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Abstract: In this paper, a new deterministic method is proposed. This method depends on presenting
(suggesting) some modifications to existing parameters of some conjugate gradient methods. The
parameters of our suggested method contain a mix of deterministic and stochastic parameters. The
proposed method is added to a line search algorithm to make it a globally convergent method.
The convergence analysis of the method is established. The gradient vector is estimated by a finite
difference approximation approach, and a new step-size h of this approach is generated randomly.
In addition, a set of stochastic parameter formulas is constructed from which some solutions are
generated randomly for an unconstrained problem. This stochastic technique is hybridized with
the new deterministic method to obtain a new hybrid algorithm that finds an approximate solution
for the global minimization problem. The performance of the suggested hybrid algorithm is tested
in two sets of benchmark optimization test problems containing convex and non-convex functions.
Comprehensive comparisons versus four other hybrid algorithms are listed in this study. The perfor-
mance profiles are utilized to evaluate and compare the performance of the five hybrid algorithms.
The numerical results show that our proposed hybrid algorithm is promising and competitive for
finding the global optimum point. The comparison results between the performance of our suggested
hybrid algorithm and the other four hybrid algorithms indicate that the proposed algorithm is com-
petitive with, and in all cases superior to, the four algorithms in terms of the efficiency, reliability, and
effectiveness for finding the global minimizers of non-convex functions.

Keywords: global optimization; unconstrained minimization; derivative-free optimization; meta-
heuristics; stochastic methods; conjugate gradient methods; efficient algorithm; performance;
software and testing

MSC: 65D05

1. Introduction

The main aim of this paper is to discuss the global minimization problem, which can
be defined mathematically as follows.

Definition 1. Global minimum

The global minimum xgl ∈ S of objective function f ; f : S → R is an input element with
f (xgl ) ≤ f (x) ∀x ∈ S. If S ⊆ Rn, it can be written as follows:

min
x∈S

f (x) : S→ R. (1)
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In Problem (1), the S ⊆ Rn is the research domain of the function f (x), and the
following condition must be satisfied: ‖g(xgl )‖ ≤ ε for ε > 0 is small enough, where
‖g(xgl )‖ is the norm of the gradient vector at the point xgl .

We assume that f (x) ∈ C1 (continuously differentiable).
Global optimization (GO) seeks to find the global minimum or maximum of an

objective function of the optimization problem.
In the global optimization algorithms denoted by GOA, a problem is usually defined

such as Formula (1), and in a case in which we seek to find the maximization of the
real-valued function f (x), we use the same algorithm with set f (x) = − f (x).

Finding the global minimizer of Problem (1) can be difficult because our knowledge of
f is usually only local.

The deterministic optimization methods desire to find only a local solution, a point
at which the objective function is smaller than other feasible points in its neighborhood.
Therefore, these methods are the speediest optimization algorithms in finding a local
minimizer of a function.

Consequently, the GOA focuses on finding the minimum or maximum of the f over
the given set, while the task of the local optimization algorithms, LOAs, seeks to find local
minima or maxima. Hence, the task of the GOA is very difficult when the f is non-convex
because the function f contains several local optimum points with one global optimal point.

Therefore, finding an arbitrary local minimum of the function f is relatively simple
by using the LOA. On the other hand, finding the global minimizer of the function f
is far more difficult, and the use of numerical solution algorithms often leads to a very
difficult challenge.

Recently, (GOA) algorithms have been proposed that are designed to deal with the
global minimization problem.

The ideas of these proposed GOAs depend on the principle of stochastic parameters.
On the contrary, in the deterministic (classical) methods, no probabilistic information is
used. Therefore, for finding the global minimizer of Problem (1) by using classical methods,
it needs an exhaustive search over S.

Finding the global minimum for the unconstrained problems by using stochastic
methods, the asymptotic convergence in probability can be proved, i.e., these methods are
asymptotically successful with probability 1 [1–3].

The conjugate gradient method is one of the popular deterministic methods [4], which
are widely used for finding a local unconstrained optimization problem [5]. The search
direction of the conjugate gradient method is computed by

dk+1 = −gk+1 + βk dk , d0 = −g0 , (2)

where gk+1 = g(xk+1) is the gradient vector, and the parameter βk is the core difference
between the different versions of the conjugate gradient methods which have been proposed
to solve an unconstrained optimization problem (see, for example, [4,6,7]) or nonlinear
equations (see, for example, [6,8–12]).

The history of the conjugate gradient method has been surveyed by many authors,
and it began early on. See, for example, [13,14].

In the 1950s, the conjugate gradient methods were used to solve linear systems of
equations and eigenproblems (nonlinear eigenvalue problem).

Since that date, the conjugate gradient method has attracted the attention of authors to
propose many versions of conjugate gradient methods. Those proposed methods contain
either one term, which represents the fundamentals of the conjugate gradient method, or
two or three terms. For example, the conjugate gradient methods that have one term are

βHS
k

=
yT

k
gk+1

dT
k

yk

. (3)
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where yk = gk+1 − gk . Formula (3) was suggested by Hestenes and Stiefel [15]

βFR
k

=
||gk+1||2
||gk ||2

. (4)

Formula (4) was proposed by [16].

βPRP
k

=
yT

k
gk+1

||gk ||2
. (5)

Formula (5) was presented by [17,18].

βLS
k

=
FT

k+1yk

−dT
k

gk

. (6)

Formula (6) was suggested by Liu and Storey [19].

βDY
k

=
‖gk+1||2

yT
k

dk

. (7)

Formula (7) was suggested by Dai and Yuan [20].

Other formula versions of the parameter βk in two and three terms can be found
in [9,10,14,21–27].

The conjugate gradient methods have a numerical drawback: their sub-successive
steps may be short if a small step is generated away from the optimal solution [26].

Therefore, to overcome this drawback, the line-search method is added to the CG
method to make it a globally convergent method [28,29].

In previous studies, several conjugate gradient methods with the global convergence
analysis of these methods are proposed (see, for example, [30–32]).

In practice, the CG method with a line-search method demonstrated superiority in
obtaining the local minimizer of an unconstrained optimization problem.

A pure conjugate gradient line-search method is not capable of finding the global
minimizer of the objective function of Problem (1) at each run, due to the fact that its
stopping criterion guides it to a near local point of the previous point and other reasons
that have been mentioned.

Hence the stochastic methods (random parameters) are used to guide the search
process [33].

In practice, the numerical results showed that the hybridizing between deterministic
algorithms and random algorithms is very successful. See, for example, [34–38].

The main contributions of this paper are presented in the following points.

• Some modifications and improvements to some previous conjugate gradient meth-
ods are proposed. The result is a new local optimization algorithm, the suggested
algorithm contains a mix of deterministic parameters and random parameters.

• The proposed conjugate gradient method is combined with a line-search algorithm to
obtain a globally convergent method.

• The convergence analysis of the suggested algorithm is established.
• The approximate gradient vector is computed by using a numerical approximation

method, and it is provided with a new approach for estimating an appropriate step-
size h randomly.

• Three stochastic parameter formulas are constructed, from which some solutions are
generated randomly for an unconstrained optimization problem.

• The proposed conjugate gradient algorithm is hybridized with the stochastic technique;
the result is a hybrid algorithm that solves Problem (1).
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• Numerical experiments are presented by solving a set of test problems containing
convex and non-convex functions.

The rest of paper is organized as follows. Section 2 briefly discusses finding a local
minimizer by conjugate gradient methods. Section 3 presents a new modified conjugate
gradient method and the convergence analysis of the proposed method. Section 4 presents
a numerical approximation method for estimating the gradient vector. Section 5 briefly
discusses the global minimization problem. Section 6 gives the numerical experiments of
the global minimization problem. Section 7 contains some concluding remarks.

2. Finding a Local Minimizer

A high number of previous studies have been presented for finding a local minimizer
x∗ of the function f (x). See, for example, [39–45]. One of the efficient and inexpensive
methods is the conjugate gradient method (CG). In the following subsection, the conjugate
gradient method (CG) is briefly discussed.

Conjugate Gradient Methods (CG)

The conjugate gradient method (CG) is a popular deterministic method that con-
cerns finding a local minimizer of an objective function for an unconstrained optimiza-
tion problem.

A point x∗ is a local minimizer if there is a neighborhood N of x∗, such that f (x∗) ≤
f (x) for x ∈ N and ‖g(x∗)‖ < ε.

The conjugate gradient method (CG) is iterative. At each iteration, a step in the
direction dk with a step-size αk is computed and added to the current point as follows:

xk+1 = xk + αk dk , (8)

where the step-size αk is positive, and the dk is a research direction that defined by (2).
Conjugate gradient (CG) methods contain a group of optimization algorithms that solve
optimization problems; additionally, conjugate gradient (CG) methods have some features,
such as low memory requirements and strong local and global convergence properties [46].

If αk is obtained by an exact line search, then by (2) and the orthogonality condition
gT

k+1yk = 0, we have yT
k dk = (gk+1 − gk )

Tdk = −gT
k

dk = ||gk ||2.
Hence, βHS

k
= βPRP

k
when αk is computed by an exact line search.

Therefore, if the objective function f is quadratic and αk is picked to minimize the
objective function in the search direction dk , the above (3)–(7) choices of the parameter βk

are equivalent, but for a general nonlinear function, different choices have quite different
convergence properties [4].

For non-quadratic cost functions, each choice for the update parameter leads to differ-
ent performance [14].

Under the various line search strategies, the CG methods satisfy the following suffi-
cient descent condition:

gT
k

dk ≤ −C||gk ||
2, (9)

where C > 0 is a constant. Furthermore, the sufficient descent condition plays a crucial role in
the global convergence analysis of the CG methods. See, for example, [13,14,20,26,42,46–49].

Recently, Yuan and Zhang [25] and Yuan et al. [26] showed that the CG method has
strong convergence advantages if it satisfies the trust-region merit, which is defined by

||dk || < Cv ||gk ||, (10)

where Cv > 0 is a constant. It is shown, therefore, that the trust-region feature can
enable the search direction dk being limited in trust radius [26]. Moreover, many authors
have suggested that other CG methods have good numerical performance and strong
convergence features. See, for example, [25,26,46,48].
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The choice of a suitable step-size αk can enable these methods to succeed in global
convergence. The exact line search is defined by

f (xk + αk dk ) = min
α≥0

θ(α) = f (xk + αdk ). (11)

However, the exact line search is very impossible in large-scale problems. Hence,
there are many inexact line-search methods to achieve this purpose. Therefore, the weak
Wolfe–Powell method (WWP) is a popular method, and it is widely used as an inexact
line-search technique. The WWP method is designed to find the step-size αk satisfying the
following conditions:

f (xk + αk dk ) ≤ f (xk ) + δαk gT
k

dk , (12)

and
g(xk + αk dk )

Tdk ≥ σgT
k

dk , (13)

where δ ∈ (0, 0.5) and σ ∈ (δ, 1) are constants.
The first condition is called the Armijo condition, and the WWP line search reduces

to the strong Wolfe–Powell (SWP) by substituting the second condition with the follow-
ing inequality:

|g(xk + αk dk )
Tdk | ≤ −σgT

k
dk , (14)

Under the WWP line search, we usually assume that the gradient g(x) of the function
f (x) is Lipschitz continuous in the convergence analysis. This means that the following
is met:

||g(x)− g(y)|| ≤ L||x− y||, (15)

where L is a constant for x, y ∈ Rn.
Recently, Yuan et al. [26] proposed a new CG method based on the work presented by

Hager and Zhang [46]. The proposed method that was suggested (MHZ) by Yuan et al. [26]
has the sufficient descent property and the trust region feature independent of line-
search technique.

3. Suggested CG Method

The idea of this paper begins with the idea which is presented by Hager and Zhang [46].
They suggested a new CG method, and its parameter βHZ

k
is defined by

βHZ
k

=
(yT

k
gk)(dT

k−1yk )− 2||yk ||2(dT
k−1gk )

(dT
k−1yk )

2
. (16)

The parameter βHZ
k

can ensure that dk satisfies dT
k

gk ≤ −
7
8 ||gk||2 [46]. If the step-size

αk is computed by the exact line search, then βHZ
k

reduces to βHS
k

, due to dT
k

gk = 0 being
true [26].

Hence, for obtaining the global convergence for a general function, the authors of [46]
dynamically adjust the lower bound of βHZ

k
by the following formula:

dk = −gk + βHZ+

k
dk−1 , d0 = −g0 , (17)

where βHZ+

k
= max{βHZ, rk}, rk =

−1
||dk−1 ||min{r, ||gk−1 ||}

, r > 0 is a constant. In the numeri-

cal experiments, they set r = 0.01.
Several authors have proposed some modifications and improvements to the HZ-CG

method to obtain modified and improved algorithms which solve large unconstrained
optimization problems. The modern version of these HZ-CG methods is presented by
Yuan et al. [26]. They have extended and modified the CG-HZ method to the CG-MHZ
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method. The CG-MHZ method has a sufficient condition and the trust region merit. The
parameters of the CG-MHZ method are defined as follows:

dk = −gk + βMHZ
k

dk−1 , d0 = −g0 , (18)

where

βMHZ
k

=
(yT

k
gk)(dT

k−1yk )− 2||yk ||2(dT
k−1gk )

max{η||yk ||2||dk−1||2, (dT
k−1yk )

2}
, (19)

where η > 0.5 is a constant [26].
The denominator (dT

k−1yk )
2 in βHZ

k
has been modified to max{r‖yk‖2‖dk‖2, (dT

k−1yk )
2}

in βMHZ
k

. This action can make the search direction dk stay in a trust region automatically
below every iteration [26]. In addition, in the case of r||yk ||2||dk−1||2 < (dT

k−1yk )
2, βMHZ

k

reduces to βHZ
k

with αk being computed to satisfy the inexact line search. Moreover, βHZ
k

reduces to βHS
k

under the exact line search.
Therefore, we extend and modify the MHZ method to obtain a new CG method that

has a sufficient condition and the trust region feature.
The proposed method is abbreviated by MXHZ to indicate to a mix of parameters

(deterministic and random). It is defined as follows:

dk = −gk + βMXHZ
k

dk−1 , d0 = −g0 , (20)

βMXHZ
k

=
(yT

k
gk)(dT

k−1yk )− 2‖yk‖2(dT
k−1gk )

max{mixk ||yk ||2||dk−1 ||2, (dT
k−1yk )

2}
, (21)

where mixk is a mixed parameter: it is defined as either a deterministic or random parameter.

mixk =

{
4 f4x if 4 f4x ≥ 9

10 , (22)

Rp otherwise. (23)

4 f and4 f x are defined as follows:

4 f = | f0 − fM |, (24)

where M is the inner loop maximum number of iterations, and after an M inner loop of
iterations, fM and 4 f are computed, and then we update f0 = fM , while 4x is defined
as follows:

4x = ‖xk+1 − xk‖, for k = 0, 1, . . . , M. (25)

The parameter Rp is generated randomly from [ 9
10 , ∞); in this case, the search direction

dk stays in this method longer, and then the MXHZ method can reduce to the HZ method
if mixk‖dk+1‖2‖yk‖2 < (dT

k−1yk )
2, and if mixk = η, then the MXHZ method can reduce to

the MHZ method. Therefore, the MXHZ method inherits the features of the MHZ and
HZ methods.

Note: The mixed parameters are working in a dynamic way; in other words, they take
turns working in a dynamic way, i.e., if the deterministic parameter vanishes, the stochastic
parameter will run.

This procedure with the proposed stochastic technique makes the hybrid proposed
algorithm escape from the local points while researching the global minimizer of the non-
convex function, where the hybrid proposed algorithm is a combination of two techniques,
the first one being the new CG approach and the second one being a proposed stochastic
technique. Further description of both algorithms can be found in the next sections.

According to the above discussions, Algorithm 1 is designed as follows:
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Algorithm 1 A new modified CG method

Input: f : Rn → R, f ∈ C1, γ ∈ (0, 1), k = 0, a starting point xk ∈ Rn and ε > 0.
Output: x∗ = xloc the local minimizer of f , f (x∗), the value of f at x∗

1: Set d0 = −g0 and k := 0.
2: while ‖gk‖ > ε do . gac is the value of the gradient vector at the accepted point xac.
3: pick αk satisfying the (WWP) line search conditions (12) and (13).
4: Generate a new point xk+1 = xk + αk dk . . the step-size αk is computed by (47).
5: compute fk = f (xk+1), gk = g(xk+1).
6: Set k = k + 1.
7: calculate the search direction dk by (20).
8: end while
9: return xac the local minimizer and its function value fac

3.1. Convergence Analysis of Algorithm 1

This section gives some properties and convergence analysis of Algorithm 1. In the
following, we show that the search direction dk , which is generated by (20), satisfies the
sufficient descent condition (9) and the trust region feature (10).

Two reasonable assumptions are considered as follows.

Assumption 1. Assume that the objective function f (x) is continuously differentiable.

Assumption 2. In some neighborhood N of the level set

` = {x ∈ <n : f (x) ≤ f (x0)},

the gradient vector g(x) is Lipschitz continuous. That is, there exists a constant L < ∞, such that

‖g(x)− g(y)‖ ≤ L‖x− y‖,

for all x, y ∈ N.

Lemma 1. Assume that the sequence {xk} is generated by Algorithm 1. If dT
k

yk 6= 0, we have

gT
k

dk ≤ −c‖gk‖
2, (26)

and
||dk || ≤ rv‖gk‖, (27)

where c = 1− 7
8mixk

> 0, mixk ≥
9

10 , and rv = (1 + 6
mixk

) is the trust-region radius.

Proof. If k = 0, d0 = −g0 , then gT
0

d0 = −||g0 ||2 and ||d0 || = ‖g0‖, which implies that (26)
and (27) by picking c ∈ (0, 1] and rv ∈ [1, ∞).

Combining the (20) with (21), we obtain

gT
k

dk =
(yT

k
gk)(dT

k−1yk )(gT
k

dk−1)− 2||yk ||2(gT
k

dk−1)
2

max{mixk‖yk‖2‖dk−1‖2, (dT
k−1yk )

2}
− ‖gk‖

2. (28)

We apply the inequality uTv ≤ 1
2 (||u||2 + ‖v‖2) to the first term of the numerator

of (28) with u = dk−1gT
k yk , v = yk gT

k
dk−1; it is clear that uTv ≤ 7

8 (||u||2 + ‖v‖2) is true.
Hence, we have

gT
k

dk =
(yT

k
gk)(dT

k−1yk )(gT
k

dk−1)− 2||yk ||2(gT
k

dk−1)
2

max{mixk‖yk‖2‖dk−1‖2, (dT
k−1yk )

2}
− ‖gk‖

2 ≤
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−‖gk‖
2 +

7
8 ||yk ||2‖gk‖2||dk−1||2 + 7

8 ||yk ||2(gT
k

dk−1)
2 − 2||yk ||2(gT

k
dk−1)

2

max{mixk‖yk‖2‖dk−1‖2, (dT
k−1yk )

2}
=

−‖gk‖
2 +

7
8 ||yk ||2‖gk‖2||dk−1||2 − 9

8 ||yk ||2(gT
k

dk−1)
2

max{mixk‖yk‖2‖dk−1‖2, (dT
k−1yk )

2}
≤

−‖gk‖
2 +

7
8 ||yk ||2‖gk‖2||dk−1||2

max{mixk‖yk‖2‖dk−1‖2, (dT
k−1yk )

2}
≤ (

7
8mixk

− 1)‖gk‖
2,

such that
max

{
mixk‖yk‖

2‖dk−1‖
2, (dT

k−1yk )
2} ≥ mixk‖yk‖

2‖dk−1‖
2. (29)

Since, mixk ≥
9
10 and c = 1− 7

8mixk
> 0, (26) is true.

By using (29), it is clear that

‖dk‖ =
∥∥∥∥− gk +

(yT
k

gk)(dT
k−1yk )− 2||yk ||2(dT

k−1gk )

max{mixk‖yk‖2‖dk‖2, (dT
k−1yk )

2}
dk−1

∥∥∥∥ ≤
‖− gk‖+

4||yk ||2‖gk‖‖dk−1‖2 + 2‖yk‖2‖gk‖‖dk−1‖2

mixk‖yk‖2‖dk−1‖2 =
(
1 +

6
mixk

)
‖gk‖

Thus, (27) is true with rv ∈ [1 + 6
mixk

, ∞). The proof is complete.

Corollary 1. Following on from Inequality (27) Lemma 1, the following inequality is true.

∞

∑
k=0

‖gk‖4

‖dk‖2 = ∞. (30)

Proof. Since ‖dk‖ ≤ rv‖gk‖2, where 1 < rv < ∞, then ‖dk‖2 ≤ r2
v‖gk‖4, therefore,

‖dk ‖
2

‖gk ‖
4 ≤

r2
v , hence

‖gk ‖
4

‖dk ‖
2 ≥ 1

r2
v

, by using summing on the final expression as k → ∞, we obtain
∞

∑
k=0

‖gk‖4

‖dk‖2 ≥
∞

∑
k=0

1
r2

v

=
1
r2

v

∞

∑
k=0

1 = ∞, then (30) is true.

Under the assumptions, we give a useful lemma, which was essentially proved by
Zoutendijk [50] and Wolfe [51,52].

Lemma 2. Suppose that x0 is a starting point for which Assumption 1 is met. Consider any method
of the form (20), where dk is a descent direction and αk satisfies the standard Wolfe conditions (12)
and (13). Then, we have that

∞

∑
k=0

(gT
k

dk )
2

‖dk‖2 < ∞ (31)

Proof. It follows from (13) that

dT
k

yk = dT
k
(gk+1 − gk ) ≥ (σ− 1)gT

k
dk . (32)

On the other hand, the Lipschitz condition (15) implies

(gk+1 − gk )
Tdk ≤ αk L‖dk‖

2. (33)

The above two inequalities give

αk ≥
σ− 1

L
.

gT
k

dk

‖dk‖2 , (34)
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which with (12) implies that

fk − fk+1 ≥ c
(gT

k
dk )

2

‖dk‖2 , (35)

where c = δ(1−σ)
L . By summing (35) and noting that f is bounded below, we see that (31)

holds, which concludes the proof.

Theorem 1. Assume Assumptions 1 and 2 hold, and by using the result of Corollary 1, then the
sequence {gk} that is generated by Algorithm 1 satisfies the following.

lim
k→∞

inf ‖gk‖ = 0, (36)

Proof. By contradiction, suppose that (36) is not true; then, for some ε > 0, the following
inequality is true:

‖gk‖ ≥ ε. (37)

Hence, considering inequality (37) with (26), we have

gT
k

dk ≤ −c‖gk‖
2 ≤ −ε2. (38)

Then, we have
gT

k
dk

‖dk‖
≤ −ε2

‖dk‖
;

gT
k

dk

‖dk‖
≥ ε4

‖dk‖2 ,

and by summing the final expression, we obtain

∞

∑
k=0

(gT
k

dk )
2

‖dk‖2 ≥
∞

∑
k=0

ε4

‖dk‖2 = ∞. (39)

The above leads to a contradiction with (31). Thus, (36) holds.

Remark 1. The search direction (20) satisfies the sufficient descent condition (9).

Remark 2. Lemma 1 insures that Algorithm 1 possesses the sufficient descent property and the
trust region feature automatically.

Remark 3. Theorem 1 proves that the sequence {gk}, which is generated by Algorithm 1, seeks to
zero as long as k→ ∞.

In the following section, we use numerical differentiation to compute the approximate
values of the step-size αk and gradient vector gk .

4. Numerical Approximation of the Gradient

In this paper, we only need to estimate the values of αk and gk , which is used to
compute the search direction dk that is defined by (20). Hence, the exact derivative is not
considered in this paper.

A finite difference approximation to the gradient is a common approach that is used
for minimizing a continuous differentiable nonlinear function. A powerful approach for
derivative-free optimization is to use finite differences. Therefore, many authors have
proposed several methods for the numerical approximation of the gradient, and they
presented good results for estimating the gradient vector (see, for example, [53–56]). The
finite difference approximations of the first derivative values of the function at different
points in the neighborhood of the point x = xi are used for estimating the slope [57].
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Therefore, the exact first derivative can be replaced by the following formula to obtain
an approximation to the gradient vector.

D f f (xi ) =
f (xi+1)− f (xi )

xi+1 − xi

=
f (xi + h)− f (xi )

h
, (40)

where h is finite and small but not necessarily infinitesimally small.
Rationally, the approximation will improve if h is made smaller, i.e., the error will be

smaller as long as the value of h is made smaller.
There are many formulas used to approximate the first derivative (gradient) at the

point x = xi .
The common approaches are the forward difference and the central difference [58–62].

These formulas can be derived from the Taylor series. Finding the approximate of the first
derivative at the point xi means that the derivative is estimated as the value of the slope of
the line that connects the two, three, four, or five points.

For improving the difference approximation of the derivatives, the three, four, and
five points can be used to derive these approaches, but they will be more expensive than
using two points, so in this paper, we use two points to estimate the gradient vector.

The numerical computation of the first derivative f
′
(x) of a given function f (x) by the

central difference approach is known to involve aspects of both accuracy and precision [63],
but it needs 2n function emulations at each iteration against n function emulations at each
iteration for the forward-difference approximation approach.

Thus, in this paper we use the forward-difference approximation approach that was
defined by (40), because it is an inexpensive approach and it has reasonable accuracy [55,58].

The success of all finite difference approximation methods depends on selecting the fit
step-size h (interval).

In the following section, we discuss the error approximation of the first derivative,
which guides us to present a finite-difference interval for the forward-difference approxi-
mation scheme that balances the truncation error, which arises from the error in the Taylor
series approximation, and the measurement error, which results from noise in the function
evaluation [55].

4.1. Error Analysis of Finite-Difference Approximation Vector

In the above section, the forward-difference approximation formula for the first deriva-
tive is defined. Due to its errors being proportional to some power of the step-size h, it
seems that the errors continue to decrease if h is minimized. However, this is only a part
of the problem since it be considered only the truncation error caused by truncating the
high-order terms in the Taylor series expansion and does not take into account the round-off
error caused by quantization. Therefore, this section discusses the round-off error alongside
the truncation error. For this purpose, assume that the function values f (x), f (x + h), are
quantized (rounded-off) to θ1 = f (x + h) + ε1 , θ0 = f (x) + ε0 , where the magnitudes of
the round-off errors ε1 and ε0 are all smaller than some positive number ε, that is, |ει | ≤ ε,
with ι = 0, 1.

Therefore, the total error of the forward difference approximation defined by (40) is
derived by

D f f (x) =
θ1 − θ0

h
=

f (x + h) + ε1 − f (x)− ε0

h
= f ′(x) +

ε1 − ε0

h
+

ψ

2
h. (41)

Then, ∣∣D f f (x)− f ′(x)
∣∣ ≤ ∣∣∣ ε1 − ε0

h

∣∣∣+ ∣∣∣ψ
2

∣∣∣h ≤ 2ε

h
+
|ψ|
2

h, (42)

where ψ = f
′′
(x). Therefore, the upper bound of error is represented by the right-hand

side of Inequality (42). The upper bound of error contains two terms; the first one is due
to the round-off error and is in inverse proportion to the step-size h, while the second
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one is due to the truncation error and is in direct proportion to h. These two parts can be
formulated as a function φ(h) with respect to h as follows: φ(h) = 2ε

h + |ψ|
2 h. Now, if we

find the minimizer h∗ of the function φ(h), then the value φ(h∗) is the upper bound of the
total error. Hence, dφ(h)

dh = −2ε
h2 + |ψ|

2 = 0. Then,

h∗ = 2
√

ε

|ψ| = 2
√

ε

| f ′′(x)|
. (43)

Hence, it can be deduced that as we make the step-size h smaller, the round-off error
may increase, while the truncation error decreases. This is named the “step-size dilemma”.

Therefore, there must be some optimal step-size h∗ for the forward difference ap-
proximation formula, as derived analytically in (43). However, Formula (43) is only of
theoretical value and cannot be used practically to determine h∗ because we do not have
any information about the second derivative, and therefore, we cannot estimate the values
of ψ. Moreover, that the step-size h∗ minimizes not the real error but its upper bound, we
can never expect the true optimal step-size h∗ to be uniform for all x with Formula (40).

Therefore, there are many approaches which have been presented to deal with the
step-size dilemma.

Recently, Shi et al. [55] proposed a bisection search for finding a finite-difference
interval for a finite-difference method. Their approach is presented to balance the trun-
cation error, which arises from the error in the Taylor series approximation, and the mea-
surement error, which results from noise in the function evaluation. According to their
numerical experience, the finite-difference interval h∗ is bounded between the ranges
[2.00× 10−4, 6.32× 10−1], [2.72× 10−4, 8.26× 100] and [3.94× 100, 8.44× 10−3] by using
the forward and central differences to estimate the values of the first derivative of the
function f (x).

Additionally, Berahas et al. [58] presented a theoretical and experimental comparison
of gradient approximations in derivative-free optimization. They analyzed several methods
for approximating gradients of noisy functions using only function values. Those methods
contain finite differences with other methods. The values of the finite difference interval is
as follows: 10−8 ≤ h∗ ≤ 1.

According to the previous studies, the essence of the difference between all proposed
approaches is to define the step-size of h; therefore, the value of the step-size is ranging
between this range: h∗ ∈ [1, 12× 10−10].

Therefore, the step-size in this paper is generated in a random way. Furthermore,
the values of h are related to the value of f to cover this range, but the advantage here is
that the value of h is changed at each iteration randomly.

The following section discusses a new approach to define the step-size h∗.

4.2. Selecting a Step-Size for a Forward Difference Method

The forward difference method is an inexpensive method versus the other differ-
ent methods. Furthermore, it has shown good results for minimizing noisy black-box
functions [55].

Therefore, the forward difference method defined by (40) is used to estimate the
gradient value.

According to the assumptions which are mentioned in Section 3.1, for any starting
point x0 , the objective function f satisfies the following: f0 ≥ f1 ≥ . . . ≥ fk , for k = 0, 1, 2, . . ..
Moreover, the numerical results which were presented in the previous studies denote that
the values of the finite difference interval are 10−10 ≤ h∗ ≤ 1.

Consequently, in this section, we design an approach that guarantees that the values
of the step-size h∗ are inside the interval [0.1, 10−8]. This approach is described in the
following algorithm.

Algorithm for selecting the fit values of the step-size h∗h∗h∗
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Step 1: Generated a set random values between 10−2 and 10−7 at each iteration k,
the set values are Lε = {lε1

, lε2
, . . . , lε10

}.
Step 2: Extract the minimum and maximum values in the set Lε ; Mε = min{l

εi :i=1,2,...,10},
Nε = max{l

εi :i=1,2,...,10} and set M f = M−1
ε

.
Step 3: The values of the function f are computed at every iteration k; fk = f (xk ),

and then we distinguish two cases of the values of | fk | as follows.
Case 1: If | fk | ∈ [10−2, ∞), then step-size h is computed by

hk =

 Nε ·Mε if | fk | > M f ,

Mε · 1
| fk |

otherwise.
(44)

Case 2: If | fk | ∈ [0, 10−2), then step-size hk is computed by generated a random
number form [10−4, 10−7].

4.3. Gradient Approximation by Forward Differences

The forward finite difference (DFF) used to estimate the value of the gradient vector
of f at x ∈ Rn is computed using the sample set X = {x + hei}n

i=1 ∪ {x}, where h > 0 is
the finite difference interval defined by Algorithm 2, and ei ∈ Rn is the ith column of the
identity matrix, as follows:

[DFF]i =
f (x + hei )− f (x)

h
, for i = 1, 2, . . . , n. (45)

Now, we have g(x) ≈ DFF(x) as an approximation to the gradient of f at x; thus, the
step-size αk is computed as follows.

At each iteration k, the function f (x) is approximated by using Taylor’s expansion up
to the linear term around the point xk to obtain

f (xk + p) ≈ f (xk) + g(xk)
T p.

The existence of the second derivative of f (x) is not necessary in our case. We define
the quadratic model of f (x) at xk as

mk(p) =
1
2

(
f (xk) + g(xk)

T p
)2

=
1
2

f (xk)
2 + f (xk)g(xk)

T p +
1
2

pT g(xk)g(xk)
T p.

Now, we set p = −αg(xk), where α is a step length along the negative gradient
direction. We find the value of α by solving the following subproblem:

min
α∈<

mk(α) =
1
2

f (xk)
2 − α f (xk)g(xi)

T g(xk) +
1
2

α2(g(xk)
T g(xk))

2.

This gives

αk =
f (xk)

‖g(xk)‖2 . (46)

We set g(xk) ≈ DFF(xk )

αk =
f (xk)

‖DFF(xk‖2 . (47)

The issue of finding a local minimizer of an objective function, an optimization prob-
lem, and the convergence analysis of the method MXHZ are discussed by the above sections.
Consequently, Algorithm 1 is capable of finding the local minimizer of convex or non-
convex functions. Therefore, in the following section, the global minimization problem is
discussed and stochastic technique is presented.
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Algorithm 2 Hybrid Stochastic Parameters Conjugate Gradient Algorithm

Input: f : Rn → R, f ∈ C1, fcg obtained by Algorithm 1 and ε > 0.
Output: xgl = xac the global minimizer of f , f (xgl ), the value of f at xgl .

1: while | fac − f ∗| > ε or FEs< n104 do
2: fcg is a new value of function f generated by Algorithm 1.
3: fac = min{ fcg, f1 , f2} and xac the point that gives the fac.
4: if | fac − f ∗| ≤ ε then
5: Stop.
6: end if
7: if4 f == 0 then
8: compute the point x3 and the function value f3 = f (x3) by (51).
9: if f3 < fac then

10: accept the point x3 as the best point and set xac → x3 and fac → f3 , and go to
Line 1.

11: else
12: generate another point x3 by (51).
13: end if
14: otherwise go to Line 1.
15: end if
16: end while
17: return xac the best point and its function value fac

5. Global Minimization Problem

The theoretical results of Section 3 indicate that Algorithm 1 stops when ‖g(xk )‖ ≤ ε
is met.

This means that a pure conjugate gradient method is not capable of finding the global
minimizer of a non-convex function at each run due to it having many local points.

Therefore, to make the CG method able to find the global minimizer of a non-convex
function at each run, some stochastic parameters are presented, and they are hybridized
with a conjugate gradient method to obtain a new hybrid algorithm that is capable of
escaping from a local point. In the previous literature, the numerical results demonstrated
that the hybridizing between deterministic algorithms and stochastic algorithms is very
successful for overcoming the drawback of the deterministic methods in falling and sticking
into a local point. See, for example, [34–38].

Consequently, in the following subsection, three of the stochastic parameter formulas
are constructed and hybridized with each CG method of the set—CG methods MXHZ, MHZ,
HZ, HS, and FR—to obtain five algorithms which try to solve Problem (1). These algorithms
are abbreviated by HSTMXHZ, HSTMHZ, HSTHZ, HSTHS, and HSTFR, respectively.

5.1. Stochastic Technique for Unconstrained Global Optimization

A new stochastic technique (parameters) is used to make the CG method find the
global optimal solution for a test problem which contains a non-convex function by help-
ing it to escape from the local points. These stochastic parameters are described by the
following algorithm.

Three different points are randomly generated by the following steps (Algorithm ST).
Stochastic Parameters Algorithm (ST)
Step 1: The first point is defined by the following. This point is a mixed point

(deterministic and stochastic).
x1 = xac + ηk Ψk , (48)

where Ψk = αk dk ; αk is the approximate value of the step-size along the direction dk , and
it is computed by (47); ηk ∈ (0, 2) is a random number; and dk is a direction search and
defined by (20). The value of the function is computed at the point x1 ; f1 = f (x1).



Mathematics 2022, 10, 3032 14 of 26

Step 2: The second point is computed by the following. Generate χk ∼ [−0.95, 1]n as a

random vector, set γk = 10ψk , ψk ∈ [0.01, 1], and compute σk =
(1+γk )

|χi |−0.5
γk

Sχi , where the

value of ψk is selected randomly form the interval [0.01, 1] at each iteration k, i = 1, 2, . . . , n,
n is a number of variables, and Sχi represents the signs of the vector χi defined by

Sχi =

{
1 if χi > 0,
−1 otherwise.

(49)

Therefore, the new point is computed by

x2 = xac + σk , (50)

where xac is the best point accepted so far, and then the value of the function f is calculated
at the point x2 ; f2 = f (x2).

Step 3: The third point is computed randomly as follows:

x3 = Xr +
1
2

DR, (51)

where DR =
(1+µk )

|χi |−ω

(µk+0.1) Sχi ; µk = ‖xac‖2; xac is the best point that has been accepted so far;

ω ∈ (0, 1) is taken randomly; Xr is a random variable generated from a research domain
of the test problem; Xr ∼ [a, b]n, a, and b are the lower and upper bounds of the research
domain, respectively; and the random vector χi with its signs Sχi are defined by Step 2.
Then, the value of function f is computed at the point x3 ; f3 = f (x3).

It is worth noticing that the ST technique allows for doing a comprehensive scanning
of the search domain to ensure that the condition of finding the global point is satisfied at
least once.

Therefore, the ST technique is hybridized with each CG method of a set methods
MXHZ, MHZ, HZ, HS, and FR. The result is five global optimization algorithms which try
to solve Problem (1). These algorithms are abbreviated by HSTMXHZ, HSTMHZ, HSTHZ,
HSTHS, and HSTFR, respectively.

Consequently, Algorithm 2 contains five algorithms, being HSTMXHZ, HSTMHZ,
HSTHZ, HSTHS, and HSTFR, respectively.

5.2. A Mechanism Running Algorithm 2

Algorithm 2 is a hybrid algorithm of two techniques. The first one is a conjugate
gradient CG of the set methods CG= {MXHZ, MHZ, HZ, SH, FR}, which are shown in
Section 3, and the second one is a stochastic technique described by Algorithm ST.

The point xcg is generated by Algorithm 1, and it is an input to Algorithm 2.
Algorithm 2 starts from Line 1, which represents the stopping criterion of the algorithm,

such that Algorithm 2 stops when one of the following conditions is met: if | fac − f ∗| ≤ ε
or FEs≥ n104, where fac is the best value of the function f obtained, f ∗ is the exact
solution, ε = 10−6, and FEs is the number of function evaluations denoted by [64,65] as a
stopping criterion.

In Line 3, the best value of f is picked form the three function values fcg, f1 , and f2

and denoted by fac. These three values of f are computed by Algorithm 1, (48), and (50),
respectively, and xac denotes the best point that corresponds to the value fac. In Line 4,
if | fac − f ∗| ≤ ε is satisfied, the algorithm stops. The condition in Line 7 grants the algorithm
a chance to escape from any local point, because at 4 f = 0 (it is defined by (24)), this
means that Algorithm 2 is at a critical point (stable point, stationary point, saddle point).
If the norm of the gradient value is zero or near zero, then this point is either a local point,
a saddle point, or the global point. In a case in which it is not the global point, then the
algorithm does not stop, because the stopping criterion is not met. Hence, Algorithm 2
is given consecutive opportunities to escape this trap. Therefore, the processes in Lines
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8–12 are capable of helping the algorithm to escape this trap, especially since the second
stopping criterion ensures that most of the research domain will be surveyed.

Therefore, Algorithm 2 gains two fundamental features as follows: a deterministic
research direction, which satisfies the descent direction, and walking randomly, which
prevents falling into the trap.

6. Numerical Experiments

In this section, we present numerical results demonstrating the efficiency, reliability,
and effectiveness of the proposed algorithm MXSTHZ in finding the global minimizer of
the objective function f for a set of unconstrained optimization test problems.

All experiments were run on a PC with an Intel(R) Core(TM) i5-3230M CPU@2.60GHz
2.60 GHz with 4.00 GB of RAM on the Windows 10 operating system. All five algorithms
were programmed using MATLAB version 8.5.0.197613 (R2015a), and the machine epsilon
is about 10−16.

The benchmark optimization test problems are divided into two types of test problems:
the first one is the test problems whose objective functions have only one minimum point
(no local minima except the global one (convex function)), and the second one is the test
problems whose objective functions have several local minima with one global minimum
(non-convex function). The test problems of the second type are denoted by ∗ in Tables 1
and 2. In Table 1, the set of test problems is listed as follows: Columns 1–4 present the data
of the problems; Column 1 presents the name of the function f ; Column 2 gives the number
of variables; Column 3 gives the value of the function f (x∗) at the exact global solution
x∗; and Column 4 gives the exact value the norm of the gradient ‖g(x∗)‖. The market “−”
means the values of the norm of the the gradient ‖g(x∗)‖ for the convex function met the
stopping criterion ‖g(x∗)‖ < 10−6. Columns 5–8 are as Columns 1–4.

Table 1. Listing of test problems and their exact solutions.

f n f (x∗) ‖g(x∗)‖ f n f (x∗) ‖g(x∗)‖

CB∗ 2 −1.0316285 2× 10−5 Ma 2 0 -

GP∗ 2 3 2× 10−6 Le∗ 10 0 2.1× 10−6

DJ 3 0 - HM∗ 2 0 1.1× 10−8

SH∗ 2 −186.7309 2× 10−6 BO 2 0 -

Ras∗ 2 −2 2.5× 10−6 Bh1∗ 2 0 2.4× 10−5

H3∗ 3 −3.86278 2× 10−5 H6∗ 6 −3.32237 6× 10−5

CV 4 0 - P16∗ 5 0 1.2× 10−6

S5∗ 4 −10.1532 3.2× 10−5 S10∗ 4 −10.5364 3× 10−5

SP 10, 30, 80, 100 0 - S7∗ 4 −10.4029 -

PWQ 8, 32, 84, 120 0 - P8∗ 3 0 -

Rn 10, 30, 50, 80, 100 0 - BR 2 0.397887 -

Zn 10, 30, 50, 80, 100 0 -

Tr 10, 30, 60, 80 −n(n+4)(n−1)
6 -

Su 10, 30, 50, 80, 100 0 -

Table 2 shows some local points of the second type of test problems, Column 1 of
Table 2, contains the name of non-convex function f , Column 2 presents some of local
points xlo, Column 3 gives the value of the f (xlo), Column 4 presents the the norm of the
gradient vector ‖g(xlo)‖ at the point xlo, and Column 5 gives the h.m (Hessian matrix),
where the sign + means that the Hessian matrix is positive definite, i.e, the second-order
necessary condition is satisfied.
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The data in Tables 1 and 2 are taken from [35]. Theses benchmark optimization test
problems are taken from [36,66–68].

In the following section, the performance profiles of the five algorithms are presented.

Performance Profiles

Performance profiles are the best tool for evaluating and comparing the performance
of optimization algorithms [66,69–72].

Barbosa et al. [69] used the performance profiles to analyze the results of the 2006 CEC
constrained optimization competition.

A fair comparison among different solvers should be based on the number of function
evaluations, instead of based on the number of iterations or on the CPU time only.

The number of iterations is not a reliable measure because the amount of work done in
each iteration is completely different among solvers, since some are population based, and
others are single point based, since the quality of the solution is also an important measure
of performance.

Therefore, the worst and best of the number of iterations and function emulations
with the average of the CPU time, iterations, and function emulations are used to compare
the performance of the five algorithms. Hence, we present the numerical results in the form
of performance profiles, as described in [70]. This procedure was developed to benchmark
optimization software, i.e., to compare different solvers on several test problems.

One advantage of the performance profiles is that they can be presented in one figure
by plotting a cumulative distribution function ρs(τ) for the different solvers.

The performance ratio is defined by first setting rp,s =
tp,s

min{tp,s :s∈S} , where p ∈ P, P is
a set of test problems, S is the set of solvers, and tp,s is the value obtained by solver s on
test problem p.

Then, define ρs(τ) =
1
|P|size{p ∈ P : rp,s ≤ τ}, where |P| is the number of test problems.

In the following, we show how the performance profiles are used to compare the per-
formance of the five algorithms S = {HSTMXHZ, HSTMHZ, HSTHZ, HSTSH, HSTFR},
according to the worst and best number of iterations and function emulations and the
average of the CPU time, iterations, and function emulations. They are denoted by itr.w,
itr.be, FEs.w, FEs.be, time.ave, itr.ave, and EFs.ave, respectively.

Therefore, the term tp,s denotes one of the set Fit = {itr.w, itr.be, FEs.w, FEs.be, time.ave,
itr.ave, EFs.ave}, and |P| = 46 is the number of test problems; we have 46 unconstrained test
problems, 14 of them containing non-convex functions (they have many local minimizers).
Therefore, the set of solvers S seeks to find the global minimizers of the 46 test problems.
Hence, the values of the set Fit are computed as follows. Each solver s of the set S is
run 51 times for every problem of 46 problems; at each run, the number of iterations and
function emulations with the CPU time are computed. Thus, the average, best, and worst
behavior can be analyzed as follows.

For each problem p and solver s, the performance ratio is defined as

rp,s =


fitp,s

min{fitp,s :s∈S} if convergence test passed,

∞ otherwise,
(52)

where fitp,s represents one element of the set Fit for a test problem p, which is solved by a
solver s. We have

δ(rp,s, τ) =

{
1 if rp,s ≤ τ,
0 otherwise.

(53)

Therefore, the performance profile for solver s is then given by the following function:

ρs(τ) =
1
|P|

{
∑
p∈P

δ(rp,s, τ)
}

, τ ≥ 1. (54)
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In this paper, |P| = 46 is a number of test problems, and we set τ ∈ [1, 60].
By definition of Fitp,s, ρs(1) denotes the fraction of test problems for which solver s

performs the best, ρs(2) gives the fraction of problems for which the solver’s performance
is within a factor of 2 of the best, and for a τ sufficiently large, ρs(τ) is the fraction of
problems solved by s.

In general, ρs(τ) can be interpreted as the probability for solver s ∈ S that the perfor-
mance ratio rp,s is within a factor τ of the best possible ratio. Therefore, ρs(1) measures
the efficiency of the solver, while its robustness (high probability of success on the set P) is
measured in terms of ρs(∞). Hence, if we are only interested in determining which solver
is the best, i.e., wins the most, we compare the values of ρs(1) for all the solvers.

A core feature of performance profiles is that they give information on the relative
performance of many solvers [70,71].

In the following, the results of the five algorithms are annualized by showing the
performance profiles for each algorithm.

Figures 1–4 show the set solvers’ performance profiles (five algorithms) according to
the criteria mentioned in the set Fit. The performance profile in the left graph of Figure 1 (in
terms of the worst number of iterations) compares the performance of the five algorithms
on the 46 test problems.

Figure 1. Worst number of iterations and function evaluations performance profile.

Figure 2. Best number of iterations and function evaluations performance profile.
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Figure 3. Average of CPU time performance profile.

Figure 4. Average of iterations and function evaluations performance profile.

The HSTMXHZ algorithm has the best performance (in terms of the worst number
of iterations) for all test problems, meaning that the HSTMXHZ algorithm is able to find
the global optimal solutions of all test problems as fast as or faster than the other four
algorithms. For example, when τ = 1, the method HSTMXHZ finds the optimal solution
for 54% of the test problems versus 33%, 11%, 11%, and 22% of the test problems being
solved by HSTMHZ, HSTHZ, HSTHZ, HSTHS, and HSTFR algorithms, respectively.

Therefore, regarding the worst number of iterations criterion, the τ = 60 shows us that all
test problems are solved by HSTMXHZ, while 89%, 91%, 83%, and 85% of the test problems
are solved by HSTMHZ, HSTHZ, HSTHZ, HSTHS, and HSTFR algorithms, respectively.

In general, the performance profiles of all algorithms depicted in Figures 1–4 show
that the MXSTHZ algorithm has the features of efficiency, reliability, and effectiveness in
finding the global minimizer of all test problems.

Consequently, the performance profiles illustrated in Figures 1–4 are summarized in
one figure as a percentage of fails of all five algorithms, and this is depicted in Figure 5
as follows.
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Figure 5. Percentage of fails for all 5 algorithms.

At τ = ∞, we obtain the following results: algorithm HSTMXHZ does not fail to solve
any of the test problems for the set criteria Fit. Algorithm HSTMHZ fails to solve 11% of
the test problems according to the set criteria Fit. Algorithm HSTHZ fails to solve 9% of the
test problems according to the set criteria Fit. Algorithm HSTHS fails to solve 17–20% of
the test problems according to the set criteria Fit. Algorithm HSTFR fails to solve 15% of
the test problems according to the set criteria Fit.

Note: The maximum value of the parameter τ in the X-axis is τ = 60 in all figures
except Figure 3, because it is shown that our proposed algorithm HSTMXHZ is not capable
of solving all test problems at τ = 60; thus, we increase the value of the parameter τ to
τ = 80. Hence, τ = 80 shows that the HSTMXHZ algorithm solves all test problems
regarding the average CPU time criterion.

Table 2. Local minima and their function values of the second type found by GL.

f xlo f (xlo) ‖∇ f (xlo)‖2 h.m

GP∗

−0.6 30 2.8 × 10−10 +
−0.4

1.8 84 2.8 × 10−12 +
0.2

Ras∗

−1.2224947770423 3.51839652096461 4.5804 × 10−8 +
−0.933379140693944

6.93003142568068 × 10−21 1.87456993111744 5.0516 × 10−8 +
0.933379142773859

0 0.469882414921396 6.6593 × 10−9 +
−0.469527545774886

0.618612067329937 0.412926830275815 2.0389 × 10−8 +
−2.34734550064544 × 10−10

0.61861206782795 0.882809245197211 6.8967 × 10−9 +
−0.469527545778679

−0.693844456281809 −1.39450436402534 9.1793 × 10−8 +
0.346923814676768

0.346923814707539 −1.75780130306047 9.256 × 10−9 +
0.346923814679388

−0.693844456091345 −1.5156037124951 7.1113 × 10−8 +
−8.86514604640448 × 10−12
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Table 2. Cont.

f xlo f (xlo) ‖∇ f (xlo)‖2 h.m

HM∗

−1.60710475355569 3.13588 6.8592 × 10−9 +
−0.568651455138315

1.60710475653107 3.13587881031126 3.8976 × 10−8 +
0.56865145632886

1.70360671546671 0.8161645 4.22 × 10−8 +
−0.796083566882986

Bh1∗

−0.61861206782795 0.882809245197211 8.2559 × 10−9 +
0.469527545536589

−1.22249477715681 2.11370900476857 8.323 × 10−9 +
0.469527545801467

0.618612068094813 0.412926830275815 1.0414 × 10−8 +
−1.15759684702281 × 10−10

SH∗

−7.70831373549935 −79.4109132228676 6.9801 × 10−6 +
−8.29038801395222

0.334243912680165 −14.427 9.1083 × 10−7 +
0.821783925757999

6.08779955712239 −30.781 1.2437 × 10−6 +
9.56321202922249

3.77230798892767 −52.05 2.5241 × 10−6 +
−0.800321100471973

−0.195385750029861 −123.58 1.1747 × 10−7 +
−0.800321100471974

P8∗

−8.91948740318191 9.33771570831482 9.5779 × 10−9 +
2.98927244410315
−8.91911303921606

2.95940520403097 6.219 3.5487 × 10−8 +
2.95734250689826
6.91780883791202

2.95985170644194 1.0367 1.2419 × 10−9 +
−1.00000000000001

−1

−4.95943986528779 2.0732 5.207 × 10−8 +
−4.95903229916874
−0.999999999999996

P16∗

−0.316713428439135 3.6966869674758 6.6557 × 10−8 +
5.96534445787178

0.000485720005736201
3.30614825102299
2.99682664024085

2.31787978846433 0.882277405883787 9.9009 × 10−8 +
3.64917986009329
1.00000000064691
1.00000015159645
1.0000002427518

1.65876201672915 0.438258122943419 6.1217 × 10−8 +
1.97331911501372
1.98801852779664
1.98844579485365

0.00794023516825855
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Table 2. Cont.

f xlo f (xlo) ‖∇ f (xlo)‖2 h.m

CB∗

−1.60710475750554 2.10425031031126 4.9491 × 10−8 +
−0.56865145671785

−1.70360671560327 −0.215463824383719 5.3745 × 10−8 +
0.796083566391017

H3∗

0.368722727070142 −1.0008 5.262 × 10−8 +
0.117561628830344
0.267573742135187

0.109337500834921 −3.0898 6.7792 × 10−8 +
0.860524221821118
0.564123171483196

S5∗

7.99958330481318 −5.1008 5.4716 × 10−8 +
7.99964158942217
7.99958330481318

7.999641589422

1.00013158830876 -5.0552 8.901 × 10−8 +
1.00015634035488
1.00013158830876
1.00015634035488

3.00179639486718 −2.6305 1.7899 × 10−8 +
6.99833393860998
3.00179639486718
6.99833393860998

5.9987493870904 −2.6829 2.777 × 10−6 +
6.00028741439389
5.9987493870904

6.00028741439389

S7∗

1.00023247902693 −5.0877 1.0202 × 10−7 +
1.00027365356478
1.00018321203747
1.0002243825922

3.00090958754435 −2.7659 9.2043 × 10−9 +
7.00064162342178
3.00036903207152
7.00010106794894

4.99422913368074 −3.7243 5.9883 × 10−8 +
4.99499394371211
3.00606373374785
3.00682853864518

5.99810675361719 −2.7519 8.2126 × 10−10 +
6.00008258056314
5.99732997276745
5.99930579971341
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Table 2. Cont.

f xlo f (xlo) ‖∇ f (xlo)‖2 h.m

S10∗

1.00036625923444 −5.1285 1.1938 × 10−7 +
1.00030224282025
1.00031698868663
1.00025296814889

4.99487209870931 −3.8354 2.7328 × 10−8 +
4.99398146021396
3.00755591238878
3.00666527389401

6.00557890531025 −2.4217 7.9048 × 10−13 +
2.01001498366408
6.00437006308492
2.00880614143875

5.99901345118408 −2.8711 6.5965 × 10−10 +
5.99728366454457
5.99823624874706
5.99650646210755

6.99163536369117 −2.4273 8.2572 × 10−14 +
3.59557985427872
6.99065644577223
3.59460093635978

H6∗

0.40465313 −3.2032 2.5475 × 10−7 +
0.882444924
0.846101569
0.573989692
0.138926604
0.038495892

Le∗

1 12.8829396938135 5.3753 × 10−8 +
7.70247946443158
7.70247946470933
−4.2421171417158
1.00000004177889
1.00000002319757
0.99999998279399
7.70247946465686
−4.2421171417158
−2.89064960846171

3.791082199734824 2.24815774868836 8.7862 × 10−8 +
1
1

−0.0929936950939674
1
1

3.66435455838079
3.66435455838079
−0.0929936950939674

0.999999472819993
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Table 2. Cont.

f xlo f (xlo) ‖∇ f (xlo)‖2 h.m

Le∗

3.79108219979366 3.06727753545346 8.2255 × 10−8 +
1

3.66435455838079
−0.0929936950939674

3.66435455838079
1

3.66435455838079
1

3.66435455838079
1.00000046273142

h.m: Hessian matrix information determines the nature of the stationary point.

7. Conclusions and Future Work

We have proposed a conjugate gradient method which is abbreviated by MXHZ for
solving unconstrained optimization problems. Although the updated formulas of the
proposed method MXHZ are more complicated than previous formulas, the scheme is very
robust in numerical experiments. The global convergence analysis of the MXHZ method is
established. Furthermore, we have used finite differences (forward differences DFF) for
computing the approximate gradient vector ( g(x) ≈ DFF). We have provided the method
(DFF) with a new approach for estimating an appropriate step-size randomly. Calculating
the value of the step-size h is connected to the value of a function f at each iteration. Exten-
sive numerical experiments showed that the results of the proposed algorithm (HSTMXHZ)
are highly competitive with four other algorithms on performance profiles. The suggested
stochastic approach has played a key role in making the HSTMXHZ algorithm capable
of finding the global minimizers of unconstrained optimization test problems, especially
when the objective function is not convex. Comparing the final results between the true
values of the gradient vector with the estimated values which are obtained by the method
DFF shows that the new approach has succeeded in selecting the proper step-size h.

Therefore, our suggested algorithm HSTMXHZ gains two fundamental features: a de-
terministic research direction which satisfies the descent direction and walking randomly
that prevents falling into a local point. For future work, the proposed algorithm can
be enhanced and modified to solve constrained and multi-objective optimization prob-
lems, and the global convergence analysis of the HSTMXHZ algorithm will be considered.
Furthermore, the conjugate gradient methods play an important role in many fields of
optimization problems. Therefore, it is necessary for us to further improve the theoretical
properties and numerical performance of these methods and make them more widely
used: for example, they can be used to solve unconstrained and constrained multi-objective
optimization problems as well as nonlinear equations.

Author Contributions: Conceptualization, K.A.A.; Data curation, A.M.A.; Formal analysis, S.M.;
Funding acquisition, A.M.A., A.F.A. and K.A.A.; Investigation, A.M.A. and A.F.A.; Methodology,
S.M. and A.W.M.; Project administration, A.W.M.; Resources, A.F.A. and K.A.A.; Software, S.M.;
Supervision, A.W.M.; Writing—original draft, S.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Researchers Supporting Program at King Saud University,
(Project# RSP-2021/323).

Acknowledgments: The authors present their appreciation to King Saud University for funding the
publication of this research through the Researchers Supporting Program (RSP-2021/323), King Saud
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 3032 24 of 26

References
1. Aarts, E.; Korst, J. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural

Computing; John Wiley & Sons, Inc.: New York, NY, USA, 1989.
2. Hillier, F.S.; Price, C.C. International Series in Operations Research & Management Science; Springer Nature: Cham, Switzerland, 2001.
3. Laarhoven, P.J.V.; Aarts, E.H. Simulated Annealing: Theory and Applications; Springer-Science + Business Media, B.V.: Dordrecht,

The Netherlands, 1987.
4. Hager, W.W.; Zhang, H. Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math.

Softw. (TOMS) 2006, 32, 113–137. [CrossRef]
5. Zhang, L.; Zhou, W.; Li, D.H. A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence.

IMA J. Numer. Anal. 2006, 26, 629–640. [CrossRef]
6. Waziri, M.Y.; Kiri, A.I.; Kiri, A.A.; Halilu, A.S.; Ahmed, K. A modified conjugate gradient parameter via hybridization approach

for solving large-scale systems of nonlinear equations. SeMA J. 2022, 1–23. [CrossRef]
7. Zhang, L.; Zhou, W.; Li, D. Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line

search. Numer. Math. 2006, 104, 561–572. [CrossRef]
8. Aji, S.; Kumam, P.; Siricharoen, P.; Abubakar, A.B.; Yahaya, M.M. A modified conjugate descent projection method for monotone

nonlinear equations and image restoration. IEEE Access 2020, 8, 158656–158665. [CrossRef]
9. Ibrahim, A.H.; Kumam, P.; Kumam, W. A family of derivative-free conjugate gradient methods for constrained nonlinear

equations and image restoration. IEEE Access 2020, 8, 162714–162729. [CrossRef]
10. Su, Z.; Li, M. A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations. Math. Probl. Eng.

2020, 2020, 6854501. [CrossRef]
11. Xiao, Y.; Zhu, H. A conjugate gradient method to solve convex constrained monotone equations with applications in compressive

sensing. J. Math. Anal. Appl. 2013, 405, 310–319. [CrossRef]
12. Yuan, G.; Li, T.; Hu, W. A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems. Appl.

Numer. Math. 2020, 147, 129–141. [CrossRef]
13. Golub, G.H.; O’Leary, D.P. Some history of the conjugate gradient and Lanczos algorithms: 1948–1976. SIAM Rev. 1989, 31, 50–102.

[CrossRef]
14. Hager, W.W.; Zhang, H. A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2006, 2, 35–58.
15. Hestenes, M.R.; Stiefel, E. Methods of Conjugate Gradients for Solving. J. Res. Natl. Bur. Stand. 1952, 49, 409. [CrossRef]
16. Fletcher, R.; Reeves, C.M. Function minimization by conjugate gradients. Comput. J. 1964, 7, 149–154. [CrossRef]
17. Polak, E.; Ribiere, G. Note sur la convergence de méthodes de directions conjuguées. ESAIM Math. Model. Numer. Anal. 1969,

3, 35–43. [CrossRef]
18. Polyak, B.T. The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [CrossRef]
19. Liu, Y.; Storey, C. Efficient generalized conjugate gradient algorithms, part 1: Theory. J. Optim. Theory Appl. 1991, 69, 129–137.

[CrossRef]
20. Dai, Y.H.; Yuan, Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 1999,

10, 177–182. [CrossRef]
21. Abubakar, A.B.; Kumam, P. A descent Dai-Liao conjugate gradient method for nonlinear equations. Numer. Algorithms 2019,

81, 197–210. [CrossRef]
22. Abubakar, A.B.; Muangchoo, K.; Ibrahim, A.H.; Muhammad, A.B.; Jolaoso, L.O.; Aremu, K.O. A new three-term Hestenes-Stiefel

type method for nonlinear monotone operator equations and image restoration. IEEE Access 2021, 9, 18262–18277. [CrossRef]
23. Babaie-Kafaki, S.; Ghanbari, R. A descent family of Dai–Liao conjugate gradient methods. Optim. Methods Softw. 2014, 29, 583–591.

[CrossRef]
24. Dai, Y.-H.; Liao, L.-Z. New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 2001,

43, 87–101. [CrossRef]
25. Yuan, G.; Zhang, M. A three-terms Polak–Ribière–Polyak conjugate gradient algorithm for large-scale nonlinear equations.

J. Comput. Appl. Math. 2015, 286, 186–195. [CrossRef]
26. Yuan, G.; Jian, A.; Zhang, M.; Yu, J. A modified HZ conjugate gradient algorithm without gradient Lipschitz continuous condition

for non convex functions. J. Appl. Math. Comput. 2022, 1–22. [CrossRef]
27. Zhou, Y.; Wu, Y.; Li, X. A new hybrid prpfr conjugate gradient method for solving nonlinear monotone equations and image

restoration problems. Math. Probl. Eng. 2020, 2020, 6391321. [CrossRef]
28. Abubakar, A.B.; Malik, M.; Kumam, P.; Mohammad, H.; Sun, M.; Ibrahim, A.H.; Kiri, A.I. A Liu-Storey-type conjugate gradient

method for unconstrained minimization problem with application in motion control. J. King Saud Univ.-Sci. 2022, 34, 101923.
[CrossRef]

29. Dai, Y.H.; Yuan, Y. An efficient hybrid conjugate gradient method for unconstrained optimization. Ann. Oper. Res. 2001, 103,
33–47. [CrossRef]

30. Deng, S.; Wan, Z. A three-term conjugate gradient algorithm for large-scale unconstrained optimization problems. Appl. Numer.
Math. 2015, 92, 70–81. [CrossRef]

31. Ma, G.; Lin, H.; Jin, W.; Han, D. Two modified conjugate gradient methods for unconstrained optimization with applications in
image restoration problems. J. Appl. Math. Comput. 2022, 1–26. [CrossRef]

http://doi.org/10.1145/1132973.1132979
http://dx.doi.org/10.1093/imanum/drl016
http://dx.doi.org/10.1007/s40324-022-00294-1
http://dx.doi.org/10.1007/s00211-006-0028-z
http://dx.doi.org/10.1109/ACCESS.2020.3020334
http://dx.doi.org/10.1109/ACCESS.2020.3020969
http://dx.doi.org/10.1155/2020/6854501
http://dx.doi.org/10.1016/j.jmaa.2013.04.017
http://dx.doi.org/10.1016/j.apnum.2019.08.022
http://dx.doi.org/10.1137/1031003
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1051/m2an/196903R100351
http://dx.doi.org/10.1016/0041-5553(69)90035-4
http://dx.doi.org/10.1007/BF00940464
http://dx.doi.org/10.1137/S1052623497318992
http://dx.doi.org/10.1007/s11075-018-0541-z
http://dx.doi.org/10.1109/ACCESS.2021.3053141
http://dx.doi.org/10.1080/10556788.2013.833199
http://dx.doi.org/10.1007/s002450010019
http://dx.doi.org/10.1016/j.cam.2015.03.014
http://dx.doi.org/10.1007/s12190-022-01724-z
http://dx.doi.org/10.1155/2020/6391321
http://dx.doi.org/10.1016/j.jksus.2022.101923
http://dx.doi.org/10.1023/A:1012930416777
http://dx.doi.org/10.1016/j.apnum.2015.01.008
http://dx.doi.org/10.1007/s12190-022-01725-y


Mathematics 2022, 10, 3032 25 of 26

32. Mtagulwa, P.; Kaelo, P. An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization
problems. Appl. Numer. Math. 2019, 145, 111–120. [CrossRef]

33. Kan, A.R.; Timmer, G. Stochastic methods for global optimization. Am. J. Math. Manag. Sci. 1984, 4, 7–40. [CrossRef]
34. Alnowibet, K.A.; Mahdi, S.; El-Alem, M.; Abdelawwad, M.; Mohamed, A.W. Guided Hybrid Modified Simulated Annealing

Algorithm for Solving Constrained Global Optimization Problems. Mathematics 2022, 10, 1312. [CrossRef]
35. EL-Alem, M.; Aboutahoun, A.; Mahdi, S. Hybrid gradient simulated annealing algorithm for finding the global optimal of a

nonlinear unconstrained optimization problem. Soft Comput. 2020, 25, 2325–2350. [CrossRef]
36. Hedar, A.R.; Fukushima, M. Hybrid simulated annealing and direct search method for nonlinear unconstrained global optimiza-

tion. Optim. Methods Softw. 2002, 17, 891–912. [CrossRef]
37. Pedamallu, C.S.; Ozdamar, L. Investigating a hybrid simulated annealing and local search algorithm for constrained optimization.

Eur. J. Oper. Res. 2008, 185, 1230–1245. [CrossRef]
38. Yiu, K.F.C.; Liu, Y.; Teo, K.L. A hybrid descent method for global optimization. J. Glob. Optim. 2004, 28, 229–238. [CrossRef]
39. Bertsekas, D.P. Nonlinear Programming; Athena Scientific: Belmont, MA, USA, 1999.
40. Bonnans, J.F.; Gilbert, J.C.; Lemaréchal, C.; Sagastizábal, C.A. Numerical Optimization: Theoretical and Practical Aspects; Springer

Science & Business Media: Berlin, Germany, 2006.
41. Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; SIAM: Philadelphia, PA,

USA, 1996; Volume 16.
42. Gilbert, J.C.; Nocedal, J. Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 1992,

2, 21–42. [CrossRef]
43. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin, Germany, 2006.
44. Chan, T.F.; Esedoglu, S.; Nikolova, M. Algorithms for finding global minimizers of image segmentation and denoising models.

SIAM J. Appl. Math. 2006, 66, 1632–1648. [CrossRef]
45. Zhenjun, S. A new memory gradient method under exact line search. Asia-Pac. J. Oper. Res. 2003, 20, 275–284.
46. Hager, W.W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim.

2005, 16, 170–192. [CrossRef]
47. Al-Baali, M. Descent property and global convergence of the Fletcher Reeves method with inexact line search. IMA J. Numer.

Anal. 1985, 5, 121–124. [CrossRef]
48. Yuan, G.; Meng, Z.; Li, Y. A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations

and nonlinear equations. J. Optim. Theory Appl. 2016, 168, 129–152. [CrossRef]
49. Yuan, G.; Wei, Z.; Yang, Y. The global convergence of the Polak–Ribière–Polyak conjugate gradient algorithm under inexact line

search for nonconvex functions. J. Comput. Appl. Math. 2019, 362, 262–275. [CrossRef]
50. Zoutendijk, G. Nonlinear programming, computational methods. Integer Nonlinear Program. 1970, 37–86.
51. Wolfe, P. Convergence conditions for ascent methods. SIAM Rev. 1969, 11, 226–235. [CrossRef]
52. Wolfe, P. Convergence conditions for ascent methods. II: Some corrections. SIAM Rev. 1971, 13, 185–188. [CrossRef]
53. Kramer, O.; Ciaurri, D.E.; Koziel, S. Derivative-free optimization. In Computational Optimization, Methods and Algorithms; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 61–83.
54. Larson, J.; Menickelly, M.; Wild, S.M. Derivative-free optimization methods. Acta Numer. 2019, 28, 287–404. [CrossRef]
55. Shi, H.J.M.; Xie, Y.; Xuan, M.Q.; Nocedal, J. Adaptive Finite-Difference Interval Estimation for Noisy Derivative-Free Optimization.

arXiv 2021, arXiv:2110.06380.
56. Shi, H.J.M.; Xuan, M.Q.; Oztoprak, F.; Nocedal, J. On the numerical performance of derivative-free optimization methods based

on finite-difference approximations. arXiv 2021, arXiv:2102.09762.
57. Oliver, J.; Ruffhead, A. The selection of interpolation points in numerical differentiation. BIT Numer. Math. 1975, 15, 283–295.

[CrossRef]
58. Berahas, A.S.; Cao, L.; Choromanski, K.; Scheinberg, K. A theoretical and empirical comparison of gradient approximations in

derivative-free optimization. Found. Comput. Math. 2022, 22, 507–560. [CrossRef]
59. Curtis, A.; Reid, J. The choice of step lengths when using differences to approximate Jacobian matrices. IMA J. Appl. Math. 1974,

13, 121–126. [CrossRef]
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