
ically, we suppose that a is an involution and b has an order n. For example, the group G
can be the abelian group Z2 ×Zn or the dihedral group Dn of order n.

Lemma 3. Let G be a two-generator group in the form (10) with n, m ≥ 2, and G is the correspond-
ing t-graph of G. Then, G has no isolated points if and only if t ≤

⌈m+n−2
2

⌉
.

Proof. Let x = aibj, y = akbl ∈ G with

d1(x, y) = |i− k|+ |j− l| = t. (12)

Then, t ∈ {0, . . . , m + n− 2}, and suppose |i− k| = s ∈ {0, . . . , m− 1}. This implies
that |j − l| = t − s ∈ {0, . . . , n − 1}. Note that if t − s > n − 1, the equality (12) is not
verified. That is, there is no edge between x and y. Then, in order not to have isolated
points, it must be fulfilled that t− s ≤ n− 1 with s ∈ {0, . . . , m− 1}. Moreover, t ≤ n− 1.
Analogously, it follows that t ≤ m − 1. Consequently, 2t ≤ m + n − 2, and, therefore,
t ≤

⌈m+n−2
2

⌉
.

Theorem 2. Let G be a two-generator group in the form (10) with n, m ≥ 2, and G = (G, E) be
the corresponding t-graph with t ≤

⌈m+n−2
2

⌉
.

1. If t is an even number, then k(G) = 2.
2. If t is an odd number, then G is connected.

Proof. From the above lemma, we have that the condition t ≤
⌈m+n−2

2
⌉

implies that G has
no isolated points. We now differentiate two possible cases.

1. Let t be an even number. We define C1 = (V1, E1) and C2 = (V2, E2), the subgraph of
G, as follows:

V1 := {aibj | i + j ≡ 0 mod 2}, (13)

E1 := {{aibj, akbl} | i + j, k + l ≡ 0 mod 2∧ |i− k|+ |j− l| = t}, (14)

and

V2 := {aibj | i + j ≡ 1 mod 2}, (15)

E2 := {{aibj, akbl} | i + j, k + l ≡ 1 mod 2∧ |i− k|+ |j− l| = t}. (16)

It is clear that V1 ∪V2 = G, and then k(G) = 2.



Mathematics 2022, 10, 3030 7 of 12

2. Let t be an even number, and x = aibj ∈ G be arbitrary. If i + j ≡ 1 mod 2, then we
consider the sets

{akbl | i, k + l ≡ 0 mod 2, j ≡ 1 mod 2∧ |i− k|+ |j− l| = t} (17)

{akbl | j, k + l ≡ 0 mod 2, i ≡ 1 mod 2∧ |i− k|+ |j− l| = t}. (18)

Since G has no isolated points, at least one of these sets is non-empty, and then
{aibj, akbl} ∈ E.
If i + j ≡ 0 mod 2, then a similar analysis leads to the same conclusion. Then, we have
that G is a connected graph.

The next theorem shows that the 1-graph associated with a finite dihedral group Dn
has a simple structure. It corresponds to a square (n× 2)-grid, as shown in Figure 2 below.
Therefore, this graph is bichromatic or bipartite.

Theorem 3. The 1-graph of Dn is bipartite.

Proof. From (6), we have that

Dn = {1, b, · · · , bn−1} ∪ {ab, . . . , abn−1}. (19)

Note that
d1(bi, bi+1) = d1(abi, abi+1) = 1, (20)

then, the sets {1, b, · · · , bn−1} and {a, ab, · · · , abn−1} form a bipartition of the vertex set Dn.

bn−1 bn−2 · · · b2 b 1

aabab2· · ·abn−2abn−1

Figure 2. The 1-graph of Dn.

Theorem 2 leads to a complete characterization of the t-graphs associated with Dn.
However, before characterizing the t-graphs on dihedral groups, let us first look at some
useful lemmas.

Lemma 4. Let G = (Dn, E) be the t-graph of Dn. Then,

|E| =
{

4(n− t) + 2 If t > 1
3n− 2 If t = 1.

(21)

Proof. Let x = aibj, y = akbl ∈ Dn, then, 0 ≤ i, k ≤ 1 and 0 ≤ j, l ≤ n− 1. If d1(x, y) =
|i− k|+ |j− l| = t, then, for |i− k|, we have the following cases:

1. If i = k, then |j− l| = t. Note that there are n− t ways to choose j, l ∈ {0, . . . , n− 1}
such that the absolute value of their difference is t.

2. If i 6= k, then |j− l| = t− 1. In this case, there are n− t + 1 forms to choose j, l ∈
{0, . . . , n− 1} such that the absolute value of their difference is t− 1.

If t > 1, then there are 2(n− t) + 2(n− t + 1) ways of constructing an edge between
two elements of Dn. Therefore, we have that |E| = 4(n− t) + 2.

If t = 1 then we the same argument we have that |E| = 3n− 2.
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Lemma 5. Let f : Dn −→ Dn be defined as follows

f (aibj) =

{
bj If i = 1
abj If i = 0.

(22)

Then, f is an isometry under the Minkowski metric (2). Further, if we restrict f to U ⊂ Dn,
we have that U and f (U) are also isometric under the Minkowski metric.

Proof. It is immediate that f is an injective function and ( f ◦ f )(x) = x, for all x ∈ Dn.
That is, f is bijective. To prove that f is an isometry, let aibj, akbl ∈ Dn. Then,

1. If i, k = 1, then d1( f (aibj), f (akbl)) = d1(bj, bl) = d1(aibj, akbl).
2. If i, k = 0, then it is similar to the previous case.
3. If i = 0 and k = 1, then d1( f (aibj), f (akbl)) = d1(abj, bl) = d1(aibj, akbl).
4. If i = 1 and k = 0, then it is similar to the previous case.

Therefore, f is an isometry on Dn. The other statement is clear.

Theorem 4. (Characterization of t-graphs on Dn)
Let G = (Dn, E) the t-graph of Dn with n ≥ 2. We define r :=

⌈ n
2
⌉
.

1. If t ≤ r and t is an even number, then k(G) = 2, and these connected components are isomorphic.
2. If t ≤ r and t is an odd number, then G is an connected graph.
3. If t = r + s, with 1 ≤ s ≤ n− r, then the number K(G) of connected components of G is

given by

k(G) =
{

4(s− 1) + 2 If n is even
4s If n is odd,

(23)

where two of the connected components of G are an isomorphic path graph.

Proof.

1. It follows from Theorem 2 that k(G) = 2. The connected components of G are C1 =
(V1, E1) and C2 = (V2, E2), as in the proof of Theorem 2 (1). It is then sufficient to show
that C1

∼= C2. Using the function f defined in Lemma 5, we have for aibj, akbl ∈ V1 that

{aibj, akbl} ∈ E1 ⇐⇒ { f (aibj), f (akbl)} ∈ E2, (24)

which leads to C1
∼= C2.

2. This follows immediately from Theorem 2.
3. We differentiate two cases:

(a) Suppose t is an even number. The condition t > r implies that G has iso-
lated points, and then, using Theorem 2, we have that G has at least two
connected components. Let C1 = (V1, E1) and C2 = (V2, E2) for the connected
components constructed in the proof of Theorem 2 (1).
We prove first that |V1| = |V2|. In fact, we have that |j− l| = t or |j− l| = t− 1,
which implies that

j ∈ {t− 1, . . . , n− 1} ∪ {0, . . . , n− t} =: A, (25)

since l ∈ {0, . . . , n− 1}.
It is clear that {t− 1, . . . , n− 1} ∩ {0, . . . , n− t} = ∅, therefore

|A| = 2(n− t) + 2. (26)

On the other hand, it follows immediately that j ∈ A and i + j are even
numbers if and only if aibj ∈ V1, and then
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|V1| = |A| = 2(n− t) + 2. (27)

Analogously, |V2| = |A|, and we have |V1| = |V2|.
To demonstrate that C1

∼= C2, we consider again the function f defined in
Lemma 5. Note that f (V1) = V2, and, since f is an isometry, we have the
statement.
Finally, using Lemma 4, we have that |E| = 4(n− t) + 2, and the isomorphy
between C1 and C2 implies that |E1| = |E2|. Further, note that the minimum
value for |E1| and |E2| is 2(n − t) + 1. This proves that C1 and C2 are the
unique connected components of G, which are not isolated points, and these
are actually isomorphic path graphs.
The number of isolated points of G is |Dn| − |V1| − |V2| = 2n− 4(n− t)− 4 =
−2n + 4t− 4, and, consequently, k(G) = −2n + 4t− 2 = −2n + 4r + 4s− 2.
That is,

• If n is even, then k(G) = −2n + 4( n
2 ) + 4s− 2 = 4(s− 1) + 2.

• If n is odd, then k(G) = −2n + 4( n+1
2 ) + 4s− 2 = 4s.

(b) Suppose now that t is an odd number. Similar to before, the graph G has
isolated points, and the set

{{aibj, akbl} | i + j ≡ 0 mod 2, k + l ≡ 1 mod 2∧ |i− k|+ |j− l| = t}, (28)

is a subset of E. Let V′ be the set consisting of the non-isolated points of G.
Using the same argument as in (a), we obtain

|V′| = 2|A| = 4(n− t) + 4. (29)

By Lemma 4, we have that |E| = 4(n− t) + 2 , then, comparing |V′| and |E|
excluding the isolated points, it follows that G cannot be connected.
Let m be an even number such that{

0 ≤ m ≤ n− t− 1 if n− t− 1 is even, and
0 ≤ m ≤ n− t if n− t− 1 is odd,

(30)

and consider the subgraph C1 = (V1, E1) of G with the following edges:

{abt+m−1, bm}, {bm, bt+m}, {bt+m, abm+1}, {abm+1, abt+m+1}.

Then, C1 is a connected component of G, and, furthermore,

|V1| = 2(n− t) + 2 ∧ |E1| = 2(n− t) + 1, (31)

whence it is concluded that C1 is a path graph.
As before, using the function f from Lemma 5, we have that there exists another
connected component C2 = ( f (V1), E2), isomorphic to C1. Thus,

|E1|+ |E2| = |E| ∧ |V1|+ |V2| = |V′|. (32)

This means that C1 and C2 are the unique connected components of G, and,
analogously to the previous case, we have the same values for k(G).

The following corollary is a generalization of Theorem 3.

Corollary 1. Let G be a two-generator group in the form (10) with n, m ≥ 2, and t be an odd
number. Let further r be defined as in Theorem 2. If t ≤ r, then G = (G, E) is a bipartite graph.
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Proof. From Theorem 4, we have that G is connected. Now, we define the sets V1 and V2
as follows

V1 := {aibj | i + j ≡ 0 mod 2} (33)

V2 := {aibj | i + j ≡ 1 mod 2} (34)

It is immediate to verify that V1 and V2 form a bipartition of G, and G is a bipar-
tite graph.

An illustration of the previous Corollary is presented in Figure 3.

00 21 02 23

11

03220120

22 1013

Figure 3. The 3-graph of G = Z3 ×Z4.

Corollary 2. Let n be an odd number, n ≥ 5 and t = n+1
2 .

1. If t is odd, then G = (Dn, E) is a cycle of even length.
2. If t is even, then G = (Dn, E) is non-connected, and it has two isomorphic components, which

are two cycles. Furthermore, χ(G) = 3.

Proof. These statements follow directly from Theorem 4. Note that t = r.

1. From Lemma 4, it follows that

|E| = 4(n− ( n+1
2 )) + 2 = 2n = |Dn|, (35)

and then G is a cycle of even length.
2. G has two isomorphic connected components, say C1 = (V1, E1) and C2 = (V2, E2).

Lemma 4 implies that
|E| = 4(n− ( n+1

2 )) + 2 = 2n, (36)

and it follows that |E1| = |E2| = n, so G is constituted by two isomorphic cycles.
Finally, note that each component has an odd number of vertices. Then, χ(G) = 3.

Corollary 3. Let n be an even number, n ≥ 2 and t = n
2 + 1. Then, the t-graph of Dn consists of

two isomorphic paths graphs.

Proof. Using Theorem 4, and since n is an even number, we have that r = n
2 , and then

t = r + 1, and k(G) = 2. The rest is clear.

Corollary 4. Let n ≥ 2 and r be as in Theorem 4. Then, the t-graph of Dn is 2-chromatic if t ≤ r
and t is an odd number or t > r.

Proof. It follows immediately from Theorem 4 and Corollary 1.

Corollary 5. The n-graph of Dn has 2(n− 1) connected components, and two of these are path
graphs with two vertices.

Proof. Let G = (Dn, E) be the n-graph of Dn. From Lemma 4, it follows that |E| = 2.
Note that

{a, bn−1}, {abn−1, 1} ∈ E. (37)
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The other 2n− 4 elements of Dn are isolated points, and the proof is complete.

4. Some Questions and Conjectures

Some open questions and conjectures are presented below.

Question 1. Is it possible to characterize the t-graphs on two-generator groups, when t > r and r
is as in Theorem 2?

Question 2. Is it possible to generalize a version of Theorem 2 for an n-generator group for n, an
arbitrary natural number?

Question 3. It is possible to determine in a finite group the existence (or not) of a generating
system with the conditions stated for the definition of the t-graphs?

Conjecture 1. With respect to Theorem 2, if m is an even number and t ≤ r, it follows that the
two connected components of the t-graph G are isomorphic.

Conjecture 2. Let n ≥ 2 and r be as in Theorem 4. Then, the t-graph of Dn is 3-chromatic, if t ≤ r
and t is an even number.

Conjecture 3. If G = Zn ×Z2, then K(G) = 2(2t− n)− 2.

Conjecture 4. If G = Zn ×Z3, then K(G) = 3(2t− n− 2)− 2.

5. Discussion

In the present research, we introduce and investigate the t-graph on a finitely generated
group G. It leads to an interesting combinatorial problem. We establish conditions for t to
guarantee the existence of isolated points in the t-graph when G is a two-generator group.
We also propose an expression to determine the number of the connected components of the
t-graph. Other results have to do with the conditions that must be fulfilled for the t-graphs
of the dihedral groups to be a path graph or a cycle. Consequently, we can characterize the
chromatic number of the t-graph depending exclusively on the parity of t.
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