Fault Classification in a Reciprocating Compressor and a Centrifugal Pump Using Non-Linear Entropy Features
Abstract
:1. Introduction
- Extraction of a non-linear entropy-based feature set that provides high classification accuracy using RF and SVM models. The accuracy attained by the SVM model trained with the non-linear Entropy Features set was higher than the accuracy attained by a CNN model trained with 2D spectrogram images for both the CP and the RC.
- Detailed comparison of three feature sets useful for classifying a large number of faults in a CP and an RC. These are the non-linear Entropy Features, the Information Entropy, and the Statistical Features sets. The first set is composed of the approximate entropy and several variants, and the second set is composed of the combination of the wavelet packet transform (WPT)-based features and the power spectrum entropy (PSE)-based features. Finally, the third set is composed of classical time series statistical features.
- The non-linear Entropy Features set and the All Features set corresponding to the fusion of the three feature sets when compared provided a classification accuracy of up to 99.59% for the CP and up to 97.90% for the RC. For the CP, 13 different conditions were classified, and 17 valve conditions were classified for the RC.
2. Related Research
2.1. Rotating Machinery
2.2. Reciprocating Compressor
2.3. Centrifugal Pump
2.4. Anomaly Detection
3. Theoretical Background
3.1. Phase Space Reconstruction
3.2. Approximate Entropy
3.3. Sample Entropy
3.4. Fuzzy Entropy
3.5. Shannon Entropy and Other Measures of Signal Complexity
3.6. Permutation Entropy
3.7. The Correlation Dimension
3.8. Detrended Fluctuation Analysis
3.9. Largest Lyapunov Exponent
3.10. Information Entropy and Chaotic Time Series
3.10.1. Tsallis and Rényi Entropy
3.10.2. Power Spectral Entropy
3.11. Machine Learning Techniques
3.11.1. Random Forest
3.11.2. Support Vector Machines
4. Experimental Test-Bed
4.1. Centrifugal Pump Test-Bed
4.1.1. Faults of the CP
4.1.2. CP Vibration Signal Dataset
4.2. Reciprocating Compressor Test-Bed
4.2.1. Faults of the Reciprocal Compressor
4.2.2. RC Vibration Signal Dataset
5. Feature Extraction from the CP
5.1. Non-Linear Entropy Based Features
5.2. Statistical Features
6. Feature Extraction from the RC
6.1. Entropy Based Features
6.2. Statistical Features
7. Classification of Faults Using RF and SVM
8. Results
8.1. Results for the CP Dataset
8.2. Results for the RC Dataset
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CP | Centrifugal Pump |
RC | Reciprocating Compressor |
CM | Condition Monitoring |
CD | Correlation Dimension |
LLE | Largest Lyapunov Exponent |
LMD | Local Mean Decomposition |
SVM | Support Vector Machine |
CEEMD | Complementary Ensemble Empirical Mode Decomposition |
SampEn | Sample Entropy |
RF | Random Forest |
ELM | Extreme Learning Machine |
AMI | Average Mutual Information |
FNN | False Nearest Neighbor |
AppEn | Approximate Entropy |
FuzzyEn | Fuzzy Entropy |
ShannEn | Shannon Entropy |
PermEn | Permutation Entropy |
DFA | Detrended Fluctuation Analysis |
LLE | Larger Lyapunov Exponent |
Power Spectral Entropy | |
PEB | Pitting at the Entrance of Impeller Blades |
POB | Pitting at the Output of the Impeller Blades |
ICB | Impeller Channel Blockage |
IB | Imbalance Impeller |
ROC | Receiver Operator Curve |
AUC | Area Under the Curve |
HP | Horse Power |
RMS | Root Mean Square |
RPM | Revolutions per minute |
GPM | Gallons per minute |
RM | Rotating Machinery |
CNN | Convolutional Neural Network |
SGWT | Spectral Graph Wavelet Transform |
CECP | Complexity-Entropy Causality Plane |
MSE | Multi-Scale Entropy |
PCA | Principal Component Analysis |
LDA | Linear Discriminant Analysis |
BMFO | Binary Moth Flame Optimization |
SE | Squeeze and Excitation |
HYP | Hydraulic Pump |
RSDD | Resonance-based sparse signal decomposition |
MHAAPE | Multi-scale Hierarchical Amplitude Aware Permutation Entropy |
ELM | Extreme Learning Machine |
CEEMD | Complementary Ensemble Empirical Mode Decomposition |
CWT | Continous Wavelet Transform |
XBG | Extreme Gradient Boosting |
AWT | Analitical Wavelet Transform |
Appendix A. Additional Tables
Appendix A.1. Related Research Compendium
Contributors | Signal | Methods | Application | Advantages | Limitations |
---|---|---|---|---|---|
Li et al. [21] | Pressure | PCA | RC | Accuracy | Six types of fault |
vibration | LDA | 99.62% | |||
Patil et al. [23] | Vibration | BMFO | RC | Accuracy | Can get |
Signal | KNN | > | trapped in | ||
local minimum | |||||
Lv et al. [22] | Pressure | ANN | RC | Accuracy | Several |
97.9% | Structuring | ||||
Elements | |||||
Zhao et al. [24] | Vibration | CNN | RC | Accuracy | Complex CNN |
99.4% | architecture | ||||
Xiao et al. [25] | Vibration | CNN | RC | Acc = 100% | Complex CNN |
Pressure | Architecture, | ||||
Phase | 4 Conditions | ||||
Ahmad et al. [28] | Vibration | SVM | CP | Accuracy | 4 conditions |
98.4% | |||||
Hasan et al. [29] | Vibration | CNN | CP | Acc = 100% | 4 conditions |
Ahmad et al. [30] | Vibration | KNN | CP | Acc = 100% | 4 conditions |
Irfan et al. [31] | Voltage | XGB | Water pump | Acc = 100% | Threshold |
Current | bearings | Selection | |||
Kumar et al. [33] | Sound | CNN | CP | Sound Sensor | Acoustic noise |
Zhao et al. [20] | Vibration | SVM | RC | Weak fault | LMD |
MSE | detection | Mode mixing | |||
Wang et al. [27] | Vibration | RF + CEEMD | CP | Accurate | High |
SampEn | Comp. Cost | ||||
Zhou et al. [26] | Vibration | RSDD + RF | HYP | Accurate | Large set |
MHAAPE | of parameters | ||||
Xin et al. [16] | Vibration | DFA + SGWT | RM | Retain fine | Lacks more |
signatures | testing | ||||
Radhakrishnan et al. [17] | Vibration | CECP + SVM | RM | Robust and | Setting of |
easy | parameters |
Appendix A.2. Entropy-Based Features
Appendix A.3. Information-Based Features
Feature | Equation | |
---|---|---|
WPT-Shannon [70,86] | (A15) | |
WPT-Norm [70,86] | (A16) | |
WPT-LogEn [70,86] | (A17) | |
WPT-Thres [70,86] | (A18) | |
WPT-Sure [70,86] | (A19) | |
RényiEn [72] | (A20) | |
TsallisEn [71] | (A21) | |
PSE-mean [73,74] | (A22) | |
PSE-std [73,74] | (A23) | |
PSE-rms [73,74] | (A24) | |
PSE-shape [73,74] | (A25) | |
PSE-MaxToRms [73,74] | (A26) | |
PSE-median [73,74] | (A27) | |
PSE-Skew [73,74] | (A28) | |
PSE-Kur [73,74] | (A29) |
Appendix A.4. Statistical Features
Feature | Equation | |
---|---|---|
Mean | (A30) | |
Root Mean Square (RMS) | (A31) | |
Standard deviation | (A32) | |
Kurtosis | (A33) | |
Maximum value | (A34) | |
Crest factor | (A35) | |
Rectified mean value | (A36) | |
Shape factor | (A37) | |
Impulse factor | (A38) | |
Variance | (A39) | |
Minimum value | (A40) | |
Skewness | (A41) |
Appendix B. Additional Figures
References
- Ali, S.M.; Hui, K.; Hee, L.; Leong, M.S. Automated valve fault detection based on acoustic emission parameters and support vector machine. Alex. Eng. J. 2018, 57, 491–498. [Google Scholar] [CrossRef]
- Cerrada, M.; Macancela, J.C.; Cabrera, D.; Estupiñan, E.; Sánchez, R.V.; Medina, R. Reciprocating compressor multi-fault classification using symbolic dynamics and complex correlation measure. Appl. Sci. 2020, 10, 2512. [Google Scholar] [CrossRef]
- Sharma, V.; Parey, A. Performance evaluation of decomposition methods to diagnose leakage in a reciprocating compressor under limited speed variation. Mech. Syst. Signal Process. 2019, 125, 275–287. [Google Scholar] [CrossRef]
- Soleimani, A.; Khadem, S. Early fault detection of rotating machinery through chaotic vibration feature extraction of experimental data sets. Chaos Solitons Fractals 2015, 78, 61–75. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Pincus, S.M.; Huang, W.M. Approximate entropy: Statistical properties and applications. Commun. Stat. Theory Methods 1992, 21, 3061–3077. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Weippert, M.; Behrens, M.; Rieger, A.; Behrens, K. Sample entropy and traditional measures of heart rate dynamics reveal different modes of cardiovascular control during low intensity exercise. Entropy 2014, 16, 5698–5711. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, S.; Zhang, C.; Zhang, Y.; Jiang, X.; Liu, F.; Liu, C. Determination of sample entropy and fuzzy measure entropy parameters for distinguishing congestive heart failure from normal sinus rhythm subjects. Entropy 2015, 17, 6270–6288. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, X. Multi-class support vector machine. In Support Vector Machines Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 23–48. [Google Scholar] [CrossRef]
- Escalera, S.; Pujol, O.; Radeva, P. On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Janjarasjitt, S.; Ocak, H.; Loparo, K. Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal. J. Sound Vib. 2008, 317, 112–126. [Google Scholar] [CrossRef]
- Sun, Y. Fault Detection in Dynamic Systems Using the Largest Lyapunov Exponent. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2012. [Google Scholar]
- Medina, R.; Macancela, J.C.; Lucero, P.; Cabrera, D.; Sánchez, R.V.; Cerrada, M. Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM. J. Intell. Manuf. 2020, 33, 1031–1055. [Google Scholar] [CrossRef]
- Dong, X.; Li, G.; Jia, Y.; Li, B.; He, K. Non-iterative denoising algorithm for mechanical vibration signal using spectral graph wavelet transform and detrended fluctuation analysis. Mech. Syst. Signal Process. 2021, 149, 107202. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Lee, Y.T.T.; Rachuri, S.; Kamarthi, S. Complexity and entropy representation for machine component diagnostics. PLoS ONE 2019, 14, e0217919. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Si, S. The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review. IEEE Access 2018, 6, 66723–66741. [Google Scholar] [CrossRef]
- Huo, Z.; Martínez-García, M.; Zhang, Y.; Yan, R.; Shu, L. Entropy measures in machine fault diagnosis: Insights and applications. IEEE Trans. Instrum. Meas. 2020, 69, 2607–2620. [Google Scholar] [CrossRef]
- Zhao, H.-Y.; Wang, J.-D.; Xing, J.-J.; Gao, Y.-Q. A feature extraction method based on LMD and MSE and its application for fault diagnosis of reciprocating compressor. J. Vibroeng. 2015, 17, 3515–3526. [Google Scholar]
- Li, X.; Ren, P.; Zhang, Z.; Jia, X.; Peng, X. A p−V Diagram Based Fault Identification for Compressor Valve by Means of Linear Discrimination Analysis. Machines 2022, 10, 53. [Google Scholar] [CrossRef]
- Lv, Q.; Cai, L.; Yu, X.; Ma, H.; Li, Y.; Shu, Y. An Automatic Fault Diagnosis Method for the Reciprocating Compressor Based on HMT and ANN. Appl. Sci. 2022, 12, 5182. [Google Scholar] [CrossRef]
- Patil, A.; Soni, G.; Prakash, A. A BMFO-KNN based intelligent fault detection approach for reciprocating compressor. Int. J. Syst. Assur. Eng. Manag. 2021, 1–13. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, S.; Zhang, H.; Sun, X.; Wang, L.; Wei, Y. Intelligent fault diagnosis of reciprocating compressor based on attention mechanism assisted convolutional neural network via vibration signal rearrangement. Arab. J. Sci. Eng. 2021, 46, 7827–7840. [Google Scholar] [CrossRef]
- Xiao, S.; Nie, A.; Zhang, Z.; Liu, S.; Song, M.; Zhang, H. Fault Diagnosis of a Reciprocating Compressor Air Valve Based on Deep Learning. Appl. Sci. 2020, 10, 6596. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, W.; Yang, X.; Shen, J.; Gong, P. A new method of health condition detection for hydraulic pump using enhanced whale optimization-resonance-based sparse signal decomposition and modified hierarchical amplitude-aware permutation entropy. Trans. Inst. Meas. Control 2021, 43, 3360–3376. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, C.; Liu, H.; Wang, Y. Fault diagnosis for centrifugal pumps based on complementary ensemble empirical mode decomposition, sample entropy and random forest. In Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12–15 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1317–1320. [Google Scholar] [CrossRef]
- Ahmad, Z.; Rai, A.; Maliuk, A.S.; Kim, J.M. Discriminant feature extraction for centrifugal pump fault diagnosis. IEEE Access 2020, 8, 165512–165528. [Google Scholar] [CrossRef]
- Hasan, M.J.; Rai, A.; Ahmad, Z.; Kim, J.M. A fault diagnosis framework for centrifugal pumps by scalogram-based imaging and deep learning. IEEE Access 2021, 9, 58052–58066. [Google Scholar] [CrossRef]
- Ahmad, Z.; Nguyen, T.K.; Ahmad, S.; Nguyen, C.D.; Kim, J.M. Multistage centrifugal pump fault diagnosis using informative ratio principal component analysis. Sensors 2021, 22, 179. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Alwadie, A.S.; Glowacz, A.; Awais, M.; Rahman, S.; Khan, M.K.A.; Jalalah, M.; Alshorman, O.; Caesarendra, W. A novel feature extraction and fault detection technique for the intelligent fault identification of water pump bearings. Sensors 2021, 21, 4225. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Kumar, A.; Gandhi, C.; Zhou, Y.; Kumar, R.; Xiang, J. Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Appl. Acoust. 2020, 167, 107399. [Google Scholar] [CrossRef]
- Howedi, A.; Lotfi, A.; Pourabdollah, A. An entropy-based approach for anomaly detection in activities of daily living in the presence of a visitor. Entropy 2020, 22, 845. [Google Scholar] [CrossRef]
- Callegari, C.; Giordano, S.; Pagano, M. Entropy-based network anomaly detection. In Proceedings of the 2017 International Conference on Computing, Networking and Communications (ICNC), Santa Clara, CA, USA, 26–29 January 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 334–340. [Google Scholar] [CrossRef]
- Palmieri, F. Network anomaly detection based on logistic regression of nonlinear chaotic invariants. J. Netw. Comput. Appl. 2019, 148, 102460. [Google Scholar] [CrossRef]
- Wu, S.; Moore, B.E.; Shah, M. Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2054–2060. [Google Scholar] [CrossRef]
- Garland, J.; Jones, T.R.; Neuder, M.; Morris, V.; White, J.W.; Bradley, E. Anomaly detection in paleoclimate records using permutation entropy. Entropy 2018, 20, 931. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lu, M.; Kong, S.; Ai, J. A Dynamic Anomaly Detection Approach Based on Permutation Entropy for Predicting Aging-Related Failures. Entropy 2020, 22, 1225. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Styp-Rekowski, K.; Nedelkoski, S.; Kao, O. Autoencoder-based condition monitoring and anomaly detection method for rotating machines. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 4093–4102. [Google Scholar] [CrossRef]
- de Paula Monteiro, R.; Lozada, M.C.; Mendieta, D.R.C.; Loja, R.V.S.; Bastos Filho, C.J.A. A hybrid prototype selection-based deep learning approach for anomaly detection in industrial machines. Expert Syst. Appl. 2022, 204, 117528. [Google Scholar] [CrossRef]
- Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S.K. MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks. In Proceedings of the International Conference on Artificial Neural Networks, Munich, Germany, 17–19 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 703–716. [Google Scholar] [CrossRef]
- Kumar, S.R.; Iniyal, U.; Harshitha, V.; Abinaya, M.; Janani, J.; Jayaprasanth, D. Anomaly Detection in Centrifugal Pumps Using Model Based Approach. In Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022; IEEE: Piscataway, NJ, USA, 2022; Volume 1, pp. 427–433. [Google Scholar] [CrossRef]
- Dutta, N.; Kaliannan, P.; Subramaniam, U. Application of machine learning algorithm for anomaly detection for industrial pumps. In Machine Learning Algorithms for Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 237–263. [Google Scholar] [CrossRef]
- Dutta, A.; Karimi, I.A.; Farooq, S. PROAD (Process Advisor): A Health Monitoring Framework for Centrifugal Pumps. Comput. Chem. Eng. 2022, 163, 107825. [Google Scholar] [CrossRef]
- Charoenchitt, C.; Tangamchit, P. Anomaly Detection of a Reciprocating Compressor using Autoencoders. In Proceedings of the 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 20–22 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Rand, D.; Young, L.S. Dynamical Systems and Turbulence. In Lecture Notes in Mathematics; Springer: Cham, Switzerland, 1981; Volume 898. [Google Scholar] [CrossRef]
- Vlachos, I.; Kugiumtzis, D. State space reconstruction for multivariate time series prediction. arXiv 2008, arXiv:0809.2220. [Google Scholar] [CrossRef]
- Abarbanel, H.D.; Brown, R.; Sidorowich, J.J.; Tsimring, L.S. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 1993, 65, 1331. [Google Scholar] [CrossRef]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef]
- Ribeiro, M.; Henriques, T.; Castro, L.; Souto, A.; Antunes, L.; Costa-Santos, C.; Teixeira, A. The entropy universe. Entropy 2021, 23, 222. [Google Scholar] [CrossRef] [PubMed]
- Azami, H.; Escudero, J. Amplitude-and fluctuation-based dispersion entropy. Entropy 2018, 20, 210. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Baselli, G.; Liberati, D.; Montano, N.; Cogliati, C.; Gnecchi-Ruscone, T.; Malliani, A.; Cerutti, S. Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 1998, 78, 71–78. [Google Scholar] [CrossRef]
- Feutrill, A.; Roughan, M. A Review of Shannon and Differential Entropy Rate Estimation. Entropy 2021, 23, 1046. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Unakafova, V.A.; Keller, K. Efficiently measuring complexity on the basis of real-world data. Entropy 2013, 15, 4392–4415. [Google Scholar] [CrossRef]
- Steven, V. Heart rate variability linear and nonlinear analysis with applications in human physiology. Diss. Abstr. Int. 2010, 71. [Google Scholar]
- Lu, C.; Sun, Q.; Tao, L.; Liu, H.; Lu, C. Bearing health assessment based on chaotic characteristics. Shock Vib. 2013, 20, 519–530. [Google Scholar] [CrossRef]
- Rolo-Naranjo, A.; Montesino-Otero, M.E. A method for the correlation dimension estimation for on-line condition monitoring of large rotating machinery. Mech. Syst. Signal Process. 2005, 19, 939–954. [Google Scholar] [CrossRef]
- Ihlen, E.A. Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 2012, 3, 141. [Google Scholar] [CrossRef]
- JiaQing, W.; Han, X.; Yong, L.; Tao, W.; Zengbing, X. Detrended Fluctuation Analysis and Hough Transform Based Self-Adaptation Double-Scale Feature Extraction of Gear Vibration Signals. Shock Vib. 2016, 2016, 3409897. [Google Scholar] [CrossRef]
- Golińska, A.K. Detrended fluctuation analysis (DFA) in biomedical signal processing: Selected examples. Stud. Log. Gramm. Rhetor. 2012, 29, 107–115. [Google Scholar]
- Henry, B.; Lovell, N.; Camacho, F. Nonlinear dynamics time series analysis. In Nonlinear Biomedical Signal Processing: Dynamic Analysis and Modeling; Wiley: Hoboken, NJ, USA, 2012; Volume 2, pp. 1–39. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Gao, J.; Liu, F.; Zhang, J.; Hu, J.; Cao, Y. Information entropy as a basic building block of complexity theory. Entropy 2013, 15, 3396–3418. [Google Scholar] [CrossRef]
- Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghì, N. Gibbs and Boltzmann entropy in classical and quantum mechanics. arXiv 2019, arXiv:1903.11870. [Google Scholar] [CrossRef]
- Coifman, R.R.; Wickerhauser, M.V. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 1992, 38, 713–718. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. In Contributions to the Theory of Statistics, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Davis, CA, USA, 20–30 June 1960; The Regents of the University of California: Davis, CA, USA, 1961; Volume 1. [Google Scholar]
- Sharma, V.; Parey, A. A review of gear fault diagnosis using various condition indicators. Procedia Eng. 2016, 144, 253–263. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Li, X. Spectral entropy: A complementary index for rolling element bearing performance degradation assessment. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 1223–1231. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Scholkopf, B. Support vector machines: A practical consequence of learning theory. IEEE Intell. Syst. 1998, 13, 4. [Google Scholar] [CrossRef]
- Hossin, M.; Sulaiman, M. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Wu, Z. The application of a correlation dimension in large rotating machinery fault diagnosis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2000, 214, 921–930. [Google Scholar] [CrossRef]
- Boon, M.Y.; Henry, B.I.; Suttle, C.M.; Dain, S.J. The correlation dimension: A useful objective measure of the transient visual evoked potential? J. Vis. 2008, 8, 6. [Google Scholar] [CrossRef]
- Brown, J. Classifiers and their metrics quantified. Mol. Inform. 2018, 37, 1700127. [Google Scholar] [CrossRef]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R Package 2014, 27, 9. [Google Scholar]
- Leite, G.d.N.P.; Araújo, A.M.; Rosas, P.A.C.; Stosic, T.; Stosic, B. Entropy measures for early detection of bearing faults. Phys. A Stat. Mech. Its Appl. 2019, 514, 458–472. [Google Scholar] [CrossRef]
Fault Label | Impeller Fault | Stages Status | Severity |
---|---|---|---|
P1 | Healthy | All stages healthy | healthy |
P2 | PEB | Faulty stages 9-10 | 1-2 |
P3 | PEB | Faulty stages 6-10 | 1-5 |
P4 | PEB | Faulty stages 5-10 | 3-8 |
P5 | POB | Faulty stages 9-10 | 1-2 |
P6 | POB | Faulty stages 6-10 | 1-5 |
P7 | POB | Faulty stages 5-10 | 3-8 |
P8 | ICB | Faulty stages 10 | 1 |
P9 | ICB | Faulty stages 7-10 | 1-4 |
P10 | ICB | Faulty stages 5-10 | 1-6 |
P11 | IB | Faulty stages 10 | 1 |
P12 | IB | Faulty stages 7-10 | 1-4 |
P13 | IB | Faulty stages 5-10 | 1-6 |
Fault | Label Stage and Valve Type | Fault Type |
---|---|---|
P1 | All stages | Healthy |
P2 | Second stage, discharge | Valve seat wear |
P3 | Second stage, discharge | Corrosion of valve plate |
P4 | Second stage, discharge | Fracture of valve plate |
P5 | Second stage, discharge | Broken Spring |
P6 | Second stage, inlet valve | Valve seat wear |
P7 | Second stage, inlet valve | Corrosion of valve plate |
P8 | Second stage, inlet valve | Fracture of valve plate |
P9 | Second stage, inlet valve | Broken Spring |
P10 | First stage, discharge | Valve seat wear |
P11 | First stage, discharge | Corrosion of valve plate |
P12 | First stage, discharge | Fracture of valve plate |
P13 | First stage, discharge | Broken Spring |
P14 | First stage, inlet valve b | Valve seat wear |
P15 | First stage, inlet valve b | Corrosion of valve plate |
P16 | First stage, inlet valve b | Fracture of valve plate |
P17 | First stage, inlet valve b | Broken Spring |
Features | Model | A2 | A3 | A4 |
---|---|---|---|---|
Statistical | RF | 67.76 | 68.34 | 68.50 |
SVM | 68.50 | 70.51 | 71.03 | |
Entropy-based | RF | 98.09 | 97.83 | 94.70 |
SVM | 99.50 | 98.96 | 97.30 | |
Info-Statistical | RF | 84.60 | 84.80 | 93.81 |
SVM | 86.26 | 86.96 | 96.32 | |
All Features | RF | 97.76 | 99.38 | 99.37 |
SVM | 99.59 | 99.69 | 99.81 |
Class | Sensitivity | Specificity | Error | FPR | AUC |
---|---|---|---|---|---|
P1 | 100.00 | 100.00 | 0.00 | 0.00 | 100.00 |
P2 | 99.12 | 99.96 | 0.88 | 0.00 | 99.74 |
P3 | 99.78 | 100.00 | 0.22 | 0.00 | 99.99 |
P4 | 99.11 | 99.87 | 0.89 | 0.13 | 99.19 |
P5 | 98.68 | 100.00 | 1.32 | 0.00 | 99.94 |
P6 | 100.00 | 99.98 | 0.00 | 0.02 | 99.89 |
P7 | 98.90 | 99.96 | 1.10 | 0.04 | 99.73 |
P8 | 99.55 | 99.87 | 0.45 | 0.13 | 99.20 |
P9 | 98.67 | 99.93 | 1.33 | 0.07 | 99.50 |
P10 | 99.56 | 99.98 | 0.44 | 0.02 | 99.87 |
P11 | 99.33 | 99.91 | 0.67 | 0.09 | 99.42 |
P12 | 100.00 | 100.00 | 0.00 | 0.00 | 100.00 |
P13 | 100.00 | 99.93 | 0.00 | 0.07 | 99.56 |
Features | Model | A1 | A2 | A3 |
---|---|---|---|---|
Statistical | RF | 83.96 | 74.07 | 72.33 |
SVM | 86.91 | 76.55 | 75.55 | |
Entropy based | RF | 95.35 | 94.12 | 86.21 |
SVM | 97.57 | 94.55 | 91.87 | |
Info-Statistical | RF | 93.96 | 90.66 | 85.78 |
SVM | 96.83 | 94.27 | 90.38 | |
All Features | RF | 95.35 | 94.40 | 88.82 |
SVM | 97.90 | 95.47 | 93.63 |
Class | Sensitivity | Specificity | Error | FPR | AUC |
---|---|---|---|---|---|
P1 | 100.00 | 100.00 | 0.00 | 0.00 | 100.00 |
P2 | 100.00 | 100.00 | 0.00 | 0.00 | 100.00 |
P3 | 96.07 | 99.73 | 3.93 | 0.27 | 97.70 |
P4 | 99.56 | 99.92 | 0.44 | 0.08 | 99.33 |
P5 | 93.99 | 99.70 | 6.01 | 0.30 | 97.42 |
P6 | 100.00 | 99.97 | 0.00 | 0.03 | 99.78 |
P7 | 100.00 | 99.78 | 0.00 | 0.22 | 98.26 |
P8 | 97.01 | 99.92 | 2.99 | 0.08 | 99.25 |
P9 | 100.00 | 99.95 | 0.00 | 0.05 | 99.57 |
P10 | 100.00 | 100.00 | 0.00 | 0.00 | 100.00 |
P11 | 100.00 | 99.86 | 0.00 | 0.14 | 98.91 |
P12 | 94.56 | 99.89 | 5.44 | 0.11 | 98.95 |
P13 | 99.13 | 99.92 | 0.87 | 0.08 | 99.32 |
P14 | 99.56 | 99.95 | 0.44 | 0.05 | 99.55 |
P15 | 99.56 | 99.92 | 0.44 | 0.08 | 99.33 |
P16 | 97.42 | 99.92 | 2.58 | 0.08 | 99.27 |
P17 | 98.29 | 100.00 | 1.71 | 0.00 | 99.95 |
Machine | Signal | Accuracy | Accuracy | Accuracy |
---|---|---|---|---|
Entropy Features | Entropy Features | Spectrogram | ||
+SVM | +RF | +CNN | ||
Centrifugal Pump | A2 | 99.50 | 98.09 | 98.86 |
A3 | 98.96 | 97.83 | 97.36 | |
A4 | 97.30 | 94.70 | 98.61 | |
Reciprocating Compressor | A1 | 97.57 | 95.35 | 96.74 |
A2 | 94.55 | 94.12 | 95.55 | |
A3 | 91.87 | 86.21 | 93.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, R.; Cerrada, M.; Yang, S.; Cabrera, D.; Estupiñan, E.; Sánchez, R.-V. Fault Classification in a Reciprocating Compressor and a Centrifugal Pump Using Non-Linear Entropy Features. Mathematics 2022, 10, 3033. https://doi.org/10.3390/math10173033
Medina R, Cerrada M, Yang S, Cabrera D, Estupiñan E, Sánchez R-V. Fault Classification in a Reciprocating Compressor and a Centrifugal Pump Using Non-Linear Entropy Features. Mathematics. 2022; 10(17):3033. https://doi.org/10.3390/math10173033
Chicago/Turabian StyleMedina, Ruben, Mariela Cerrada, Shuai Yang, Diego Cabrera, Edgar Estupiñan, and René-Vinicio Sánchez. 2022. "Fault Classification in a Reciprocating Compressor and a Centrifugal Pump Using Non-Linear Entropy Features" Mathematics 10, no. 17: 3033. https://doi.org/10.3390/math10173033
APA StyleMedina, R., Cerrada, M., Yang, S., Cabrera, D., Estupiñan, E., & Sánchez, R. -V. (2022). Fault Classification in a Reciprocating Compressor and a Centrifugal Pump Using Non-Linear Entropy Features. Mathematics, 10(17), 3033. https://doi.org/10.3390/math10173033