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Abstract: This paper describes a comparison of three types of feature sets. The feature sets were
intended to classify 13 faults in a centrifugal pump (CP) and 17 valve faults in a reciprocating com-
pressor (RC). The first set comprised 14 non-linear entropy-based features, the second comprised
15 information-based entropy features, and the third comprised 12 statistical features. The clas-
sification was performed using random forest (RF) models and support vector machines (SVM).
The experimental work showed that the combination of information-based features with non-linear
entropy-based features provides a statistically significant accuracy higher than the accuracy provided
by the Statistical Features set. Results for classifying the 13 conditions in the CP using non-linear
entropy features showed accuracies of up to 99.50%. The same feature set provided a classification
accuracy of 97.50% for the classification of the 17 conditions in the RC.

Keywords: approximate entropy; non-linear systems; phase space reconstruction; fault classification;
random forest; support vector machines

MSC: 28D20

1. Introduction

In industrial applications, centrifugal pumps are equipment for transferring energy to
fluids to enable pipeline transportation. Similarly, reciprocating compressors are essential
in petrochemical plants and refineries for gas and other fluid transportation. Reliable
functioning of these types of equipment is essential in industry to avoid unexpected
halting of processes and economic losses. Consequently, several condition monitoring (CM)
methods have been proposed for diagnosing faults in centrifugal pumps and reciprocating
compressors [1–3].

The CM methods are based on sensing several variables from the target equipment,
such as electrical current, vibration, sound, temperature, or acoustic emission. Some of
the most common variables are vibration signals recorded using accelerometer sensors.
Such a set of signals is processed for extracting features useful for fault detection and
classification. Traditional techniques for vibration signal analysis are divided into time,
frequency, and time-frequency methods. In general, signal processing techniques assume
that signals represent linear systems that comply with the stationary and periodicity
condition. Unfortunately, this assumption is not always met. In particular, in most rotatory
machines, the vibration signals represent a non-linear system [4]. These constraints can be
efficiently handled using chaos theory and non-linear dynamics techniques.

In this work, we propose to use the approximate entropy (AppEn) [5,6] and variants,
such as the sample entropy (SampEn) [7,8] and fuzzy entropy (FuzzyEn) [9,10] for fault
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classification. The emphasis of this research is feature extraction. The classification stage
can be performed using either classical or deep learning-based classifiers. However, as the
feature extraction is computationally expensive, selecting deep learning models would
impose an unnecessary cost. In consequence, we have selected two efficient classical models
corresponding to RF and the multi-class SVM [11,12]. The original contributions of this
research are the following:

• Extraction of a non-linear entropy-based feature set that provides high classification
accuracy using RF and SVM models. The accuracy attained by the SVM model trained
with the non-linear Entropy Features set was higher than the accuracy attained by a
CNN model trained with 2D spectrogram images for both the CP and the RC.

• Detailed comparison of three feature sets useful for classifying a large number of faults
in a CP and an RC. These are the non-linear Entropy Features, the Information Entropy,
and the Statistical Features sets. The first set is composed of the approximate entropy
and several variants, and the second set is composed of the combination of the wavelet
packet transform (WPT)-based features and the power spectrum entropy (PSE)-based
features. Finally, the third set is composed of classical time series statistical features.

• The non-linear Entropy Features set and the All Features set corresponding to the fusion
of the three feature sets when compared provided a classification accuracy of up to
99.59% for the CP and up to 97.90% for the RC. For the CP, 13 different conditions
were classified, and 17 valve conditions were classified for the RC.

The paper is organized as follows: in Section 3 the theoretical background is presented.
In Section 4, the test bed for acquiring the vibration signals from the CP and RP is presented.
In Sections 5 and 6, the methodology for extraction of the different sets of features is
described. The methodology for classifying faults using RF and SVM models based on
the extracted features is presented in Section 7. The results are described in Section 8, and
finally, the conclusion and future work are presented in Section 10.

2. Related Research

The related research is discussed in the following subsections. A compendium with
several publications is presented in Table A1 in terms of their main features. A brief revision
concerning these publications is presented in Sections 2.1–2.3.

2.1. Rotating Machinery

Although non-linear entropy methods have been used for classifying a small set of
faults in centrifugal pumps and reciprocating compressors, attaining high accuracy, their
application to other rotatory machines (RM) has also been reported. Research concerning
the correlation dimension (CD) is presented in [13]. The approach analyzes the vibration
signal measured from a roller element bearing. Results allow them to conclude that CD
features show significant statistical differences between a roller element close to failure and
a new one. The largest Lyapunov exponent (LLE) [14] has been used to show that faults
in non-linear rotatory systems can be detected early when the onset of the fault occurs.
This feature evolves as the fault progresses. The research reported in [4] combines the CD,
the approximate entropy, the LLE, and visualization of the phase space for detecting damage
in bearings and gearboxes. In [15], a method for classifying seven different conditions
in roller bearings and ten types of conditions on a gearbox is reported. The approach is
based on features extraction from the Poincaré plot and their classification using SVM.
The accuracy attained was 100% for the roller bearings and 99.3% for the gearbox dataset.
A combination of the spectral graph wavelet transform (SGWT) with detrended fluctuation
analysis (DFA) was used for denoising the vibration signals in RM [16]. The first stage is
converting the vibration signal into a graph signal. The SGWT is used for decomposing the
graph signal into scaling function coefficients and spectral graph wavelet coefficients. DFA
is used for selecting the level of decomposition of SGWT. A bi-dimensional representation
of vibration signals denoted as the complexity-entropy causality plane (CECP) useful
for fault classification in RM is reported in [17]. This 2D representation was obtained
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with the normalized permutation entropy and the Jensen–Shannon complexity of time
series. The authors showed the utility of this representation for improving the classification
accuracy of faults in roller bearing and gear applications using SVM models. A review
of entropy algorithms and its variants in RM is reported in [18,19]. The reviews briefly
introduced several entropy methods and their application in fault detection in RM.

2.2. Reciprocating Compressor

An application of faults diagnosis in an RC using multi-scale entropy is reported in [20].
After performing the signals’ local mean decomposition (LMD), vibration signals’ multi-
scale entropy (MSE) features were calculated. Four conditions were classified using SVM,
obtaining a classification accuracy of 95.0%. In a previous study [2], a method for feature
extraction from vibration signals recorded from an RC is proposed to classify 13 different
conditions of combined faults in valves and roller bearings. The feature extraction method
was based on symbolic dynamics and complex correlation measures. The extracted features
were used for fault classification using several machine learning models, attaining accuracy
of up to 99%. Research concerning the fault diagnosis and severity of valve leakage in an RC
is reported in [21]. The diagnosis was performed using features extracted from the p−V
diagram using principal component analysis (PCA) and linear discriminant analysis (LDA).
The method showed that the p−V diagram’s features help classify two types of faults with
several levels of severity, attaining classification accuracies of up to 99.62%. The research
reported in [22] concerns the classification of faults based on images representing the
p−V diagram. A set of features is extracted from the images for classifying eight health
conditions in valves, piston rings, and valve springs. Accuracies of up to 97.9% were
obtained using artificial neural network (ANN) models. Research reported in [23] combines
the binary moth flame optimization (BMFO) algorithm with the K-nearest neighbor (KNN)
algorithm for classifying three types of valve faults in an RC, attaining accuracies higher
than 99%. Research concerning convolutional neural networks (CNNs) for classifying
faults in an RC is reported in [24]. The vibration signal was re-arranged into a 2D format
by bringing its time samples into lines that moved 45 degrees counterclockwise to reinforce
their features. This array was fed to the CNN that incorporated the attention mechanism
through squeeze-and-excitation (SE) modules. The maximum accuracy attained was 99.4%.
Classification of four different valve conditions using 1D and 2D CNNs is reported in [25].
The classification was performed using vibration signals in the case of the 1D CNN and
considering the fusion of seven channels (four channels with vibration signals and three
channels with pressure) in the case of 2D CNN. The classification was performed for
different SNR values of the signals, and the highest classification accuracy was 100% for
signals with more than 20 dB of SNR. The CNN used has a complex architecture.

2.3. Centrifugal Pump

The permutation entropy features are used in a fault detection method reported in [26].
The method was applied to hydraulic pump (HYP) fault detection. The vibration signal
was processed using resonance-based sparse signal decomposition (RSDD). A Multi-scale
hierarchical amplitude-aware permutation entropy (MHAAPE) method was applied for
feature extraction. Four fault conditions were classified using a probabilistic neural network,
SVM models, and extreme learning machines (ELM). The approach attained an accuracy
of up to 100%. A method for faults diagnosis in a CP is reported in [27]. The method is
based on applying complementary ensemble empirical mode decomposition (CEEMD) to
vibration signals. The decomposed signals or intrinsic mode functions are processed for
extracting the SampEn. The set of features is used for classification; RF attained classification
accuracies of 94.58% for classifying five conditions. A feature extraction approach from
vibration signals is reported [28] to classify faults in a CP. The discriminant feature extraction
method includes three stages. The first stage is the healthy baseline signal selection.
The second stage is devoted to cross-correlating the healthy baseline signals with the
vibration signals of different fault classes. A set of features is extracted from the resultant
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correlation sequence. In the third stage, time, frequency, and time–frequency domain raw
hybrid features are extracted from baseline signal and vibration signals from faulty classes.
A new set of discriminant features is composed of the correlation coefficient between raw
hybrid feature pools. The combination of all extracted features is fed to an SVM model for
classification. The method is used to classify four conditions in a CP, attaining accuracy
of up to 98.4%. A method for fault classification in a CP based on vibration signals is
reported in [29]. A feature extraction pre-processing is used to obtain a time-frequency
representation using the continuous wavelet transform (CWT). The CWT is converted
to gray images fed to a CNN model with an adaptive learning rate. Accuracies of 100%
are obtained for classifying four different fault conditions. A fault classification method
of a multi-stage CP reported in [30] starts by selecting the fault-specific frequency band
and continues by extracting statistical features in time, frequency, and wavelet domains
from this band. The next step is to select a low dimensional features vector using the
informative ratio PCA. The classification of four conditions in a multi-stage CP using KNN
models. The accuracy attained was 100%. Fault detection and classification for water
pump bearings based on features extracted from the instantaneous power spectrum is
reported in [31]. The instantaneous power spectrum (IPS) was obtained with the voltage
and current measured, and several features were extracted from the IPS for classifying
three different conditions at different load levels. The classification was performed using
an extreme gradient boosting (XBG) model [32]. The application of CNN for classifying
faults in a CP based on acoustic images is reported in [33]. In this application, the sound
signals were acquired from a CP test rig where five different health conditions were
implemented. The sound signals were converted into acoustic images using the analytical
wavelet transform (AWT). The acoustic images were fed to the CNN for classification.
The attained accuracy was 100%.

2.4. Anomaly Detection

Anomaly detection corresponds to identifying events within a stream of data features
that deviate significantly from most available data. Anomaly detection has applications
in many fields. This topic is relevant because the non-linear entropy-based features have
found applications in the context of anomaly detection. Examples of applications have
been reported in [34–39]. Several authors have proposed anomaly detection applications
centered around deep learning. Approaches such as CNN, autoencoders, and generative
adversarial networks [40–42] can be used for anomaly detection implementation. Research
concerning anomaly detection in RM is active. An example is reported in [41] for anomaly
detection in gearboxes where a prototype selection algorithm is used for improving the
training of the feature extractor implemented with a CNN. The research reported in [40]
uses an autoencoder for learning to model the healthy state of the rotating machine. Such
a learning process is performed using vibration signals representing the healthy state.
The anomaly is detected using a threshold-based approach to the reconstruction error of
data acquired from an unknown state. The algorithm was validated with the IMS bearings
dataset. Other recent applications of anomaly detection in RM and also in other fields are
reported in [41,43–46].

3. Theoretical Background
3.1. Phase Space Reconstruction

The phase space reconstruction method is based on the embedding theorem of Taken,
reported in [47]. The theorem postulates that we can recover the equivalent dynamics of
a non-linear system by using time delays from a recorded time-domain signal. The ap-
proximate dynamics correspond to a 1D projection of the system trajectory. The theorem is
mainly applied to univariate time series [47]; however, the multivariate version has also
been reported in [48]. In this research, we are mainly concerned with univariate embedding.

The average mutual information (AMI) enables the selection of the time delay or lag
denoted τ [49]. The AMI is plotted versus τ. According to [50], the selection of τ could be
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the location of the first local minimum of the AMI. The system’s embedding dimension,
denoted as m, could be selected by applying the false nearest neighbors (FNN) method, as
reported in [51].

3.2. Approximate Entropy

Given a signal denoted x including N samples, the AppEn [5,6] measures the reg-
ularity of the time-series. The time-series regularity and dynamics are estimated con-
sidering a higher order dimensional space generated by a series of vectors represented
by time-delayed components of x. The AppEn is calculated for a time-series of length
N, representing a system with embedding dimension m, lag τ, and a distance threshold
between vectors denoted r. In general, the calculation of the AppEn should consider a
window of the signal with length N large enough to reduce the bias in the estimation [6].
However, a limitation is that extending N can significantly increase the computational
cost. AppEn has the advantage of being robust to noise and outliers (see [52] for a detailed
review concerning entropy calculation methods).

3.3. Sample Entropy

The SampEn is obtained through modification of the AppEn algorithm [7]. The mod-
ification consists of the elimination of self-matches in the evaluation of the distance be-
tween lagged vectors. The SampEn avoids the bias introduced in ApEn by considering
self-matches. The resultant features are more consistent and unbiased, even when their
calculation uses short-length signal windows. In addition, the calculation of SampEn is
more straightforward than the calculation of AppEn.

3.4. Fuzzy Entropy

The FuzzyEn measure [10] is a variant of the AppEn that modifies the function used
for estimating the similarity between lagged vectors. The algorithm’s modification is based
on changing the Heaviside function for a fuzzy exponential membership function. The cal-
culation of FuzzyEn also incorporates the modifications introduced for the calculation of
the SampEn.

3.5. Shannon Entropy and Other Measures of Signal Complexity

The entropy measure enables quantification of the complexity of a non-linear dy-
namical system. The Shannon entropy (ShannEn) quantifies the amount of information
in a system. In addition, the conditional entropy quantifies the rate of information gen-
eration [53,54]. Other entropy measures, such as corrected conditional entropy, can be
estimated based on these measures. A detailed review of ShannEn estimation is presented
in [55].

3.6. Permutation Entropy

The permutation entropy (PermEn) is based in partitions [56]. When the time series x
takes many values, their range can be replaced with a symbol sequence {si}. This is done
by defining the partition of the signal range x = P1∪, . . . ,∪Pξ . Based on this partition, the
symbol si = j is defined if xi is in Pj. The PermEn is calculated for different embedding
dimensions m; however, for practical purposes m = 3, 4, . . . , 7. Denote by π the permutation
of order m with probability given as p(π) = #{Cardinality o f permutation π}/N −m + 1;
then, the PermEn is calculated using Equation (1):

PermEn = −∑ p(π)logp(π) (1)

This research used the method reported in [57] for computing the PermEn. The method
is based on pre-calculating values for successive ordinal patterns of order m. This ap-
proach allows the calculation of PermEn in large time series using overlapped successive
time windows.
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3.7. The Correlation Dimension

The system’s phase space enables the calculation of complexity [58] that is quantified
using several non-linear features such as SampEn. In addition, another feature is the
CD which quantifies the number of independent lagged vectors required for defining
a system [59]. Details concerning the estimation of this feature are presented in [60].

3.8. Detrended Fluctuation Analysis

The fractal scaling properties quantified in short intervals of time-series [61] can be
performed using DFA. This approach enables quantitative analysis of non-stationary time-
series [62]. Their calculation requires performing the integration of the signal, subdividing
such a signal into several segments, finding the trend of the signal using least-square
approximations, and calculating the average fluctuation of the signal around the trend.
Details of the estimation of this feature are presented in [63].

3.9. Largest Lyapunov Exponent

The Lyapunov exponent λ quantifies the relative motion of trajectories in the phase-
space of a system [64]. Its value allows for determining if a signal is chaotic or periodic.
A system can be represented by several Lyapunov exponents determined by the embed-
ded dimension. However, the largest one, denoted LLE, is typically used. There are
several algorithms for calculating the Lyapunov exponent [65]. The method proposed by
Rosenstein et al. [66] was implemented in this research.

3.10. Information Entropy and Chaotic Time Series

Information entropy was proposed by Claude Shannon [67] in the context of theoret-
ical communication modeling. A collection of messages sent through a communication
channel can be considered as independent random events with probabilities pi ≥ 0, where
∑n

i=1 pi = 1. Information entropy is defined as:

H = −
n

∑
i=1

pilog pi (2)

The entropy concept is also used in classical thermodynamics in the context of heat
transfer [68]. Gibbs and Boltzmann attained a definition of entropy with an expression
similar to Equation (2) [69]. When dealing with discrete-time signals represented as a vector,
the entropy concept has also been applied to select the best basis for orthogonal wavelet
packets [70]. The authors showed that the assumption that the Karhunen–Loeve basis is
the best, even for a single vector which enables the calculation of several entropy features.
Consider the time-series x where the vector can be arranged in decreasing order such that
xi = 0 for large i. Then, pi = |xi|2‖x‖−2. Without loss of generality, the time-series can
be normalized so ‖x‖−2 = 1. The following features can be estimated: the log energy
entropy, the Shannon information entropy, the norm entropy, the threshold entropy, and the
“sure” entropy.

3.10.1. Tsallis and Rényi Entropy

In the context of systems with complex behavior (including, for instance, chaotic
motion or fractal evolution), Tsallis [71] has proposed an alternative definition of entropy as:

HTq =
K

q− 1

(
1−

N

∑
i=1

pq
i

)
(3)
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where K is a positive constant and q denotes any real number. Tsallis showed that when
q → 1, HTq tends to the classical Boltzmann–Gibbs–Shannon entropy represented by
Equation (2). Similarly, q is used in the Rényi entropy [72] to amplify probabilities as:

HRq =
K

q− 1
log

(
N

∑
i=1

pq
i

)
(4)

Both entropies are parameterized representations of the Boltzmann–Gibbs–Shannon
entropy, where one parameter is used for weighting the probabilities to evaluate different
fractal properties of the system.

3.10.2. Power Spectral Entropy

The complexity can also be quantified using the power spectral density of time-
series [73,74]. This feature has been used for fault detection in gearboxes and roller bearings.
The normalized power spectral density of the time series x is denoted P(ωi), and it can be
expressed as:

pi =
P(ωi)

∑i P(ωi)
. (5)

This equation enables the calculation of the power spectral entropy (PSE) as:

S = −
n

∑
i=1

pilog pi (6)

The PSE is calculated for each time frame and is a vector denoted as S. When the
signal has high complexity, the spectrum of the time series tends to be uniform, and the
PSE is high. In contrast, when the spectrum has a narrow peak, the PSE feature is lower,
and the signal is less complex.

3.11. Machine Learning Techniques
3.11.1. Random Forest

The RF algorithm is a machine learning algorithm that combines a set of weak learners
using ensemble methods to attain a high-quality classification or regression model [75].
The most common weak learners in the RF model are tree-type classifiers used for growing
forests of randomized trees using bootstraps resampling techniques [76].

3.11.2. Support Vector Machines

The machine learning model proposed by Vapnik [77] is the SVM. In its more basic
form, the SVM is used for solving problems of binary classification where the data in
each of the classes can be separated using a hyperplane that can be constructed based on
the support vectors, as detailed in [78]. In practical applications, the SVM incorporates
higher-dimensional transformation represented as kernels for transforming the feature
space to increase class separability. Similarly, multi-class support vector machines are also
available, as reported in [11].

4. Experimental Test-Bed

In this research, two different vibration signal datasets were considered. The first was
acquired from a CP and the second from an RC.

4.1. Centrifugal Pump Test-Bed

In this research, a multi-stage vertical CP is considered. The CP model 3SV10GE4F20
was a 2 HP pump operated at 3500 rpm. The pump had ten stages for a nominal flow
of 15 GPM. The vibration signals were recorded using model 603C01 accelerometers.
The module NI 9234 connected to a laptop computer was used to acquire the vibration signal
using a sampling frequency of 50 kHz. The physical description and locations of sensors
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are shown in Figure 1. The signal acquisition was performed under controlled operating
conditions concerning the room temperature, relative humidity, and environmental noise.

(a) (b)

Figure 1. CP and sensors. (a) Multi-stage vertical CP. (b) Locations of sensors. The vibration signals
were recorded using A1, A2, A3, and A4 accelerometers.

Six experimental conditions were considered related to the discharge pressure. The con-
ditions are denoted as Ci with i ranging from 1 to 6. The pressure started at 5.5 bar,
increasing by 1 bar for each condition. C1 corresponds to a discharge pressure of 5.5 bar.

4.1.1. Faults of the CP

A set of 13 impeller faults were configured in the CP. One condition corresponded to
a CP where all stages were healthy. Three conditions involved pitting at the entrance of
the impeller blades (PEB), three conditions involved pitting at the output of the impeller
blades (POB), three conditions involved impeller channel blockade (ICB), and finally, three
conditions involved an imbalanced impeller (IB). The pitting and impeller blockade can
affect several stages of a pump with different levels of severity. For instance, in fault P3,
the severity level for stage 6 was 1, and the severity increased with the stage number,
and it was 5 for stage 10. The pitting severity levels were attained by changing the number
and diameter of holes in the blades. The ICB severity levels were attained by varying the
percent of blocked channels in the impeller. The impeller imbalance severity was obtained
by increasing the surface of the cut portion of the impeller front cover. Table 1 presents the
list of configured faults.

Table 1. Faults conditions in the CP.

Fault Label Impeller Fault Stages Status Severity

P1 Healthy All stages healthy healthy

P2 PEB Faulty stages 9-10 1-2

P3 PEB Faulty stages 6-10 1-5

P4 PEB Faulty stages 5-10 3-8

P5 POB Faulty stages 9-10 1-2

P6 POB Faulty stages 6-10 1-5



Mathematics 2022, 10, 3033 9 of 29

Table 1. Cont.

Fault Label Impeller Fault Stages Status Severity

P7 POB Faulty stages 5-10 3-8

P8 ICB Faulty stages 10 1

P9 ICB Faulty stages 7-10 1-4

P10 ICB Faulty stages 5-10 1-6

P11 IB Faulty stages 10 1

P12 IB Faulty stages 7-10 1-4

P13 IB Faulty stages 5-10 1-6

4.1.2. CP Vibration Signal Dataset

The vibration signal acquisition was performed by maintaining the environmental
condition within a controlled range. The motor rotation was set to 3600 rpm. A pressure
condition Ci was set, and the vibration signal was acquired during 10 s. Ten repetitions
were performed for each of the faults conditions P1 to P13. Consequently, 60 vibration
signals were recorded for each condition. A total of 780 vibration signals are included in
the dataset, including all fault conditions.

4.2. Reciprocating Compressor Test-Bed

The RC test bed is centered around a compressor model EGB-250 with two stages.
The compressor is driven by an induction motor with a power of 5.5 HP that operates at
3470 rpm.

A detailed description of the test bed is described in [2]. The test bed incorporates
several accelerometer sensors for acquiring the vibration signals. The accelerometers are
denoted as A1, A2, A3, and A4 and were located as shown in Figure 2. Module NI9234 was
used to acquire the vibration signals from model 603C01 accelerometers. The sampling
frequency was 50 kHz. The acquired vibration signals were transferred to a laptop computer.

Figure 2. Sensors’ locations in the RC. The accelerometers are denoted as A1, A2, A3, and A4.

4.2.1. Faults of the Reciprocal Compressor

The test bed enables the configuration of a set of 17 fault conditions concerning the
valves. Four faults were configured for compressor stages and the discharge and inlet
valves. The faults configured were (a) valve seat wear, (b) corrosion of the valve plate,
(c) fracture of the valve plate, and broken spring. Table 2 presents the completed list of
configured faults.
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Table 2. Valve faults in the RC.

Fault Label Stage and Valve Type Fault Type

P1 All stages Healthy

P2 Second stage, discharge Valve seat wear

P3 Second stage, discharge Corrosion of valve plate

P4 Second stage, discharge Fracture of valve plate

P5 Second stage, discharge Broken Spring

P6 Second stage, inlet valve Valve seat wear

P7 Second stage, inlet valve Corrosion of valve plate

P8 Second stage, inlet valve Fracture of valve plate

P9 Second stage, inlet valve Broken Spring

P10 First stage, discharge Valve seat wear

P11 First stage, discharge Corrosion of valve plate

P12 First stage, discharge Fracture of valve plate

P13 First stage, discharge Broken Spring

P14 First stage, inlet valve b Valve seat wear

P15 First stage, inlet valve b Corrosion of valve plate

P16 First stage, inlet valve b Fracture of valve plate

P17 First stage, inlet valve b Broken Spring

4.2.2. RC Vibration Signal Dataset

Each vibration signal has a duration of 10 s. The motor rotated at 3462 rpm, represent-
ing a crankshaft rotation of 768 rpm. The operating conditions of the RC were kept constant
during the vibration signal acquisition. In particular, the tank pressure was kept at 3 bar,
the inlet pressure and discharge pressure were kept within the nominal range, and the
surface temperature of the valve cover was maintained. Similarly, the environmental con-
ditions corresponding to the room temperature and relative humidity were maintained
within a predefined range. A total of 15 vibration signals were acquired for each fault
condition, and a total of 255 vibration signals were acquired for each sensor.

5. Feature Extraction from the CP
5.1. Non-Linear Entropy Based Features

Each vibration signal in the CP dataset was processed for extracting a set of 29 features.
The set of features was composed of a subset of 14 features corresponding to non-linear
entropy features (Table A2) defined in Equations (A1)–(A14), a subset of 15 features cor-
responding to information-based features (Table A3) defined in Equations (A15)–(A29).
The first step consisted of performing the phase space reconstruction [48] for estimating
the spatial dimensions m and the lag τ of the system. The entropy-based features were
estimated using these parameters. Each feature set estimated in a widow was considered a
feature sample. Five non-contiguous segments of size 12,000 samples from each vibration
signal were considered for calculating features. As the number of vibration signals files
was 780, the total number of feature samples was 780× 5 = 3900.

5.2. Statistical Features

Additionally, a set of 12 statistical features (Table A4), defined in Equations (A30)–(A41),
were extracted to compare to the entropy features set and be combined with other feature
sets to evaluate their accuracy. The procedure for extracting the statistical features was
similar to extracting the non-linear features. Three-thousand nine-hundred (3900) samples
for the CP dataset were extracted and considered for classification.
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6. Feature Extraction from the RC
6.1. Entropy Based Features

The procedure for extracting the features from the RC was similar to extracting the
features from the CP. However, the number of segments with 12,000 samples was increased
to ten. This increment was justified because this dataset had fewer files (255). A set of
29 entropy-based features was extracted from each signal segment. In total, 2550 feature
samples were obtained for this dataset.

6.2. Statistical Features

A set of 2550 feature samples was obtained from the RC vibration signal dataset.
The procedure was similar to the case of the CP. Each feature sample comprised 12
statistical features extracted from each of the windows considered, and each signal was
subdivided into ten fragments.

7. Classification of Faults Using RF and SVM

Each feature dataset was used as input to both classical machine learning algorithms.
Each dataset was randomly split into a training set (85%) and a test set (15%). The training
set was used for 10-fold cross-validation, and the accuracy of the partitioned trained model
was calculated with the test set. This entire process (including the splitting) was repeated
ten times, and the accuracy is the average obtained during the repetitions.

The accuracy and the area under the Receiver Operator Curve (ROC) are two relevant
metrics for classifier performance. Several metrics [79] were used for evaluating the
classification results. The confusion matrix elements were used for defining the metrics [80].

8. Results
8.1. Results for the CP Dataset

The set of fault conditions for the CP included several severity levels in the impeller
(see Table 1). Examples of the vibration signals for the CP dataset are shown in Figure 3.
Four conditions are shown, and in this subset, only subtle differences in signal amplitude
can be visually detected. Any fault signature could be affected by noise.

In Figure 4, the AppEn for four vibration signals of the CP dataset are shown. Each
of the vibration signals represents a fault condition. The utility of non-linear features for
detecting fault conditions in vibration signals is shown in the following paragraphs. The
feature estimation in each signal starts by performing the phase space reconstruction [47]
aimed at estimating the system dimension m and the lag τ. These parameters are used
for calculating the AppEn for several values of r. The AppEn for the CP signals increases
with r until attaining a maximum and decreases with the increase in r. In this example,
the differences are evident between each impeller’s conditions.

The LLE is calculated using four vibration signals extracted from the CP dataset.
The calculation procedure was explained in Section 3.9. Results concerning the LLE are
shown in Figure 5. The LLE is negative for the healthy class, class P6, and class P13.
However, it is positive for class P10. The sign of the Lyapunov exponent could be related to
the presence of chaos when the LLE is positive. When the LLE is negative, the time series
could represent a system with periodic dynamics, as suggested in [65].

A non-integer dimension usually characterizes non-linear systems that could have
a chaotic nature. Generally, when dealing with chaotic systems, the Rényi dimension is used
as a feature of strange attractors that enables the estimation of several feature dimensions.
The D0 is the fractal dimension, D1 is the information dimension, and D2 is the CD [81].
Like AppEn estimation, the first step corresponds to the phase space reconstruction that
provides the embedding dimension m. Parameter m is the upper bound of the CD [82].
The CD feature was estimated for several vibration signals of the CP dataset. The results
are shown in Figure 6. This set of signals has estimated embedding dimensions of 5 for P1
and P6, and 4 for P10 and P13. The CD is lower than 5 and higher than 4 for the signals
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from classes P1 and P6. Similarly, for classes P10, and P13, the CD values are higher than 3
and lower than 4.

(a) (b)

(c) (d)

Figure 3. Vibration signals from the CP dataset. (a) Signal from class P1. (b) Signal from class P6.
(c) Signal from class P10, (d) Signal from class P13.

(a) (b)

(c) (d)

Figure 4. AppEn for several signals from the pump dataset. (a) ApEn for a signal from class P1,
(b) ApEn for a signal from class P6, (c) ApEn for a signal from class P10, (d) ApEn for a signal from
class P13.
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(a) (b)

(c) (d)

Figure 5. LLE for several signals from the CP dataset. (a) LLE for class P1, (b) LLE for class P6,
(c) LLE for class P10, (d) LLE for class P13.

(a) (b)

(c) (d)

Figure 6. CD for several signals from the CP dataset. (a) CD for a signal from class P1, (b) CD for a
signal from class P6, (c) CD for a signal from class P10, (d) CD for a signal from class P13.

The percentages of accuracy for classifying the fault considering the CP dataset using
RF and SVM are presented in Table 3. The accuracy is presented for each of the models and
feature sets considered. The vibration signal channels A2, A3, and A4 were considered
for feature extraction. Vibration signal channel A1 was not considered for two reasons.
Firstly, the computational time of the feature extraction is high, and to keep the total feature
extraction time feasible with the available hardware, we only considered three channels.
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Secondly, we selected the channels close to the mechanical connection with the motor,
where a roller bearing is located, because the pump stages in this neighborhood have
a higher probability of failing.

Table 3. Percentages of accuracy for fault classification using the vibration signals of the CP dataset.

Features Model A2 A3 A4

Statistical RF 67.76 68.34 68.50
SVM 68.50 70.51 71.03

Entropy-based RF 98.09 97.83 94.70
SVM 99.50 98.96 97.30

Info-Statistical RF 84.60 84.80 93.81
SVM 86.26 86.96 96.32

All Features RF 97.76 99.38 99.37
SVM 99.59 99.69 99.81

The lowest classification accuracy was attained using RF trained with the Statistical
Features set. In this case, the accuracy attained from channel A2 was 67.76%, for channel A3
was 68.34%, and for channel A4 was 68.50%. The accuracy attained using SVM with this
set of features was 68.5% for channel A2, 70.51% for channel A3, and 71.03% for channel
A4. The highest accuracy was 99.59% for channel A2, 99.69% for channel A3, and 99.81%
for channel A4. This accuracy was attained with the All Features set and SVM. With this
set of features, using the RF model, the accuracy was 97.76% for channel A2, 99.38% for
channel A3, and 99.37% for channel A4.

A comparison of accuracy considering both machine learning models and feature sets
is presented in Figure 7. In the box plot, a red line represents the median of the data that
divides the box or inter-quartile range in two parts. This box represents 50% of the data.
The horizontal line over the box represents the upper quartile that indicates that 75% of
the data have values below this quartile. The horizontal line below the box represents
the lower quartile that indicates that 25% of the data have values below this quartile. The
red cross below or over the box represents the outliers. The accuracy is presented for
channel A2 in box plots calculated based on the ten repetitions performed for obtaining ten
different cross-validated models. The highest accuracy (99.50% and 99.59% in Table 3) was
attained based on the Entropy Features and the complete set of features, All Features, with
the SVM model. The lower accuracies (67.76% and 68.50%) for the RF and SVM models
were attained by considering the Statistical Features set. The combination of information
entropy and statistical features (InfoStat Features) provided an intermediate accuracy value
(84.60% and 86.96%) for both considered models.

Table 4 presents several performance metrics [79,80,83] results expressed in percent-
ages. The included metrics are the sensitivity, the specificity, the error, the false positive
rate, and the area under the curve (AUC). The metrics were calculated during the cross-
validation results of the SVM model trained with the All Features set extracted from vibration
signals recorded in the channel A2 from the CP. The highest sensitivity of 100.00% was
attained by classes P1, P6, P12, and P13. In contrast, the lowest sensitivity of 98.67% was
attained by class P9. The highest specificity of 100% was attained by classes P1, P3, P5,
and P12. The lowest specificity of 99.87% was attained by classes P4 and P8. Concerning
the AUC [84], the highest value of 100% was attained by classes P1 and P12, and the lowest
AUC value was 99.19%.
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Figure 7. Comparison of accuracy for the machine learning models tested, considering several
combinations of features from channel A2 acquired from the CP.

Table 4. Performance metrics (in percent) obtained with the SVM model and the All Features set.
The model was trained using vibration signals in channel A2 from the CP dataset.

Class Sensitivity Specificity Error FPR AUC

P1 100.00 100.00 0.00 0.00 100.00

P2 99.12 99.96 0.88 0.00 99.74

P3 99.78 100.00 0.22 0.00 99.99

P4 99.11 99.87 0.89 0.13 99.19

P5 98.68 100.00 1.32 0.00 99.94

P6 100.00 99.98 0.00 0.02 99.89

P7 98.90 99.96 1.10 0.04 99.73

P8 99.55 99.87 0.45 0.13 99.20

P9 98.67 99.93 1.33 0.07 99.50

P10 99.56 99.98 0.44 0.02 99.87

P11 99.33 99.91 0.67 0.09 99.42

P12 100.00 100.00 0.00 0.00 100.00

P13 100.00 99.93 0.00 0.07 99.56

8.2. Results for the RC Dataset

A set of vibration signals for the RC is presented in Figure 8. The vibration signals
presented are for the healthy class P1, and for class P6 representing the valve seat wear (in
the inlet valve) of the second stage. The bottom row shows the vibration signal for class
P11 corresponding to corrosion of the valve plate located in the discharge valve of the first
stage. Finally, the vibration signal for the class P16 represents the fracture of the valve
plate for inlet valve b of the first stage. The appearance of this vibration signal set differs
from that of the CP dataset’s signals. In this dataset, the signals are more peaked, and each
prominent peak indicating an event is surrounded by signals with lower amplitudes.

The AppEn estimated for each of the signals shown in Figure 8 is shown in Figure 9.
The curve shape of AppEn is different from that of the CP. The AppEn in the RC is higher
for low amplitudes and decreases as the threshold of amplitudes represented by the radius
r increases.
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The calculation of the LLE for the set of vibration signals selected from the RC dataset
is shown in Figure 10. Although the LLE value is different for each signal presented, all
the estimated values are positive, suggesting that the system is chaotic [65]. The CD is
presented in Figure 11 for the set of signals of the RC. The CD for these signals has different
values according to the fault type. The estimated values of CD are close to the embedded
dimensions [82] (four, calculated using the phase space reconstruction method).

(a) (b)

(c) (d)

Figure 8. Vibration signals from the RC dataset. (a) Signal from the class P1, (b) signal from class P6,
(c) signal from class P11, (d) signal from class P16.

(a) (b)

(c) (d)

Figure 9. AppEn for several signals from the RC dataset. (a) ApEn for a signal from the class P1,
(b) ApEn for a signal from the class P6, (c) ApEn for a signal from the class P11, (d) ApEn for a signal
from the class P16.
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(a) (b)

(c) (d)

Figure 10. LLE for several signals from the RC dataset. (a) LLE for class P1, (b) LLE for class P6,
(c) LLE for a signal from the class P11, (d) LLE for class P16.

(a) (b)

(c) (d)

Figure 11. CD for several signals from the RC dataset. (a) CD for a signal from the class P1, (b) CD for a
signal from the class P6, (c) CD for a signal from the class P11, (d) CD for a signal from the class P16.

Concerning the RC, we selected three vibration channels from the four available.
The selected channels were A1, A2, and A3. We excluded A4 to save computational time
because A4 was far from the valve’s location. The percent accuracy attained using RF and
SVM is presented in Table 5. Four feature sets are considered: the first is the Statistical
Features set, and the second is the Entropy Features. The third is the InfoStat Features set.
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Finally, we have the All Features set. The lowest accuracy was attained with the Statistical
Features set. In this case, the accuracy attained by the RF model was 83.96% for vibration
signal channel A1, 74.07% for A2; and 72.33% for A3. The accuracy attained by the SVM
model was 86.91% for vibration signal channel A1, 76.91% for A2, and 75.55% for A3.
The highest accuracy was attained using the All Features set. The accuracy attained by the
RF model was 95.35% for vibration signal channel A1, 94.40% for A2, and 88.82% for A3.
The SVM model attained a classification accuracy of 97.90% for signal channel A1, 95.47%
for A2 and 93.63% for A3. The rest of the feature combinations attained intermediate
accuracy close to the optimal accuracy.

Table 5. Percentage accuracy for fault classification using the vibration signals of the RC dataset.

Features Model A1 A2 A3

Statistical RF 83.96 74.07 72.33
SVM 86.91 76.55 75.55

Entropy based RF 95.35 94.12 86.21
SVM 97.57 94.55 91.87

Info-Statistical RF 93.96 90.66 85.78
SVM 96.83 94.27 90.38

All Features RF 95.35 94.40 88.82
SVM 97.90 95.47 93.63

A comparison of results obtained during the ten repetitions of the cross-validation
is presented in Figure 12 for vibration signal A1. The comparison is presented using box
plots. The accuracies attained by the Statistical Features set with RF and SVM were the
lowest (83.96% and 86.91% in Table 5). The feature sets Entropy Features, InfoStat Features,
and All Features attained higher accuracy with both machine learning models. In particular,
the highest accuracies were attained by the All Features set with RF and SVM (95.35% and
97.90%). The accuracies attained by the Entropy Features were slightly lower, corresponding to
95.35% and 97.57% with the RD and SVM models, respectively. The accuracies attained by the
InfoStat Features set were 93.96% and 96.83% with the RF and SVM models, respectively.

Figure 12. Comparison of accuracy for the machine learning models tested, considering several
combinations of features extracted from channel A1 of the RC dataset. In the box plot, a red line
represents the median of the data. The horizontal line over the box represents the upper quartile. The
horizontal line below the box represents the lower quartile. The red cross, below or over the box,
represents the outliers.
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A set of performance metrics [79,80,83] expressed in percentages is presented in Table 6.
Such metrics were obtained with the SVM model trained with the All Features set extracted
from vibration signals recorded in channel A1 from the RC dataset. The highest sensitivity
of 100.00% was attained by classes P1, P2, P6, P7, P9, P10, and P11; and 93.99% attained by
class P3 was the lowest. The highest specificity of 100% was attained by classes P1, P2, P10,
and P17. The highest AUC value of 100.00% was attained by classes P1, P2, and P10; and
the lowest value of 97.42% was attained by class P5.

Table 6. Performance metrics (in percent) obtained with the SVM model and the All Features set.
The model was trained using vibration signals in channel A1 from the RC dataset.

Class Sensitivity Specificity Error FPR AUC

P1 100.00 100.00 0.00 0.00 100.00

P2 100.00 100.00 0.00 0.00 100.00

P3 96.07 99.73 3.93 0.27 97.70

P4 99.56 99.92 0.44 0.08 99.33

P5 93.99 99.70 6.01 0.30 97.42

P6 100.00 99.97 0.00 0.03 99.78

P7 100.00 99.78 0.00 0.22 98.26

P8 97.01 99.92 2.99 0.08 99.25

P9 100.00 99.95 0.00 0.05 99.57

P10 100.00 100.00 0.00 0.00 100.00

P11 100.00 99.86 0.00 0.14 98.91

P12 94.56 99.89 5.44 0.11 98.95

P13 99.13 99.92 0.87 0.08 99.32

P14 99.56 99.95 0.44 0.05 99.55

P15 99.56 99.92 0.44 0.08 99.33

P16 97.42 99.92 2.58 0.08 99.27

P17 98.29 100.00 1.71 0.00 99.95

9. Discussion

The proposed methodology was implemented on a laptop computer. The laptop
was equipped with an intel(R) Core(TM) i7-6700HQ CPU, 12 GB of RAM memory, and
a graphics card NVIDIA GeForce GTX 950M. The Matlab software was used to implement
the feature extraction and classification. Concerning the computational time, the Entropy
Features set required an average time of 311.85 s when extracted from the five windows
(each with a length of 12,000-time samples) of the vibration signals from the CP dataset.
In contrast, the Information Entropy features require 0.97 s, and the Statistical Features set
requires only 0.156 s. In the RC, when the sampling rate is similar to that of the CP and the
window length is similar, the computational time is similar to the time required in the CP.

In the case of the CP, multiple pairwise comparisons of machine learning models
are presented in Figure A1. A one-way analysis of variance by ranks was performed
using a Kruskal–Wallis approach [85]. The test showed no significant statistical differences
between results attained by either machine learning models when trained with the non-
linear Entropy Features set or All Features set. Results attained by the SVM machine learning
models trained with the non-linear Entropy Features set or the All Features set are statistically
significantly superior to than those of RF or SVM models trained with the Statistical Features
or the combination InfoStat Features. The comparison also shows that the non-linear Entropy
Features set provides higher accuracy without combining with the Statistical Features set.
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The plot representing the Kruskal–Wallis with multiple one-way comparisons is
presented in Figure A2 for the RC. The combination of features corresponding to Entropy
Features and All Features sets attained higher accuracies using both machine learning models,
and there were no significant statistical differences between them. In contrast, there were
significant statistical differences in the results attained with the Statistical Features set
using both machine learning models. Additionally, the results obtained by the features
sets Entropy Features, and All Features with the SVM model were statistically significantly
superior to the results obtained with SVM using the InfoStat Features set.

A comparison with a deep-learning method was performed. For this purpose, the spec-
trogram of the vibration signal was calculated and fed to a CNN for fault classification.
The spectrogram was calculated considering a Blackman widow of size 81.92 ms that was
moved along the time axis with an overlap of 81.44 ms. The feature array had a size of
96× 128, for each signal, and it was standardized using the Z-score normalization. The fea-
ture array for each dataset was fed to a CNN for 10-fold cross-validation. Results of the
comparison are presented in Table 7. Concerning the case of the CP, the highest accuracy
attained by the CNN was 98.86% for vibration channel A2, whereas using the Entropy
Features set with SVM provided a classification accuracy of 99.50%. The accuracy attained
by the RF model was 98.09%, which was slightly lower than the accuracy provided by the
CNN. Results for the RC show that the highest accuracy attained by the CNN models was
96.74% when trained with signals from the A1 vibration channel. In contrast, the accuracy
provided by the SVM trained with the Entropy Features extracted from the same channel
was 97.57%. In summary, the accuracy provided by the SVM trained with the Entropy
Features was higher than the accuracy attained by the CNN trained with the spectrogram of
the vibration signal.

Table 7. Comparison of performances of the tested models obtained during the 10-fold cross-
validation between entropy features with classical models and the spectrogram with a CNN model.

Machine Signal Accuracy Accuracy Accuracy
Entropy Features Entropy Features Spectrogram

+SVM +RF +CNN

Centrifugal
Pump

A2 99.50 98.09 98.86

A3 98.96 97.83 97.36

A4 97.30 94.70 98.61

Reciprocating
Compressor

A1 97.57 95.35 96.74

A2 94.55 94.12 95.55

A3 91.87 86.21 93.98

Results can be compared to previous research that used non-linear entropy features
with classical models. In [27], the average accuracy for classifying five different conditions
in a CP was 94.58%. The work reported in [28] used an SVM for classifying four different
conditions in a CP using vibration signals. The method attained an average accuracy of
98.4%. In [21] the p−V, was used with LDA to classify six different conditions, attaining
an accuracy of 99.62% in an RC. Several papers reported CNN-based approaches for fault
classification in CP and RC [24,25,29,33]. These methods can highly accurately classify a
small set of faults in a CP or an RC. In contrast, our method was able to classify 13 types of
faults in a CP and 17 different conditions in an RC with accuracies close to those of these
deep learning-based methods.

10. Conclusions

The non-linear Entropy Features set enables fault classification in a CP or an RC with
high accuracy. In this research, 13 impeller faults in a CP incorporating different degrees of



Mathematics 2022, 10, 3033 21 of 29

severity were classified using RF and SVM models. Additionally, a set of 17 valve faults in
an RC were also classified.

The research showed that the non-linear Entropy Features set provides high accuracy
(99.50% for the CP and 97.57% for the RC) considering the SVM model. The accuracy
attained using the Entropy Features set and the RF model was 98.09% for the CP and 95.35%
for the RC. Results showed no significant statistical differences between Entropy Features
and All Features. However, both feature sets provided accuracies statistically significantly
higher than the accuracy provided by the Statistical Features set. The Statistical Features set
provided the lowest accuracy in this application. In this case, the accuracy attained with
the SVM was 71.03% for the CP and 76.55% for the RC. Concerning the comparison of
machine learning models, when both models RF and SVM were trained with the Entropy
Features set, there were no statistically significant differences in the accuracy of results.
The results suggest that the Entropy Features set or the All Features set could be used for
fault classification in centrifugal pumps and reciprocating compressors, where multiple
fault types in impellers and valves should be diagnosed at early stages.

The novelty of the approach is to propose using the entropy features for classifying
faults in centrifugal pumps and reciprocating compressors with high accuracy. In addition,
we showed that the entropy-based feature sets provide high classification accuracy even
for a large number of faults in both the CP and the RC. Concerning the comparison with
respect to a deep learning model, the accuracy results obtained by the SVM trained with
the Entropy Features set (99.50% for the CP and 97.57% for the RC) were superior to those
obtained by a CNN trained with the spectrogram (98.86% for the CP and 96.74% for the RC).

The limitation of the proposed approach is the high computational cost necessary for
extracting the entire set of entropy-based features.

Further research is oriented at reducing the computational time required for extracting
the non-linear Entropy Features set and exploring their implementation using multi-scale
approaches. We also plan to select some of the entropy-based features that would be useful
for anomaly detection in RM, combined with deep learning approaches, such as generative
adversarial networks and autoencoders.
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Abbreviations
The following abbreviations are used in this manuscript:

CP Centrifugal Pump
RC Reciprocating Compressor
CM Condition Monitoring
CD Correlation Dimension
LLE Largest Lyapunov Exponent
LMD Local Mean Decomposition
SVM Support Vector Machine
CEEMD Complementary Ensemble Empirical Mode Decomposition
SampEn Sample Entropy
RF Random Forest
ELM Extreme Learning Machine
AMI Average Mutual Information
FNN False Nearest Neighbor
AppEn Approximate Entropy
FuzzyEn Fuzzy Entropy
ShannEn Shannon Entropy
PermEn Permutation Entropy
DFA Detrended Fluctuation Analysis
LLE Larger Lyapunov Exponent
S Power Spectral Entropy
PEB Pitting at the Entrance of Impeller Blades
POB Pitting at the Output of the Impeller Blades
ICB Impeller Channel Blockage
IB Imbalance Impeller
ROC Receiver Operator Curve
AUC Area Under the Curve
HP Horse Power
RMS Root Mean Square
RPM Revolutions per minute
GPM Gallons per minute
RM Rotating Machinery
CNN Convolutional Neural Network
SGWT Spectral Graph Wavelet Transform
CECP Complexity-Entropy Causality Plane
MSE Multi-Scale Entropy
PCA Principal Component Analysis
LDA Linear Discriminant Analysis
BMFO Binary Moth Flame Optimization
SE Squeeze and Excitation
HYP Hydraulic Pump
RSDD Resonance-based sparse signal decomposition
MHAAPE Multi-scale Hierarchical Amplitude Aware Permutation Entropy
ELM Extreme Learning Machine
CEEMD Complementary Ensemble Empirical Mode Decomposition
CWT Continous Wavelet Transform
XBG Extreme Gradient Boosting
AWT Analitical Wavelet Transform
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Appendix A. Additional Tables

Appendix A.1. Related Research Compendium

Table A1. Related research and characteristics.

Contributors Signal Methods Application Advantages Limitations

Li et al. [21] Pressure PCA RC Accuracy Six types of fault
vibration LDA 99.62%

Patil et al. [23] Vibration BMFO RC Accuracy Can get
Signal KNN >99% trapped in

local minimum

Lv et al. [22] Pressure ANN RC Accuracy Several
97.9% Structuring

Elements

Zhao et al. [24] Vibration CNN RC Accuracy Complex CNN
99.4% architecture

Xiao et al. [25] Vibration CNN RC Acc = 100% Complex CNN
Pressure Architecture,

Phase 4 Conditions

Ahmad et al. [28] Vibration SVM CP Accuracy 4 conditions
98.4%

Hasan et al. [29] Vibration CNN CP Acc = 100% 4 conditions

Ahmad et al. [30] Vibration KNN CP Acc = 100% 4 conditions

Irfan et al. [31] Voltage XGB Water pump Acc = 100% Threshold
Current bearings Selection

Kumar et al. [33] Sound CNN CP Sound Sensor Acoustic noise

Zhao et al. [20] Vibration SVM RC Weak fault LMD
MSE detection Mode mixing

Wang et al. [27] Vibration RF + CEEMD CP Accurate High
SampEn Comp. Cost

Zhou et al. [26] Vibration RSDD + RF HYP Accurate Large set
MHAAPE of parameters

Xin et al. [16] Vibration DFA + SGWT RM Retain fine Lacks more
signatures testing

Radhakrishnan et al. [17] Vibration CECP + SVM RM Robust and Setting of
easy parameters

Appendix A.2. Entropy-Based Features

Table A2. Entropy features extracted.

Feature Equation

ApEn [5,6] ApEn(m, k, τ, N) = φm(r)− φm+1(r), k = 0.06 (A1)

ApEn [5,6] ApEn(m, k, τ, N) = φm(r)− φm+1(r), k = 0.21 (A2)

FuzzyEn [10] FuzzyEn(m, n, k) = lnφm(n, r)− lnφm+1(n, r), k = 0.06 (A3)

FuzzyEn [10] FuzzyEn(m, n, k) = lnφm(n, r)− lnφm+1(n, r), k = 0.21 (A4)
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Table A2. Cont.

Feature Equation

SampEn [7] SampEn(m, r) = −ln
[

Am(r)
Bm(r)

]
, k = 0.06 (A5)

SampEn [7] SampEn(m, r) = −ln
[

Am(r)
Bm(r)

]
, k = 0.21 (A6)

ShannonEn [54] ShanEn(m) = −∑
m

pmlogpm (A7)

CondEn [54] CondEn(m/m− 1) = ShanEn(m)− ShanEn(m− 1) (A8)

CCondEn [54] CCondEn(m) = CondEn(m/m− 1) + perc(m)ShanEn(1) (A9)

PermEn [57] PermEn(m) = lnM− 1
M

(m+1)!−1

∑
j=0

qjlnqj (A10)

CorDim [59] CD(m) = lim
r→0

∂lnCm(r)
∂lnr

(A11)

LLE [66] LLE = lim
t→∞

1
t

ln
‖δZ(t)‖
‖δZ0‖

(A12)

DFA1(α1) [66] α1 = τ
′
(1), τ(1) = h(1)− 1 (A13)

DFA2(α2) [66] α2 = τ
′
(2), τ(2) = 2h(2)− 1 (A14)

Appendix A.3. Information-Based Features

Table A3. Information entropy features.

Feature Equation

WPT-Shannon [70,86] WPT − Shannon(s) = −∑
i

s2
i log(s2

i ) (A15)

WPT-Norm [70,86] WPT − Norm(s) = −∑
i
|si|p, p ≥ 1 (A16)

WPT-LogEn [70,86] WPT − LogEn(s) = −∑
i

log(s2
i ) (A17)

WPT-Thres [70,86] WPT − Thres(s) = #{i, / |si| > p}, |si| > p (A18)

WPT-Sure [70,86] WPT − Sure(s) = n + ∑
i

min(s2
i , p2)− #{i, / |si| ≤ p} (A19)

RényiEn [72] HRq =
K

q− 1
log

(
N

∑
i=1

pq
i

)
(A20)

TsallisEn [71] HTq =
K

q− 1

(
1−

N

∑
i=1

pq
i

)
(A21)

PSE-mean [73,74] PSE−mean = mean(S) (A22)

PSE-std [73,74] PSE− std = std(S) (A23)

PSE-rms [73,74] PSE− rms = rms(S) (A24)
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Table A3. Cont.

Feature Equation

PSE-shape [73,74] PSE− shape =
rms(S)
1
N ∑i|si|

(A25)

PSE-MaxToRms [73,74] PSE−MaxToRms = max(S)/rms(S) (A26)

PSE-median [73,74] PSE−median = median(S) (A27)

PSE-Skew [73,74] PSE− Skew = skewness(S) (A28)

PSE-Kur [73,74] PSE− Kur = kurtosis(S) (A29)

Appendix A.4. Statistical Features

Table A4. Statistical features.

Feature Equation

Mean µ =
1
N

N

∑
i=1

xi (A30)

Root Mean Square (RMS) RMS =

√√√√ 1
N

N

∑
i=1

(xi)
2 (A31)

Standard deviation σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (A32)

Kurtosis Kurtosis =
N ∑N

i=1(xi − µ)4[
∑N

i=1(xi − µ)2
]2 (A33)

Maximum value Max = max(xn) (A34)

Crest factor CrestFact =
max(xn)

rms(xn)
(A35)

Rectified mean value RMV =
1
N

N

∑
i=1
|xi| (A36)

Shape factor ShapeFact =
rms(xn)

1
N ∑N

i=1|xi|
(A37)

Impulse factor ImpulseFact =
max(xn)

1
N ∑N

i=1|xi|
(A38)

Variance Var =
1
N

N

∑
i=1

(xi − µ)2 (A39)

Minimum value Min = min(xn) (A40)

Skewness Skewness =
N ∑N

i=1(xi − µ)3

σ3 (A41)



Mathematics 2022, 10, 3033 26 of 29

Appendix B. Additional Figures

Figure A1. Kruskal–Wallis comparison between the machine learning models tested. The plot shows
several combinations of features calculated from the channel A2 recorded from the CP. There are
statistical significant differences between the groups labeled with red and the group labeled with
blue, between the groups SVM-Entropy and SVM-AllFeat and the groups labeled with blue and gray.
In general there are statistically significant differences, when the projection of the horizontal lines of a
group over the horizontal axis does not have any interception with the projection of another group.

Figure A2. Kruskal–Wallis comparison between the machine learning models tested, considering
several combinations of features extracted from the channel A1 of the RC dataset. There are statistical
significant differences between the groups labeled with red and the group labeled with blue. In
general there are statistically significant differences, when the projection of the horizontal lines of a
group over the horizontal axis does not have any interception with the projection of another group.
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