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Abstract: We examine thermal management in the heat exchange of compact density nanoentities in
crude base liquids. It demands the study of the heat and flow problem with non-uniform physical
properties. This study was conceived to analyze magnetohydrodynamic Eyring–Powell nanofluid
transformations due to slender sheets with varying thicknesses. Temperature-dependent thermal
conductivity and viscosity prevail. Bioconvection due to motivated and dynamic microorganisms
for Eyring–Powell fluid flow is a novel aspect herein. The governing PDEs are transmuted into a
nonlinear differential structure of coupled ODEs using a series of viable similarity transformations. An
efficient code for the Runge–Kutta method is developed in MATLAB script to attain numeric solutions.
These findings are also compared to previous research to ensure that current findings are accurate.
Computational activities were carried out with a variation in pertinent parameters to perceive
physical insights on the quantities of interest. Representative outcomes for velocity, temperature,
nanoparticles concentration, and bioconvection distributions as well as the local thermal transport for
different inputs of parameters are portrayed in both graphical and tabular forms. The results show
that the fluid’s velocity increases with mixed convection parameters due to growing buoyancy effects
and the fluid’s temperature also increased with higher Brownian motion Nb and thermophoretic Nt.
The numerical findings might be used to create efficient heat exchangers for increasingly challenging
thermo-technical activities in manufacturing, construction, and transportation.

Keywords: nanofluid; Eyring–Powell fluid; bioconvection; MHD; slender elastic surface; porous medium

MSC: 76D05; 76W05; 76-10

1. Introduction

Nanofluids have many applications, including the transport of generated heat in
micro-electronics, power generation, manufacturing, and the transportation of ethylene
glycol, water, engine oil, etc. The conventional heat transfer of the fluids is poor due to
low heat conductivity and it does not transfer the heat produced from a specific surface to
the fluid effectively. To enhance heat transfer rates, nanofluids are preferred in industries,
and are applied in heat exchangers and electronic cooling systems. Choi [1] introduced the
notion of nanofluids in 1995. Masuda et al. [2] analyzed the phenomenon in which nanoflu-
ids have a characteristic feature thermal conductivity enhancements, which indicate the
possibility of using nanofluids in advanced nuclear systems [3]. Buongiorno [4] studied an
analytical model for convective transport in nanofluids by considering Brownian diffusion
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and thermophoresis. He developed an explanation for abnormal convective heat transfer
enhancements observed in nanofluids. Moreover, he observed that Brownian diffusion
and thermophoresis were the most important nanoparticle/base-fluid slip mechanisms.
Kuznetsov et al. [5] deliberated the natural convective boundary-layer flow of a nanofluid
past a vertical plate. In recent research studies, Izadi et al. [6] studied the porous metal
for cooling CPUs on MHD to enhance nanofluid thermal transport. In this study, viscous
dissipation and Darcy–Brinkman–Forchheimer model effects were considered to find the
fluid stream of nanofluids. Raza et al. [7] observed the thermal radiation magnetohydro-
dynamic stream of non-Newtonian nanofluids across a stretching surface. Jamshed [8]
deliberated a computational study of magnetohydrodynamic effects on Maxwell nanoflu-
ids. He studied the entropy generation on the MHD stream of Maxwell nanofluids across
an infinite horizontal sheet. Koriko et al. [9] deliberated a stream of bioconvection on
magnetohydrodynamic nanofluids across a vertical channel with nanoentities and gyro-
tactic microorganisms. Li et al. [10] described the thermal and mass transportation past
an exponentially porous extending sheet on magnetohydrodynamic Williamson nanofluid
flows. They viewed this analysis for two various conditions of thermal transport described
as prescribed exponential sheet temperatures and prescribed exponential order thermal
fluxes. Abbas et al. [11] viewed the entropy-optimized MHD nanofluid stream as fully real-
ized. Dawar et al. [12] retrieved the velocity slips and non-uniform heat sources on MHD
micropolar nanofluid flows. Shi et al. [13] examined bioconvective nanofluid streams across
stretching sheets with swimming microbes. Ashraf et al. [14] deliberated the nanofluid
flows occurring across a slender elastic surface. Recently, published research articles on
nanofluids are mentioned in references [15–19].

Flows through porous media are of principal interest because these are quite preva-
lent. Such a flow has applications in a broad range of scientific fields, from geophysics to
chemical engineering. Numerous technological applications need to flow through porous
media that are saturated with fluid, and this need is growing as applications of geothermal
energy and astronomical issues increase. An improved comprehension of the fundamen-
tals of mass, energy, and momentum transport in porous media may also be beneficial
for several other applications, such as the cooling of nuclear reactors, the underground
disposal of nuclear waste, operating petroleum reservoirs, building insulation, food pro-
cessing, casting, and welding in manufacturing processes. Working fluid heat production
(source) or absorption (sink) effects are significant in several porous medium applications.
Representative studies dealing with these effects have been addressed by authors such
as Gupta and Sridhar [20], Subhas and Veena [21], and Prasad et al. [22]. The impacts of
variable viscosity and thermal conductivity on an unsteady two-dimensional laminar flow
of viscous incompressible conducting fluids across a semi-infinite vertical porous moving
plate are studied by Seddeek and Salama [23]. Zheng et al. [24] analyzed the heat transfer
of nanofluid past an extending surface with a porous medium. Dessie and Kishan [25]
studied the impacts on variable viscosity and viscous dissipation across stretching sheets
embedded in a porous medium. The study of visco-elastic fluid flow through porous media
has gained importance in recent years; see Refs, e.g., [26,27].

Many materials, such as colors, ketchup, lubricants, dirt, some paints, blood at low
shear rates, and certain care items involving the flow of non-Newtonian fluids, have
been extensively investigated. Non-Newtonian fluids are utilized in a various industrial
applications, including composite processing, polymer depolarization production, boiling,
fermentation, bubble columns, bubble absorption, and plastic foam processes. In addition,
the effects of heat and mass transfer in non-Newtonian fluid [28,29] have great importance
in engineering applications such as the thermal design of industrial equipment, food
stuffs, slurries, etc. Moreover, Navier–Stoke’s theory is insufficient when there are some
complex rheological fluids. Thus, there is a need to study non-Newtonian fluids [30,31].
Since not a single model exhibits all properties of fluids, therefore, many non-Newtonian
models have been presented by various authors (Refs. [32,33]). The first time Powell and
Eyring’s theories were introduced was in 1944. Bilal et al. [34] described the thermal
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transport of Eyring–Powell fluids through a stretching surface with the influence of mixed
convection. here, the fluid is viscous, laminar, and incompressible. Akbar et al. [35]
deliberated that MHD flow impacts Eyring-Powell fluid streams across an extending sheet.
Ibrahim et al. [36] presented the stream of Eyring–Powell nanofluids through a porous
medium. Javed et al. [37] described the Eyring–Powell fluid across a boundary layer flow
across an extending surface for non-Newtonian fluids by using the Keller box method. Via
a porous stretching sheet, Vishalakshi et al. [38] quizzed the non-Newtonian MHD fluid
stream in 3D, taking into account heat radiation and mass transpiration. By considering the
consequences of heat radiation and absorption, the MHD Casson and Williamson liquids
over stretching surfaces were discussed by Saravana et al. [39]. Sarada et al. [40] analyzed
the influence of MHD on thermal transference characteristics of non-Newtonian liquids
over a stretched surface. Ajeeb et al. [41] elaborated on the convective heat transference of
non-Newtonian multiwall carbon nanotubes and aided in tuning nanofluid properties.

The heat transfer analysis of boundary layer flows with radiation is also important
in electrical power generation, astrophysical flows, solar power technology, space vehicle
re-entry, and other industrial areas. The extensive literature dealing with flows in the
presence of radiation effects is now available. Because of this, Raptis et al. [42] studied
the effect of thermal radiation on the MHD flow of a viscous fluid past a semi-infinite
stationary plate. Hayat et al. [43] analyzed the influence of thermal radiation on the MHD
flow of a second-grade fluid. Cortell [44] analyzed the numerical analysis for flow and
heat transfers in a viscous fluid and thermal radiation by extension over a nonlinearly
stretched sheet . Rashidi et al. [45] deliberated the buoyancy impacts on the MHD flow of
nanofluid across a stretching surface with thermal radiation. In recent studies, numerous
investigators analyzed thermal radiation in recent years (Refs [46,47]).

Bioconvection is a natural mechanism in which microorganisms move in a single-
celled or colony-like arrangement at random. In still water, gyrotactic microorganisms
move upstream against gravity, which starts to cause the top area of the suspension to be
denser than the bottom. Bioconvection is employed in biofuels, fertilisers, bioreactors, oil
recovery, biosensors, biomicrosystem plant products, and enzymes, among many other
uses. Bioconvection technology has been used in a wide range of products in both organic
and powered industries. A model for collective movement and pattern formation in lay-
ered suspensions of negatively geotactic microorganisms was presented by Childress [48].
The effect of gyrotaxis on the linear stability of a suspension of swimming, negatively
buoyant microorganisms was examined by [49]. MHD boundary layer flows with heat and
mass transfers of an electrically conducting water-based nanofluid containing gyrotactic mi-
croorganisms were analyzed by [50]. Alqarni et al. [51] deliberated the thermal transfer of
a bioconvection stream of micropolar nanofluids possessing velocity slips. Zadeh et al. [52]
examined the heat and mass transportation flow and nanofluid flow over an extending
sheet in the presence of bioconvection and investigated these phenomena numerically.
Chu et al. [53] described the effects of bioconvection magnetohydrodynamic third-grade
fluids across an extended sheet. Alshomrani [54] numerically studied a nanofluid with mag-
netic dipoles and bioconvection flows. Asjad et al. [55] studied bioconvection flows over
a vertical surface. Jawad et al. [56] deliberated entropy generations on magnetohydrody-
namic bioconvections of Casson nanofluids across a rotating disk. Across the upper-surface
revolution, Mair and Khan et al. [57] analyzed magnetohydrodynamic bioconvections.
Ali et al. [15] analyzed bioconvection flows through an inclined surface.

By studying the above literature survey, we concluded that there are no research stud-
ies on the MHD flow of Eyring–Powell nanofluids with gyrotactic microorganisms across a
slender elastic surface . Motivated by the aforementioned wide scope of non-Newtonian
fluid and nanofluid applications, therefore, we decided to evaluate the current elaborated
fluid problem. thus, the primary purpose of the present investigation is to analyze the
outcomes of distinct parameters and nanoparticles on the dynamics of Eyring–Powell
fluids across a slender elastic surface. Recently, research on non-Newtonian fluids has
fascinated young researchers in extending the research scope due to large-scale applications
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in different industries. To improve the base fluid’s stability to avoid sedimentation, we also
incorporated microorganisms. By using similarity modifications, the relevant nonlinear
PDEs are converted into a system of ODEs. The graphical outcomes of velocity, temperature,
the concentration of nanoparticles and microorganisms, the skin friction factor, Nusselt
number, and Sherwood number are conducted for different inputs of physical parameters.

2. Physical Model and Mathematical Formulation

Consider the heat and mass transfer steady boundary layer flow of Eyring–Powell
nanofluids and electrical conduction in the existence of magnetic field B(x) = B0(x + b)

m−1
2

in which the induced magnetic field can be ignored reasonably over an impermeable elastic
surface (vw = 0) with variable thickness. The slit through which the sheet is pulled in
the fluid is called the origin. The physical model of the problem is shown in Figure 1.
The x-axis is aligned with the motion’s direction, whereas the y-axis is perpendicular to it.
We pretend that the sheet is not flat and is instead defined as h(x) = 2c(x + b)

1−m
2 . Another

assumption is that the nanoparticle does not affect microbial velocities. A concentration
of nanoparticles of less than 1% is a reasonable assumption. As a result, bioconvection
stability is defined as a suspension of solid nanoparticles in a liquid medium. Nanoparticles
are uniformly distributed throughout the base fluid. By the utilization of these assump-
tions, the governing equations for the conservation of mass, linear momentums, energy,
nanoparticle concentration, and the density of motile microorganisms in vector form are
as follows.

∇ · (ρ−→V ) = 0, (1)

ρ

(
(
−→
V · ∇)−→V

)
= ∇ · τij + F∗ + g[βρ f (1− C∞)(T − T∞)− (ρp − ρ f )(C− C∞)− γ(ρm − ρ f )(ñ− n∞)], (2)

(ρCp) f

[
(
−→
V · ∇)T

]
= kT∇2T + (ρCp)p

{
DB∇ · C +

DT
T∞

(∇T · ∇T)
}

, (3)

(
−→
V · ∇)C = DB∇2C, (4)

(
−→
V · ∇)n = Dn∇2c− dWc

Cw − C∞
n∇C. (5)

Here ,
−→
V = v(x, y) includes velocity components in (x, y) directions, respectively.

Furthermore, the symbols in the above equations are defined in the nomenclature. The extra
stress tensor of an Eyring–Powell model [58] is expressed as follows.

τij = µ
∂ui
∂uj

+
1
β1

sinh−1
(

1
c1

∂ui
∂uj

)
(6)

The governing equations can be written as follows [34,59,60].
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Figure 1. The physical model of slender elastic sheets.

Equation of continuity:

∂u1

∂x
+

∂v1

∂y
= 0. (7)

Equation of momentum:

u1
∂u1

∂x
+ v1

∂u1

∂y
=

1
β1c1ρ

∂2u1

∂y2 −
1

2β1c3
1ρ

(
∂u1

∂y

)2(
∂2u1

∂y2

)
+

µT
ρ

(
∂2u1

∂y2

)
+

1
ρ

(
∂µT

∂T̂

)
∂T
∂y

∂u1

∂y

−
(

σB2(x)
ρ

+
ν

k∗

)
u1 + g[βρ f (1− C∞)(T − T∞)− (ρp − ρ f )(C− C∞)− γ(ρm − ρ f )(n− n∞)]. (8)

Heat equation:

(ρCp) f

(
u1

∂T
∂x

+ v1
∂T
∂y

)
= kT

(
∂2T
∂x2 +

∂2T
∂y2

)
+ τ

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2]
+

(
∂kT
∂T

)(
∂T
∂y

)2

+
∂qr

∂y
. (9)

Nanoparticle concentration equation:

u1
∂C
∂x

+ v1
∂C
∂y

=
DT
T∞

(
∂2T
∂y2

)
+ DB

(
∂2C
∂x2 +

∂2C
∂y2

)
. (10)

Concentration of microorganisms diffusion equation:

u1
∂n
∂x

+ v1
∂n
∂y

= Dn

(
∂2n
∂x2 +

∂2n
∂y2

)
− dWc

Cw − C∞

∂

∂y

(
n

∂C
∂y

)
. (11)

The boundary conditions of the present problem are as follows.

u1 = Uw = U0(b + x)m, v1 = 0, T = Tw, C = Cw, n = nw, at y =
h(x)

2
,

lim
y→∞

u1 = 0, lim
y→∞

T = T∞, lim
y→∞

C = C∞, lim
y→∞

n = n∞.

 (12)
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By assuming that thermophysical variables (µT , κT) have a linear temperature depen-
dence, we obtain the following.

µT =

(
µ− µΛµ

(
T − T∞

Tw − T̃∞

))
, κT =

(
κ + κΛk

(
T − T∞

Tw − T∞

))
, (13)

The radiation under Rosseland approximations can be written as follows [61].

qr = −
4σe

3βR

∂T4

∂y
, (14)

T4 may be identified by extending in a Taylor series around T∞ while ignoring
higher terms.

T4 ≈ 4T4
∞T − 3T4

∞, (15)

Thus, substituting Equation (8) in Equation (7), we obtain the following.

∂qr

∂y
=

16σeT3
∞

3βR

(
∂2T
∂y2

)
. (16)

A mathematical technique that is suitable for some cases to convert partial differential
equations into ordinary differential equation is called similarity transformation. This
technique is sophisticated and is the most powerful and systematic for transforming
PDEs into ODEs, and it is utilized widely in non-linear dynamical systems, especially
in the field of computational fluid dynamics boundary value problems. To transform
the above-mentioned governing equations into dimensionless forms, we introduce the
following similarity variables, which guided us to avail non-dimensional forms of leading
equations [59].

u1 = Uw(x + b)m F′(ζ), v1 =

√
−
(
(m + 1)ν∞U0(x + b)m−1

2

)(
F(ζ) +

m− 1
m + 1

ζF′(ζ)
)

,

ξ =

(
(m + 1)U0(x + b)m−1

2ν

)1/2

y, ψ =

(
2ν∞U0(x + b)m+1

(m + 1)

)
F(ζ), G(ζ)(Tw − T∞) = T − T∞,

H(ζ)(Cw − C∞) = C− C∞, ϑ(ζ)(nw − n∞) = n− n∞.


(17)

In the observation of above defined similarity variables, Equation (7) is identically
satisfied, and Equations (8)–(11) can be written as follows:

(1 + ε)Fζζζ −
2m

m + 1
F2

ζ + FFζζ + εδFζζζ F2
ζζ −ΛµFζζζ g−ΛµFζζ Gζ

− 2
m + 1

(M + K)Fζ + ω[G− NrH − Rbϑ] = 0 (18)

(1 + Rd)Gζζ + PrFGζ + ΛkGGζζ + ΛkG2
ζ + NbGζ Hζ + NtG2

ζ = 0, (19)

Hζζ + LePrFHζ +
Nt
Nb

Gζζ = 0, (20)

ϑζζ + PrLbFϑζ − Pe[ϑζ Hζ + ΩHζζ + Hζζ ϑ] = 0, (21)

which are subject to the boundary conditions in Equation (12):

lim
η→ς

F(ζ) =
1−m
1 + m

ς, lim
η→ς

F′(ζ) = 1, lim
η→ς

G(ζ) = 1, lim
η→ς

H(ζ) = 1, lim
η→ς

ϑ(ζ) = 1,

lim
ζ→∞

F′(ζ) = 0, lim
ζ→∞

G(ζ) = 0, lim
ζ→∞

H(ζ) = 0, lim
ζ→∞

ϑ(ζ) = 0,

 (22)
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where ω = 2gβ(1−C∞)(Tw−T∞)

U2
w(m+1)

, Nr =
(ρp−ρ f )(Cw−C∞)

βρ(1−C∞)(Tw−T∞)
, Rb =

(ρm−ρ f )(nw−n∞)

βρ(1−C∞)(Tw−T∞)
, M =

σB2
0

U0ρ ,

Rd = 16σeT3
∞

3βRk , δ = 1
β1µc1

and ε = U0
2(x+b)2m−1(m+1)

2νc2
1

, Le = k
DB

, Nb = τDB(Cw−C∞)
k ,

Nt = τDT(Tw−T∞)
T∞k , Pr =

(ρCp)ν

k , ς = c
(

Uo(m+1)
2ν∞

) 1
2

, Pe = dWc
DN

, and Lb = k
DN

, Ω = n∞
(nw−n∞)

.

We set the following possible changes for additional simplifications.

ζ = η + ς,

F(ζ) = F(η + ς) = f (η),

G(ζ) = G(η + ς) = g(η),

H(ζ) = H(η + ς) = h(η),

ϑ(ζ) = ϑ(η + ς) = χ(η).

(23)

As a result, the nonlinear differential Equations (18)–(21) are changed to the following:

(1 + ε) f
′′′ − 2m

m + 1
f
′2 + f f

′′
+ εδ f

′′′
f
′′2 −Λµ f

′′′
g + Λµ f

′′
g
′

− 2
m + 1

(M + K) f
′
+ ω[g− Nrh− Rbχ] = 0 (24)

(1 + Rd)g
′′
+ Pr f g

′
+ Λkgg

′′
+ Λkg

′2 + Nbg
′
h
′
+ Ntg

′2 = 0, (25)

h
′′
+ LePr f h

′
+

Nt
Nb

g
′′
= 0, (26)

χ
′′
+ PrLb f χ

′ − Pe[χ
′
h
′
+ Ωh

′′
+ h

′′
χ] = 0, (27)

along with modified boundary constraints.

lim
η→0

f (η) =
1−m
1 + m

ς, lim
η→0

fη(η) = 1, lim
η→0

g(η) = 1, lim
η→0

h(η) = 1, lim
η→0

χ(η) = 1,

lim
η→∞

f ′(η) = 0, lim
η→∞

g(η) = 0, lim
η→∞

h(η) = 0, lim
η→∞

χ(η) = 0,

 (28)

3. Physical Quantities

The influence of significant engineering parameters may be adequately investigated
in this physical problem by calculating the localized magnitude of drag forces and the
rate of thermal transports at the slender sheet. In terms of C f x (skin friction) , Nux (Nus-
selt number), Shx (Sherwood number), and Nnx (density of microorganisms), we have
the following:

C f x =
2τ

xy(x,y= h(x)
2 )

ρ f U2
w

, Nux =
(x + b)qw

k(Tw − T∞)
, Shx =

(x + b)qm

DB(C− C∞)
, Nnx =

(x + b)qn

Dn(n− n∞)
, (29)

where τw, qw, qm, and qn are the shear stress, surface heat flux, surface mass flux, and the
motile surface microorganism flux, respectively, which are defined as follows.
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τw = µ

[(
1 +

1
βc1

)
∂u1

∂y
− 1

2βc3
1

(
∂u1

∂y

)3]
y= ε(x)

2

, (30)

qw = −
(

kT +
16σeT3

∞
3βR

)(
∂T
∂y

)
ε(x)

2

, (31)

qm = −DB

(
∂C
∂y

)
y= ε(x)

2

, (32)

qn = −Dn

(
∂n
∂y

)
y= ε(x)

2

. (33)

The following expressions are derived by utilizing Equations (11), (12) and (18).

Re
1
2
x C f x = −

(
m + 1

2

) 1
2
(
(1 + ε) f ′′(0)− δε

3
f ′′3(0)

)
, (34)

Re
−1
2

x Nux = −
(

m + 1
2

) 1
2

(Λkg(0) + (1 + Rd))(g′(0)), (35)

Re
−1
2

x Shx =

(
m + 1

2

) 1
2

(−h′(0)), (36)

Re
−1
2

x Nnx =

(
m + 1

2

) 1
2

(−χ′(0)), (37)

4. Solution Procedure

The fundamental partial differential equations for the flow of MHD Eyring–Powell bio-
convective nanofluids and the associated boundary conditions are transferred into a system
of ordinary differential equations with similarity variables. The reduced Equations (24)–(27)
and the associated boundary conditions (28) are then transformed into first-order dif-
ferential equations and further transformed into initial value problems by labeling the
variables as follows [62–64]. ( f , f ′, f ′′, g, g′, h, h′, χ, χ′)T = (k1, k′1 = k2, k′2 = k3, k4, k′4 = k5,
k′5 = k6, k7, k′7 = k8, k′8 = k9)

T , Accordingly, the above system of equations in matrix form
can be expressed as follows:



k′1
k′2
k′3
k′4
k′5
k′6
k′7
k′8
k′9


=



k2
k3

(−1)
(1+ε+ε×δk2

3−Λµk4)
[−2m

m+1 w2
2 + k1k3 −Λµk3k5 − 2

m+1 (M + K)k2 + ω(k4 − Nrk6 − Rbk8)]

k5
(−1)

(1+Rd+Λkk4)
[Prk1k5 + Λkk2

5 + Nbk5k7 + Ntk2
5]

k7
(−1)[LePrk1k7 +

Nt
Nb k′5]

k9
(−1)[PrLbk1k9 + Pe(Ωk′7 + k′7k8 + k7k9)]


(38)
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and are subject to the initial conditions.

k1
k2
k3
k4
k5
k6
k7
k8
k9


=



1−m
1+m χ

1
p
1
q
1
r
1
s


(39)

To solve the system of first-order ordinary differential Equation (38) with the help of the
shooting method, nine initial conditions are required. Therefore, we estimate four unknown
initial conditions k3(0) = p, k5(0) = q, k7(0) = r, k9(0) = s. The suitable estimations for
four p, q, r, s and s unknown missing conditions are chosen such that the four known
boundary conditions are approximately satisfied for η → ∞. Newton’s iterative scheme
is applied to improve the accuracy of the missing initial conditions p, q, r and s until
the desired approximation is met. The numerical computational has been performed for
various physical emerging parameters for the appropriate computational domain [0, 10]
instead of [0, ∞], where η is fixed at 10 because there are no more variations in the results
after η = 10. Newton’s iterative scheme is applied to improve the accuracy of the initial
guesses until the desired approximation is obtained. The stopping criteria for the iterative
process is 10−6.

5. Results and Discussion

This part aims to study the influence of parameters contained in the current problem
on the momentum, temperature, and concentration of nanoparticles and microorganisms.
To verify the exactness of the present computed outcomes with accessible distributed data,
a comparison is completed between current computed outcomes and those in the available
literature in a limiting case. Tables 1 and 2 are displayed to authenticate the current numeri-
cal results of− f ′′(0) and−g′(0) with the previously published literature in Wakif [59] (skin
friction) and [59,65] (Nusselt number), and these results achieved excellent agreements.
We take the values of parameters as m = 2.0, M = 0.5, ε = 0.1, δ = 0.5, Λµ = 1.0, Pr = 2.0,
M = K = 0.5, Nb = Nt = 0.2, ω = 1.0, Nr = 0.1, Rb = 0.2, Rd = 1.0, Λk = 0.1, Lb = 0.3,
Le = 1.0, Pe = 0.1, Ω = 0.1, and ς = 1.5.

Table 1. Comparative of C f xRe
1
2
x for different values of m by ignoring other parameters.

m
Wakif [59] (Our Results)

ς = 0.5 ς = 0.25 ς = 0.5 ς = 0.25

10 1.143320620 1.060324666 1.143329 1.060330
9.0 1.140392519 1.058915794 1.140397 1.058925
7.0 1.132285178 1.055044823 1.132299 1.055048
5.0 1.118590381 1.048611306 1.118582 1.048608

Table 2. Comparing the current numerical findings for −g′(0) when m = 1 and all others parameter
are ignored.

Pr Wang [65] Wakif [59] Our Results

0.7 0.4539 0.453916157 0.4544
2.0 0.9114 0.911357683 0.9113
7.0 1.8954 1.895403258 1.8954
20 3.3539 3.353904143 3.3539
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The results of an investigation on Eyring–Powell nanofluid transportation caused by
a stretched slender sheet of variable thickness are presented here. The fluctuation of skin
friction factor was mentioned in Table 3. Because the physical nature of these parameters
opposes the fluid stream, it, therefore, increases the resistance at the surface, increases
parameters M, K, ε, δ, Λµ, and Nr, and Rb increased the magnitude of skin friction due
to the accelerated flow. The skin fraction factor is reduced in a reciprocal manner by the
thermal buoyancy parameter ω. The Nusselt number (local heat transfer rate) seems to
increase immediately with the Prandtl number; however, it decreases reciprocally against
excessive values of Rd, Λk, Nt, and Nb according to the contents of Table 4. Thermophoresis
causes the Sherwood number to drop, whereas increased Le, Pr, and Nb caused it to
increase (see Table 5).

The impact of magnetic parameter M on momentum f ′(η) and temperature boundary
layer g(η) is depicted in Figure 2a,b; in that order, growing values of M lower the curve of
momentum but increase the curve of the thermal boundary layer, according to inspection.
The increase in M is coupled with a stronger opposing force (Lorentz force) on the stream,
resulting in a slowing of the speed and increase in temperature. Meanwhile, the fluid’s loss
of kinetic energy is offset by a gain in heat energy, causing an increase in temperature. The
effects of stronger porosity parameter K on f ′(η) and g(η) are scrutinized in Figure 3a,b,
respectively. It is mentioned that K (K = ν

K∗a ) is inversely related to the permeability K∗ of
the porous medium, which causes a decrement in momentum and increase in temperature.
The sketches for momentum and thermal as influenced by thermal buoyancy parameter
are shown in Figure 4a,b. Due to increasing buoyancy effects, the velocity increases
directly with ω. The fluid’s heat energy is used to reduce the temperature throughout
this procedure.

Table 3. Various numerical results for Re
1
2
x C f x = (m+1

2 )
1
2 ((1 + ε) f ′′(0)− δε

3 f ′′(0)3).

M K ω ε δ Λµ Nr Rb C f x

0.1 0.4 0.2 0.7 0.5 1.0 0.3 0.1 1.4350
0.2 1.4788
0.3 1.5219

0.1 1.3000
0.3 1.3907
0.4 1.4350

0.2 1.4350
0.3 1.3887
0.4 1.3434

0.7 1.4350
0.8 1.4879
0.9 1.5394

0.5 1.4350
0.6 1.4382
0.7 1.4413

1.0 1.4350
1.1 1.4478
1.2 1.4618

0.1 1.4097
0.2 1.4224
0.3 1.4350

0.1 1.4350
0.2 1.4502
0.3 1.4655
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Table 4. Various numerical results for Re
−1
2

x Nux = −
(√

m+1
2

)
(Λkg(0) + (1 + Rd))(g′(0)).

Pr Rd Λk Nt Nb Nux

1.1 1 0.1 0.1 0.3 0.3034
1.2 0.3105
1.3 0.3167

1.0 0.3034
1.1 0.2997
1.2 0.2962

0.1 0.3034
0.2 0.2963
0.3 0.2897

0.1 0.3034
0.2 0.2978
0.3 0.2923

0.3 0.3034
0.4 0.2941
0.4 0.2850

Table 5. Various numerical results for Re
−1
2

x Shx =

(√
m+1

2

)
(−h′(0)).

Le Pr Nt Nb Shx

0.4 1.0 0.1 0.5 0.2772
0.5 0.3148
0.6 0.3468

1.0 0.2772
1.1 0.2893
1.2 0.3009

0.1 0.2772
0.2 0.2522
0.3 0.2284

0.5 0.2772
0.6 0.2832
0.7 0.2877

Figures 5a,b and 6a,b portray the impacts of the buoyancy ratio parameter and
Rayleigh number on the velocity and temperature profile. Both of these parameters
decelerated the velocity profile and intensified the temperature. These parameters are
inversely related to temperature differences: When temperature increases quicker, thermal
buoyancy becomes less of a reason for velocity retardation. Figure 7a,b demonstrate the
impact of fluid material parameters ε and δ on temperatures. The flow speed is quicker,
and the thermal boundary is lower when parameter domains are boosted. This is be-
cause they are related inversely to viscosity. The boosted ε and δ mean lesser viscosity;
hence, faster speeds result. When flow speed enhanced, the thermal profile is decremented.
The impact of the wall thickness parameter ς on momentum and thermal boundary layer is
observed in Figure 8a,b. Horizontal velocity f ′(η) increases as ς increases. When m = 2,
f (0) < 0 and it declines with the increasing strength of ς, as stated by boundary condition
f (0) = 1−m

1+m ς. Then, f ′(η) should increase. With ς, the temperature of the fluid likewise
increases, resulting in a greater blowing impact.

Figure 9a,b demonstrated the influence of material parameter δ on momentum profile
f ′(η). We observed from the figure that fluid velocities increase with higher δ. As it is
directly in relation to the velocity of the surface and because of the greater stretching
speed, the fluid’s velocity is also higher, and the temperature of the fluid decreases with
an increase in δ. The fluctuation in temperatures and concentrations of nanoparticles
is shown in Figure 10a,b to comprehend the influence of Brownian motion parameter
Nb. The higher the Nb, the quicker the random movement of the nanoparticles, which
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results in increased heat diffusion and an increase in temperature. In addition, the rapid
motion causes the concentration function to deteriorate. When particles transition from a
heated to a cold state, a thermophoretic impact occurs. In Figure 11a,b, the impacts of the
thermophoresis parameter Nt on thermal and concentration boundary layer are displayed.
The gradual migration of nanoparticles from hotter environments causes the temperature
and concentration in the boundary layer area to increase. Figure 12a,b delineated the
higher temperature g(η) of the fluid in direct response to Λk (variable thermal conductivity
parameter) and Rd (Radiation parameter). The increments in Λk include larger thermal
conductivities; similarly, the higher inputs of Rd mean larger radiation heat diffusion,
which cause an increase in temperature. As the Lewis number Le is reciprocated with
respect to mass diffusivity, its higher values cause a decline in concentration curve h(η), as
shown in Figure 13a. Similarly, against bioconvection Lewis number Lb, the concentration
profile of microorganisms χ(η) is reduced (see Figure 13b) because Lb is in an inverse
relation to the diffusivity of microorganisms. Figure 14a,b with a rescaled microorganism
distribution incorporates the nature of Peclet number Pe and density ratio Ω. When Peclet
number Pe and density ratio Ω increases, the microorganism profile decreases.
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Figure 2. Variation of M to influence the velocity and temperature profile. (a) Variation of M to
influence the velocity. (b) Variation of M to influence the temperature.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
(

)

K = 1, 2, 3, 4

1.0

2.0

3.0

4.0

K

K
K
K

(a)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g
(

)

1.0

2.0

3.0

4.0

K

K
K
K

K = 1, 2, 3, 4

(b)

Figure 3. Variation of K to influence the velocity and temperature profile. (a) Variation of K to
influence the velocity. (b) Variation of K to influence the temperature.
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Figure 4. Variation of ω to influence the velocity and temperature profile. (a) Variation of ω to
influence the velocity. (b) Variation of ω to influence the temperature.
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Figure 5. Variation of Nr to influence the velocity and temperature profile. (a) Variation of Nr to
influence the velocity. (b) Variation of Nr to influence the temperature.
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influence the velocity. (b) Variation of Rb to influence the bioconvection profile.
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Figure 7. Variation of ε to influence the velocity and temperature profile. (a) Variation of ε to influence
the velocity. (b) Variation of ε to influence the temperature.
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Figure 8. Variation of ς to influence the velocity and temperature profile. (a) Variation of ς to influence
the velocity. (b) Variation of ς to influence the temperature.
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Figure 9. Variation of δ to influence the velocity and temperature field. (a) Variation of δ to influence
the velocity. (b) Variation of δ to influence the temperature.
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Figure 10. Variation of Nb to influence the temperature and concentration profile. (a) Variation of Nb
to influence the temperature. (b) Variation of Nb to influence the concentration profile.
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Figure 11. Variation of Nt to influence the temperature and concentration Profile. (a) Variation of Nt
to influence the temperature. (b) Variation of Nt to influence the concentration profile.
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Figure 12. Variation of Λk and Rd to influence the temperature profile. (a) Variation of Λk to influence
the temperature. (b) Variation of Rd to influence the temperature.
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Figure 13. Variation of Le and Lb to influence the concentration and bioconvection profile. (a) Variation
of Le to influence the concentration profile. (b) Variation of Lb to influence the bioconvection profile.
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Figure 14. Variation of Pe (a) and Ω (b) to influence the bioconvection field. (a) Variation of Pe to
influence the bioconvection profile. (b) Variation of Ω to influence the bioconvection profile.

6. Conclusions

Boundary layer flows on MHD Eyring–Powell nanofluids across a slender elastic sheet
of variable thicknesses are taken into account in this paper. The temperature and concen-
tration constitutive equations are used to explore the Buongiorno model of nanofluids.
Gyrotactic bioconvection features are also incorporated in flow phenomena. The results are
obtained using the Runge–Kutta method approach in the MATLAB platform. The current
research leads to the following delicate conclusions:

• The fluid’s velocity increases with larger values of the ε, ς, δ, and ω and it decrease
with enhancements in M, K, Nr, and Rb because these parameters are responsible for
decelerating the flow.

• The temperature profile enhanced with Nb (Brownian motion), Rd (Radiation parame-
ter), and Nt (thermophoretic parameter).

• Nanoparticle concentration increased when Nt is enhanced, and it decreased with the
boosted inputs of Pr, Nb, and Le.

• The bioconvection profile decreased with higher inputs of parameters Lb, Pe, and ω.
• Skin friction increased with M, K, Λµ, Nr, and Rb. However, skin friction increased

due to accelerated flows.
• The Nusselt number increased with higher values of Pr, and it decreased when

Rd, Λk, Nb, and Nt increased, because these parameters enhanced the temperature
distribution relative to the reduced Nusselt number.

• To validate the findings, the current findings are compared to the previous literature.
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By this computational endeavor, we successfully clarified the parametric effects on
fluid dynamics. This study can be extended for Prandtl nanofluids, Carreau–Yasuda
nanofluids, Maxewell nanofluids, viscoelastic Jeffrey’s nanofluids, and tangent hyper-
bolic nanofluids.
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Nomenclature

n∞ Ambient motile microorganism µ f Dynanic viscosity
Cw Concentration at surface n Density of motile microorganism
DB Brownian diffusion coefficient qr Radiative heat flux
u1 Fluid velocity components along x− axis v1 Fluid velocity components along y− axis
g Gravitational Acceleration qw Heat flux
T Nanofluid temperature γ Average volume of a microorganism
ρm Microorganisms density Rex Reynolds number
c1, β1 material liquid parameters of Powell-Eyring model σ Electrical conductivity
f ′(η) Dimensionless velocity profile g(η) Dimensionless nanofluid temperature
h(η) Dimensionless nanofluid concentration χ(η) Dimensionless density of motile microorganism
ρp Mass density of nanoparticles DT Thermophoretic diffusion coefficient
Ω Density ratio of motile microorganisms Tw Temperature at surface
µT Variable viscosity ν∞ Kinematic viscosity
βR Mean absorption coeffiecient nw Density of motile microorganism at surface
B0 Uniform magnetic field T∞ Ambient temperature
ε, δ Fluid parameters C∞ Ambient concentration
κT Variable thermal conductivity σe Stefan-Boltzman constant
Cp Specific heat T4 Linear temperature function
C Nanoparticles concentration Wc Constant maximum cell swimming speed
Λµ Variable viscosity Λk Thermal conductivity
M Magnetic parameter ω Thermal buoyancy parameter
Nt Thermophoresis parameter ς Wall thickness parameter
Le Lewis number parameter Pr Prandtl number
Lb Bioconvection Lewis number parameter Pe Peclet number
Nr Buoyancy ratio parameter Rb Bioconvection Rayleigh number
Nb Brownian motion Rd Radiation parameter
qm Mass flux qn Motile microorganism flux
C f x Skin friction coefficient Nux Nusselt number
Shx Sherwood number Nnx Density of motile microorganism
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